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 
Abstract— Optimal allocation of distributed generation units is 

essential to ensure power loss minimization while meeting the 
real and reactive power demands in a distribution network. This 
paper proposes a solution to this non-convex, discrete problem by 
using the hybrid grey wolf optimizer, a new metaheuristic 
algorithm. This algorithm is applied to IEEE 33-, IEEE 69-  and 
Indian  85-bus  radial distribution systems to minimize the power 
loss. The results show that there is a considerable reduction in the 
power loss and an enhancement of the voltage profile of the buses 
across the network.  Comparisons show that the proposed 
method outperforms all other metaheuristic methods, and 
matches the best results by other methods - including exhaustive 
search - suggesting that the solution obtained is a global 
optimum. Further, unlike for most other metaheuristic methods, 
this is achieved with no tuning of the algorithm on the part of the 
user,  except for the specification of the population size.     

Index Terms—Distributed generation (DG), optimal DG 
location, optimal DG size, loss minimization, radial distribution 
system, metaheuristic algorithm 
 

I. INTRODUCTION 

ecent developments such as the advances in power 
electronics, renewable energy sources, liberalization of 
electric power markets, and the need for environment 

protection have drastically necessitated and made possible the 
decentralization of power networks. This has led to new sets 
of problems and opportunities, and the proliferation of 
distributed generation systems.  
    Distributed generation (DG) units  can be classified into 
different types, based on whether they generate or consume 
reactive power along with generation of real power: (a) P-type 
or Type-I DG units, which supply real power alone,  such as 
photovoltaic cells (b) Q-type or Type-II DG units  which 
supply  reactive power alone, like capacitor banks (c) PQ+-
type or Type-III DG units which supply real power and can 
either generate or consume reactive power, like synchronous 
generators, and (d) PQ--type or Type-IV DG units which 
produce real power and consume reactive power, like 
induction generators for wind power. 
    The optimal DG allocation problem is to determine the 
optimal bus location, and the optimal size of the DG units, to 
minimize the total power loss in the system network. The 
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importance of this problem has been highlighted by surveys 
such as [1] and [2], and a large number of papers, using a 
variety of approaches that can be broadly classified into four 
categories:(a)classical (b)analytical (c)metaheuristic and 
heuristic, and (d) hybrid. The latest works in each of these 
categories are reviewed next.   
    Classical approaches to solving the DG allocation problem 
include mixed integer nonlinear programming (MINLP) [3], 
and the use of bifurcation analysis and dynamic programming 
[4]. Considering the analytical approaches next, [5] presents 
an analytical method (AM) using loss sensitivity factor (LSF) 
that is claimed to be simpler and faster than other classical 
methods in it. Reference [6] proposes an analytical expression, 
[7] an improved analytical (IA) method, and [8] a dual index 
analytical approach. Other works that use the analytical 
approach include [9] which uses sensitivity approaches, [10] 
which uses sensitivity analysis, [11] and [12], which uses 
efficient analytical (EA) method and EA with optimal power 
flow (EA-OPF).   

     The metaheuristic and heuristic methods used for solving 
the DG allocation problem outnumber the analytical and 
classical approaches. Some of these methods  are: artificial 
bee colony (ABC) [13], heuristic curve-fitted technique [14], 
modified honey bee mating [15],  improved particle swarm 
optimization (IPSO)  [16], modified teaching learning-based 
optimization (MTLBO) algorithm [17],  multi-objective 
harmony search [18], Pareto front differential  evolution [19], 
particle swarm optimization (PSO) with constriction factor 
approach [20], backtracking search algorithm (BSA) [21],  big 
bang big crunch [22], krill herd algorithm (KHA) [23], 
improved PSO [24].  

     Given the relative advantages and disadvantages of the four 
categories of approaches, some hybrid methods to eliminate 
the disadvantages and combine the advantages too have been 
tried out on the DG allocation problem. Hybridization of 
metaheuristic approaches with analytical approaches has been 
tried in [25] which uses LSF and simulated annealing 
(LSFSA), [26] which uses sensitivity analysis and PSO, and 
[27] which uses the analytical method and PSO (named as 
'Hybrid' in [27]). Another kind of hybridization is combining 
operators of one metaheuristic algorithm with those of 
another. Examples of such methods are [28] which uses an 
imperialist competitive algorithm and genetic algorithm, [29] 
which uses ant colony optimization and artificial bee colony 
(HACO) and [30] which combines harmony search and 
particle ant bee colony (PABC).   
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    The cost function in the DG allocation problem, the total 
power loss in the system, is subject to nonlinear equality 
constraints. This makes the problem non-convex. The bus 
numbers and the DG capacities can assume only discrete 
values, hence making the problem a discrete one. Classical 
methods have the advantage of small computation time but 
assume that the problem is a convex programming problem, 
while the optimality of analytical methods is an open issue [1]. 

     The contribution of this paper is to find the globally 
optimal solution of the non-convex, discrete DG allocation 
problem, using the hybrid grey wolf optimizer (HGWO), a 
hybrid metaheuristic method. The HGWO outperforms or 
performs as well as all the other methods -including the other 
metaheuristic methods and exhaustive search - in terms of 
optimality of the solution, thereby suggesting that the solution 
is a globally optimal one. Further, unlike for most other 
metaheuristic methods, this is achieved with no tuning of the 
algorithm on the part of the user,  except for the specification 
of the population size.   

    The remainder of this paper is constituted as follows. 
Section II explains the statement of the problem of loss 
optimization in a distribution network. Section III summarizes 
the grey wolf optimizer, and Section IV  gives a brief review 
of the hybrid grey wolf algorithm(HGWO). Section V 
explains how the HGWO is applied to solve the DG allocation 
problem. Section VI contains the results and discussion, and 
Section VII concludes the paper. 

II. PROBLEM FORMULATION 

The problem involves identifying the location, the size and 
the type of distributed generators or distributed generation 
units (DG units) to be introduced at different nodes of the 
distribution network while ensuring the operational constraints 
are met to ensure system integrity.  

A. Objective Function 

     Fig. 1 shows the single line diagram of the main feeder of a 
radial distribution system (RDS) with N number of buses. The 
real power or I2Rloss in the line section between buses i and 
i+1 is given by 
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 The total power loss of the feeder, which is the sum of losses 
in all the line sections of the feeder is given by 
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where 
, 1 , 1,i i i iP Q  are the real and reactive power flow 

between buses i and i+1,  in kW and kVAr, 
, 1i iR 

 is the 

resistance of the line between the buses i and i+1, and  Vi is 
the voltage at bus i.   
 
Similarly, the reactive power loss in the line section between 
buses i and i+1 is given by  
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where
, 1i iX 

is the reactance of the line between buses i and 

i+1.  
The objective is to minimize the total real power loss incurred 
by placing the DG units at optimal bus locations and choosing 
the optimal sizes of the DG units. With the addition of the DG 
units, (2) becomes 
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where pDG q DG,  are the real and reactive power multiplier, 

set to 1 if DG unit is present, and 0 if DG unit is absent, 
 

DG, 1 DG, 1,i iP Q  are the size of the DG unit or active and 

reactive power injections at bus i+1 in kW and kVAr, 
respectively.  

B.  Constraints 

The inequality constraints of the problem are given by 
1. The voltage at each bus should be well within the 

permissible limits:  

,min ,maxi i iV V V                  (5) 

2. The size of individual DG units is to be maintained 
within the set limits [13]: 

 
Fig. 1.Single line diagram of an RDS 

DG, ,min DG, DG, ,maxi i iS S S              (6) 

3. The operating power factor of the DG unit has to be 
within the set limits [13]: 

DG, ,min DG, DG, ,maxi i ipf pf pf                 

(7) 
4. At every bus in the system, the following nonlinear 

equality constraints must be satisfied (see Fig. 1) [13]: 
Loss
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where
L, 1iP  and 

L, 1iQ   are the real and reactive power loads at 

bus i+1. 

C.  Bus Voltage Difference with DG Unit 
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     For DG units of the P-type, Q-type and PQ+-type 
considered in this paper, the real and reactive powers are to be 
injected such that the bus voltages are maintained between 
within their lower and upper limits. The bus voltage difference  
after the addition of the DG units is approximately given by 
[26] (see Fig. 1) 

   1 L, 1 pDG DG, 1 , 1 L, 1 qDG DG, 1 , 1i i i i i i i i i iV V P P R Q Q X           
 

                        
(11) 

where
, 1 , 1,i i i iR X   are the resistance and reactance of the line 

between the buses i and i+1. 

III. THE GREY WOLF OPTIMIZER 

The grey wolf optimizer (GWO) is a swarm intelligence 
algorithm introduced by Mirjalili, Mirjalili, and Lewis in 2014 
[31], that does not require any tuning on the part of the user.  
It employs the two operators for its working: (i) encircling 
prey, and (ii) hunting. These are given by [32]: 

(i) Encircling prey 
The distance between any wolf and the prey is given by 
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where pX


 is the position vector of the prey, X


is the position 

vector of a wolf, and t indicates the iteration number. 1r


is a 

vector of random numbers in the range [0, 1], of the same 

dimensions as pX


and X


. The   between  C


 and pX


corresponds to component-wise multiplication.  

(ii) Hunting 
Hunting involves moving closer to the prey using the 

information obtained in encircling, given by (12) and (13). 
This is given by 
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where a is linearly decreased from 2 to 0 over the course of 
iterations, and 2r

  a vector of random numbers in the range[0, 

1], and of the same dimensions as  pX


, X


 and D


. The  
between  A


 and D


 means corresponding component-wise 

multiplication, as in (12).   
The position of the prey ,pX


 or the optimizer being 

searched for in the solution landscape is unknown, it is 
assumed that the ,  and   wolves [32] have the best 
knowledge of the prey. Hence their positions are used for 
updating the positions of all the other (omega) wolves. Using 
these three best solutions in the decreasing order of their 

fitness, the distances between any wolf X


 and these three best 
wolves are given by 
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 Applying the two operators of encircling and hunting 
repeatedly, the prey or the best solution is located. 

IV. THE HYBRID GREY WOLF OPTIMIZER (HGWO) 

The DG allocation problem is inherently discrete owing to the 
discrete values of bus numbers and the DG unit capacities, and 
it is also non-convex due to the nonlinear power balance 
equality constraint.  To enhance the search capability in this 
kind of non-convex solution spaces, [32] proposed 
hybridization of the GWO with operators from evolutionary 
algorithms. These are given next.  

(i) Crossover 
    The uniform or binomial crossover proposed in [33] is used 
here. The jth component of the ith wolf applying the crossover 
operator is given by 

𝑋௝
௜ =  ቊ

𝑋௝
௥if 𝑟𝑎𝑛𝑑௝

௜ < 𝐶௥

𝑋௝
௜    else

  𝑗 = 1, 2, … , 𝐷, 𝑖 = 1, 2, …  , 𝑁௪  (19) 

where
w[ 1, 2, ..., ], chosen randomly, ,r N r i  and 

 0,1i
jrand   is randomly generated  j, i. D is the 

dimensionality of each solution vector, and Nw is the number 
of solutions or wolves.  
     For the work reported in this paper, the crossover 
probability 𝐶௥ is varied dynamically unlike in the classical 
differential evolution. This is given by [34]  
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where iF is the fitness value of the ith wolf. The best and the 
worst fitness values in the wolf pack for the current iteration 
are termed as bestF and worstF respectively. (20) and (21) ensure 
that the best wolf vector remains unchanged, and the crossover 
probability is directly proportional to the relative fitness of the 
vector. 

(ii) Mutation 
   The mutation scheme used is as in [34].  After mutation, the 
jth component of the ith wolf is given by 

 𝑥௝
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where 
w, [ 1, 2, ..., ], randomly generated,p q N p q i   , and 

 10,rand,r i
jr   both randomly generated  j, i.  is the 

mutation probability or mutation rate, j,x gBest is the jth 
component of the global best wolf in the whole of the iterative 
process so far, across the iterations, up to the current iteration. 
The best wolf in the pack in any given iteration is compared 
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with this global best wolf. If the best wolf is better than the 
global best wolf, it becomes the new global best wolf. 
Equations (21) and (23) mean that the mutation probability or 
mutation rate  is 0 for the best wolf and 0.05 for the worst 
wolf in the pack of the current iteration.  

V. IMPLEMENTATION OF THE HGWO FOR OPTIMAL DG ALLOCATION  

   The allocation of DG units in appropriate locations reduces 
the losses and improves the voltage profile.  The control 
variables of the problem are the (a) the locations, (b) capacity,  
and (c) operating power factor of DG units. A set of these 
control variables forms a grey wolf (or solution vector). The 
fitness of each solution is determined by substituting this in 
the fitness function given by (4) and executing a load flow by 
the direct approach proposed by Teng [34]. The grey wolves 
which give the best fitness values (the least or minimum 
losses) are chosen as the , β and  wolves respectively.  
       The step by step procedure of HGWO to solve the optimal 
DG allocation problem is given below. 
Step 0: Choose the population size Nw,  maximum number of 
iterations, total number of locations for DG units to be 
installed NDG,loc, capacity of DG unit S in kVA, and the 
operating power factor  pf, set as  
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in Section 2.2.  
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where i = 1, 2,..., NDG,loc is the location or the bus number. DG 
can take values of 1, 2 and 3 for 1 no DG, 2 no DG and 3 no 
DG locations respectively.    
Step 1: Run the load flow for each grey wolf and find the 
power loss in the distribution system. Evaluate the fitness 
using the fitness or objective function (4). Identify the , β 
and wolves and the global best solution PgBest. In the very 
first iteration, PgBest = P.  
Step 2: Apply the encircling operator (12) to compute  

1 2 3- , - , -i i iD C P P D C P P D C P P 
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Apply the hunting operator (14), to compute 𝑃ଵ
ሬሬሬ⃗ , 𝑃ଶ

ሬሬሬሬ⃗ and𝑃ଷ
ሬሬሬሬ⃗ . For 

this problem, using the distances calculated by (25), these are 
given by 

1 1- ,αP P A D 
  

2 2- ,P P A D
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3 1- P P A D
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Compute the population of the next generationP(t+1), 
comprising Nw number of solutions or wolves each given by 
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Step 3: Apply the crossover operator (19) and mutation 

operator (22), replacing i
jX  with  .i

jP  

Step 4: Check if DG unit kVA limits and operating power 
factor limits are violated. Fix the generation at the limit(s)  
violated. 
Step 5:  Is the stopping criterion satisfied? If yes, stop. Else, 
repeat steps 1 to 4.  

VI. RESULTS AND DISCUSSION 

The problem considered in this paper, the optimal allocation 
of distributed generation using HGWO is applied and tested 
on three test cases comprising IEEE-33-, IEEE-69- and 85-bus 
Indian RDSs, to the  three different types of DG units 
mentioned in Section I. The scope of this paper is restricted to 
P-type, Q-type and PQ+-type DG units. 
      The population size of the herd or the number of wolves or 
trial solutions is fixed as 20. The stopping criterion used is the 
maximum number of iterations. For the work in this paper, 
this value is fixed as 200. The minimum and maximum bus 
voltage limits are set at 0.9 p.u. and 1.05 p.u. respectively, as 
in [7].  The lower and upper kVA limits of the DG unit are 
respectively set as 20 %  and 100 % of the total load plus 
losses incurred in the system. The operating power factor is set 
as explained in Step 0 in Section V. All calculations are done 
in per unit (p.u.) system. 

     The HGWO approach and the load flow solution used are 
implemented in MATLAB® software on a personal computer 
with a 64-bit, 3.0 GHz, i7 processor and 6 GB RAM. The 
results of these test cases are presented and discussed next.  

A.  IEEE 33-bus RDS 

       This RDS has 33 buses and 32 distribution lines. The total 
real and reactive power demands are 3,715 kW and 2,300 
kVAr respectively [36].  The base values are 10 MVA and 
12.66 kV. The voltage goes on decreasing as one proceeds 
from the source to the end, due to the presence of loads at the 
buses. The voltage profiles of the buses may be improved by 
connecting DG units to the buses to take up part of the load 
demand, thereby reducing the current flow and losses.  
       The uncompensated or base case power loss for this 
system is 210.98 kW. This RDS is solved for P-type, Q-type 
and PQ+-type DG units, using the proposed HGWO algorithm. 
Each type is applied to the three Cases, of 1 no. DG unit, 2 no. 
DG unit, and 3 no. DG unit. The methods compared against 
include all the other four categories of classical, analytical, 
metaheuristic methods and hybrid approaches. Table I shows 
the comparison of simulation results for P-type DG units (real 
power injection only), and Q-type DG units (reactive power 
injection) for the all these three Cases. 
    For the 1 DG unit Case, the proposed HGWO algorithm 
determined the optimal location and size as bus no. 6, and 
2,590 kVA. At  111.018 kW, it is seen that this is the best 
result, matched only by MINLP, EA-OPF, and Exhaustive 
OPF. It is to be noted that Exhaustive OPF method is an 
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exhaustive search method, and hence, can be only be matched, 
and not outdone. An exhaustive search is naturally expected to 
produce the best results, given the nature of, and 
computational load of the method. It is to the credit of the 
other methods like MINLP, EA-OPF, and HGWO that they 
produce results that match those of exhaustive search, with a 
lower computational burden. Of these three, HGWO is the 
only metaheuristic method. The optimal location of the DG 
unit for minimal power loss is the same (bus no. 6) for all the 
methods.  
  For the 2 DG units Case, the optimal bus locations are the 
same at 13 and 30 for all the algorithms, except for IA 
method, for which it is 12 and 30. However, the HGWO 
solution of 87.164 kW of power loss, is the least of all the 

methods. The optimal DG unit sizes by HGWO differs from 
those by the other methods, except those by EA-OPF and 
Exhaustive OPF.  
   For the 3 DG units Case, the power loss by the HGWO is the 
least of all methods, with the exception of MINLP, which 
produces the same value for loss, with the same bus locations.  

   From Table I, it is also seen that, as the number of DG 
units increases, the power loss reduces. Thus, for the HGWO, 
the power loss reduces to 72.784 kW for the 3 DG units Case, 
as compared to 87.164 kW for the 2 DG units Case, and 
111.018 kW for the 1 DG unit Case.  
    

 

TABLE I.  Comparison of simulation results of HGWO for P-type or Type-I, and Q-type or Type-II DG units for 33-bus RDS 

Method 

1 DG unit 2 DG units 3 DG units 

(Optimal 
bus no, 
Optimal 
DG  unit 
size, in 
kVA) 

Total  
power 
loss  

(kW) 

(Optimal bus 
no, 

Optimal DG  
size, in kVA) 

(Optimal bus 
no, 

Optimal DG 
unit  size, in 

kVA) 

Total  
DG 

(kVA) 

Total power 
loss  

(kW) 

(Optimal 
bus no, 

Optimal DG 
unit  size, in 

kVA) 

(Optimal bus 
no, 

Optimal DG 
unit  size, in 

kVA) 

(Optimal bus no, 
Optimal DG unit  

size, in kVA) 

Total  
DG 

(kVA) 

Total 
power 
loss  

(kW) 

Base Case - 210.98 - 210.98 - 
 

210.98 

P-type (Type-I) 

HGWO (6,2590) 111.018 (13,852) (30,1158) 2010 87.164 (13,802) (24,1090) (30,1054) 2946 72.784 

MINLP[3] (6,2590) 111.018 (13,850) (30,1150) 2000 87.167 (13,800) (24,1090) (30,1050) 2940 72.784 

Exhaustive 
OPF [12] 

(6,2590) 111.02 (13,852) (30,1158) 2010 87.17 (13, 802) (24, 1091) (30, 1054) 2947 72.79 

EA-OPF[12] (6,2590) 111.02 (13,852) (30,1158) 2010 87.17 (13, 802) (24, 1091) (30, 1054) 2947 72.79 

EA[12] (6,2530) 111.07 (13, 844) (30,1149) 1993 87.172 (13,798) (24,1099) (30, 1050) 2947 72.787 

Hybrid[27] (6,2490) 111.170 (13,830) (30,1110) 1940 87.280 (13,790) (24,1070) (30,1010) 2870 72.890 

PSO[27] (6,2590) 111.030 (13,850) (30,1160) 2010 87.170 (14,770) (24,1090) (30,1070) 2930 72.790 

PABC [30] (6,2598) 111.030 - - - - (14,755) (24,1073) (30,1068) 2896 72.810 

KHA [23] - - - - - - (13,810) (25,836) (30,841) 2487 75.412 

IA[7] (6,2601) 111.020 (12,1020) (30,1020) 2040 87.550 (13,900) (24,900) (30,900) 2700 74.200 

Q-type (Type-II) 

HGWO (30,1258) 151.36 (12,467) (30,1054) 1521 141.83 (13,387) (24 ,543) (30,1037) 1967 138.25 

Hybrid[27] (30,1230) 151.41 (12,430) (30,1040) 1470 141.94 (13,360) (24,510) (30,1020) 1890 138.37 

 
TABLE II. Comparison of simulation results of HGWO for PQ+-type or type-III DG units, 33-bus RDS 

Method 

1 DG unit 2 DG units 3DG units 

(Optimal bus no, 

Optimal DG unit 

size (kVA), 

Optimal pf) 

Total 

power 

loss 

(kW) 

(Optimal bus no, 

Optimal DG unit 

size (kVA), 

Optimal pf ) 

(Optimal bus no, 

Optimal DG unit 

size (kVA), Optimal 

pf ) 

Total 

DG 

(kVA) 

Total 

power 

loss 

(kW) 

(Optimal bus no, 

Optimal DG unit 

size (kVA), 

Optimal  pf ) 

(Optimal bus no, 

Optimal DG unit size 

(kVA), Optimal  pf) 

(Optimal bus no, 

Optimal DG unit 

size (kVA), 

Optimal  pf ) 

Total 

DG 

(kVA) 

Total 

power 

loss 

(kW) 

Base Case - 210.98 - 
 

210.98 - 
 

210.98 

HGWO (6,3106,0.82) 67.855 (13,932,0.90) (30,1558,0.72) 2490 28.50 (13,878,0.90) (24,1182,0.90) (30,1454.7,0.71) 3514 11.74 

MINLP[3] (6,3105,0.82) 67.855 (13,926,0.88) (30,1984,0.8) 2477 29.31 (13,869,0.87) (24,1180,0.88) (30,1432,0.8) 3481 12.74 

EA-OPF[12] (6, 3119, 0.82) 67.86 (13, 940, 0.90) (30, 1558, 0.73) 2498 28.50 (13, 882, 0.90) (24, 1189, 0.90) (30, 1450, 0.71) 3521 11.74 

EA[12] (6, 3119, 0.82) 67.87 (13, 938, 0.90) (30, 1573, 0.73) 2511 28.52 (13, 886, 0.90) (24, 1189, 0.90) (30, 1450, 0.71) 3525 11.80 

LSFSA[25] - - - - - - (6,1382,0.86) (18,550,0.86) (30,1062,0.86) 2994 26.72 

Hybrid[27] (6,3028,0.82) 67.937 (13,1039,0,91) (30,1508,0.72) 2547 28.98 (13,873,0.9) (24,1186,0.89) (30,1439,0.71) 3498 11.76 

PSO[27] (6,3035,0.82) 67.928 (13,914,0.91) (30,1535,0.73) 2448 28.56 (13,863,0.91) (24,1188,0.9) (30,1431,0.71) 3482 11.76 

PABC [30] (6,3011,0.85) 68.290 - - - - (12,1014,0.85) (25,960,0.85) (30,1363,0.85) 2880 15.91 

AM [11]  (6,3070,0.85) 68.050 (6,3070,0.85) (15,590,0.85) 3660 51.50 - - - - - 

KHA [23] - - - - - - (13,853,0.86) (24,900,0.86) (30,899,0.86) 2652 19.57 

IA[7] (6,3103,0.82) 67.860 (6,2195,0.82) (30,1098,0.82) 3293 44.36 (6,1098,0.82) (14,768,0.82) (30,1098,0.82) 2964 22.26 
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For Q-type DG units, for the three Cases of 1, 2 and 3 DG 
units, the comparison here is with the Hybrid method of [27], 
which is the only work in recent literature for this particular 
problem data. The bus locations are the same for both the 
methods, but the DG unit sizes are different. However, as with 
P-type DG units, the results are marginally better than those of 
the Hybrid method, suggesting that the HGWO is superior, 
even if only marginally.  

   As with P-type DG units, the power loss reduces with the 
increase in the number of Q-type DG units, as can be seen in 
Table I.  The power loss for the HGWO reduces to 138.25 kW 
for the 3 DG units Case, as compared to 141.83 kW for the 2 
DG units Case, and 151.36 kW for the 1 DG unit Case. 

Table II shows the results for PQ+-type (injection of both 
real and reactive power), for the three Cases of 1, 2 and 3 DG 
units. In this Type,  the optimal location, size and power factor 
of the DG units are to be determined. For the Case 1, the 
HGWO produces the least power loss of all methods, with the 
exception of the MINLP. The bus location is the same for all 
methods.   

  In Case 2, the HGWO produces the least power loss with the 
exception of the EA-OPF method. This is better than the 
MINLP solution. The bus locations of 13 and 30 of the other 
methods that produce results comparable to the HGWO are all 
the same as those of the HGWO. For Case 3, as in Case 2, the 
HGWO produces the least power loss (11.74 kW) of all 
methods, with the exception of EA-OPF. Thus, it can be 
concluded that the HGWO matches the other best results in 
the literature.  

   As with the other Types of DG units, the power loss 
reduces with the increase in the number of PQ+-type DG units, 
as can be seen in Table II.  The power loss for the HGWO 
reduces from 67.855 kW for 1 DG unit, to 28.50 kW for 2 DG 
units, to 11.74 kW for 3 DG units.  

The addition of  DG units improves the voltage profile of the 
buses across the network, as given approximately by (11).  
Expectedly, this improvement is the most for PQ+-type DG 
units. Fig. 2 shows the improvement in voltage profile, with 

the addition of PQ+-type DG units. It can be seen that the 
addition of more DG units results in more improvement of the 
voltage profile. Hence, the 3 DG units Case has the least drop 
in voltage and an almost flat voltage profile. 

 
Fig. 2.   Voltage profile improvement of the IEEE 33-bus RDS with 

the addition of PQ+-type DG units 

Table III shows the least and highest bus voltages in the RDS 
after DG allocation. It is seen that these are within the pre-
specified lower and upper limits of    0.9 p.u. and 1.05 p.u. 
respectively. It is also seen that, for each type, as the number 
of DG units increase, there is an improvement in the least bus 
voltages (column 4).  The effect of power factor as a variable 
in the problem formulation shows up as a marked 
improvement in both the least and highest voltages for PQ+-
type (Columns 4 and 6 of the last three rows, compared to the 
same columns of the first six rows). 

Fig. 3 shows the convergence characteristics of the GWO and 
HGWO for the sample case of P-type, 3 DG units RDS for the 
33-bus system. It can be seen that hybridization of the GWO, 
by the addition of the evolutionary operators of crossover and 
mutation, produces considerable improvement in both the 
speed of convergence and optimality of the solution. 

TABLE  III.  Least and highest bus voltages for the 33-bus RDS after DG allocation 

 
Case 

Least Highest 

Bus No.  V (p.u.) Bus No. V (p.u.) 

P-type or Type-I 

1 DG unit 18 0.945517 1 1 

2 DG units 18 0.971479 1 1 

3 DG units 18 0.971487 1 1 

Q-type or Type-II 

1 DG unit 18 0.916321 1 1 

2 DG units 18 0.933805 1 1 

3 DG units 18 0.933389 1 1 

PQ+-type or Type-

III 

1 DG unit 18 0.958457 6 1.0015 

2 DG units 25 0.980238 30 1.009921 

3 DG units 8 0.99222 30 1.000918 
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Fig. 3.  Convergence Characteristics of GWO and HGWO for IEEE 33-bus RDS, with the addition of 3 DG units of P-type. 

B. IEEE 69-bus RDS 

This system is made up of 69 buses and 68 distribution lines. 
The base values are 10 MVA and 12.66 kV. The system has a 
total real power demand of 3,801.89 kW and a total reactive 
power demand of 2,694.1 kVAr [37]. Bus 3 has three branches 
and buses 4, 7, 9, 11 and 12 have two branches, while the 
other buses have only one branch connected to their next bus.  

   The uncompensated or base case power loss for this system 
is 224.99 kW. This RDS is solved for P-type, Q-type and PQ+-
type DG units,  using the proposed HGWO algorithm. Each 
type is applied to the three Cases, of 1 no. DG unit, 2 no. DG 
units, and 3 no. DG units. The methods compared against 
include all the other four categories of classical,  analytical,   
metaheuristic methods and hybrid approaches. Table IV  
shows the comparison of simulation results for P-type and Q-
type DG units, for the all these three Cases.  

     For the 1 DG unit Case, the optimal location of the DG unit 
for minimal power loss is the same (bus no. 61) for all the 
methods. The proposed HGWO algorithm determines the 
optimal size as 1,872 kVA, and the loss is 83.222 kW, that 
matches with the loss by other methods.  

For the 2 DG units Case, the optimal bus locations are the 
same at 17 and 61 for all the algorithms, except the HACO.  
The power loss of 71.674 kW by HGWO is the least of all 
methods, matched by the EA-OPF and HACO.  

       For the 3 DG units Case, the power loss of 69.425 kW by 
the HGWO is the least of all methods, with the exception of 
MINLP, which produces  69.426 kW. The bus locations of 
these two methods too are the same but differ from those by 
other methods. 

      In summary, MINLP, EA-OPF, Exhaustive OPF and 
HGWO produce comparable results.  It is to be noted that 
Exhaustive OPF method is an exhaustive search method, and 
hence, can only be matched, and not outdone. An exhaustive 
search is naturally expected to produce the best results, given 
the nature of, and computational load of the method. It is to 
the credit of the other methods like MINLP, EA-OPF, and 

HGWO that they produce results that match those of 
exhaustive search, with a lower computational burden. Of 
these three, HGWO is the only metaheuristic method. 

      From Table IV, it is also seen that, as the number of DG 
units increases, the power loss reduces. Thus, for the HGWO, 
the power loss reduces to 69.425 kW for the 3 DG units Case, 
as compared to 71.674 kW for the 2 DG units Case, and 
83.222 kW for the 1 DG unit Case. For Q-type DG units, for 
the three Cases of 1, 2 and 3 DG units, the comparison here is 
with the Hybrid method of [27], which is the only work in 
recent literature for this particular problem data. The results by 
HGWO are marginally better than those by the Hybrid 
method. For these almost comparable solutions, there is a 
variation in either the bus numbers or DG sizes, suggesting 
that there is more than one globally optimal solution, in 
finding which the HGWO is better at.  

     Table V  shows the results for PQ+-type, for the three Cases 
of 1, 2 and 3 DG units, for the IEEE 69-bus RDS. For the 1 
DG unit Case, the bus location of  61 is the same for all the 
methods. However, the HGWO and the MINLP produce the 
least power loss of 23.16 kW.  

 For Case 2, the HGWO produces the least power loss of 
7.20 kW, with the exception of the EA-OPF method, that 
matches the HGWO. For Case 3, as in the other Cases, the 
HGWO produces the least power loss of 4.26 kW, to be 
matched only by MINLP. As with the other Types of  DG 
units, the power loss reduces with the increase in the number 
of PQ+-type DG units, as can be seen in Table V.  

 As for the previous 33-bus problem, the addition of  DG 
units improves the voltage profile of the buses across the 
network. Expectedly, this improvement is the most for PQ+-
type DG units. Fig.4 shows the improvement in the voltage 
profile, with the addition of PQ+-type DG units. It can be seen 
that addition of more DG units results in more improvement of 
the voltage profile. Hence, the 3 DG units Case has the least 
drop in voltage, as compared to the other Cases. 
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TABLE IV.  Comparison of simulation results of HGWO for P-type or Type-I and Q-type or Type-II DG units for 69-bus RDS 

Method 

1 DG unit 2 DG units 3 DG units 

(Optimal 

bus no, 

Optimal 

size, kVA) 

Total 

power 

loss  

(kW) 

(Optimal bus 

no, 

Optimal size, 

kVA) 

(Optimal bus no, 

Optimal size, 

kVA) 

Total      

DG (kVA) 

Total 

power 

loss  

(kW) 

(Optimal 

bus no, 

Optimal 

size, kVA) 

(Optimal bus no, 

Optimal size, 

kVA) 

(Optimal bus no, 

Optimal size, 

kVA) 

Total DG 

(kVA) 

Total 

power 

loss  

(kW) 

Base Case - 224.99 - 224.99 - 
 

224.99 

P-type (Type-I) 

HGWO (61,1872) 83.222 (17, 531)  (61, 1781) 2312 71.674 (11, 527) (17, 380) (61, 1718) 2625 69.425 

MINLP[3] (61,1870) 83.222 (17,510)  (61,1780) 2290 71.693 (11,530) (17,380) (61,1720) 2630 69.426 

Exhaustive 

OPF [12] 
(61, 1870) 83.23 (17, 531) (61, 1781) 2312 71.68 (11, 527) (18, 380) (61, 1719) 2626 69.43 

EA-OPF[12] (61, 1870) 83.23 (17, 531) (61, 1781) 2312 71.68 (11, 527) (18, 380) (61, 1719) 2626 69.43 

EA[12] (61, 1878) 83.23 (17, 534)  (61, 1795) 2329 71.68 (11, 467) (18, 380) (61, 1795) 2642 69.62 

MTLBO[17] (61,1819) 83.323 (17,519)  (61,1732) 2251 71.776 (11,493) (18,378) (61,1672) 2544 69.539 

HACO[29] (61,1872) 83.222 (18,530)  (61,1781) 2311 71.675 (11,559) (21,346) (61,1715) 2622 69.429 

KHA [23] - - - - - - (12,496) (22,311) (61,1735) 2542 69.56 

Hybrid[27] (61,1810) 83.372 (17,520) (61,1720) 2240 71.82 (11,510) (17,380) (61,1670) 2560 69.52 

PSO[27] (61,1870) 83.222 (17,1780) (61,530) 2310 71.68 (11,460) (17,440) (61,1700) 2600 69.541 

Q-type (Type-II) 

HGWO (61,1330) 152.041 (61,1277) (17,364) 1641 146.44 (11,412) (21,230) (61,1231) 1873 145.115 

Hybrid[27] (61,1290) 152.104 (61,1240) (18,350) 1590 146.49 (11,330) (18,250) (61,1190) 1770 145.283 

 
TABLE V.  Comparison of simulation results of HGWO for PQ+-type or Type-III DG units, 69-bus RDS 

Method 

1 DG unit 2 DG units 3DG units 

(Optimal bus no, 

Optimal size 

(kVA), Optimal pf) 

Total 

power 

loss 

(kW) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal 

pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal pf) 

Total 

DG 

(kVA) 

Total 

power 

loss 

(kW) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal pf) 

Total 

DG 

(kVA) 

Total 

power 

loss 

(kW) 

Base Case - 224.99 - 
 

224.99 - 
 

224.99 

HGWO (61, 2246, 0.81) 23.16 (17,628,0.82) (61,2127,0.81) 2755 7.20 (11,614,0.81) (18,452,0.83) (61,2056,0.81) 3122 4.26 

MINLP[3] (61, 2244, 0.81)  23.16 (17,658,0.82) (61,2196,0.82) 2854 7.44 (11,607,0.813) (50,1058,0.82) (61,1058,0.82) 3123 4.26 

EA-OPF[12] (61,2229, 0.82) 23.17 (17, 629, 0.83) (61, 2142, 0.81) 2771 7.20 (11, 611, 0.81) (18, 456, 0.83) (61, 2067, 0.81) 3134 4.27 

EA[12] (61,2290, 0.82) 23.26 (17,643,0.83) (61, 2189, 0.82) 2832 7.35 (11, 668, 0.82) (18, 458, 0.83) (61, 2113, 0.82) 3239 4.48 

LSFSA [25] (61, 2200, 0.82) 23.92 - - - - (18,633,0.86) (60,1389,0.86) (65,362,0.86) 2384 16.26 

Hybrid[27] (61, 2200, 0.82) 23.92 (17,630,0.82) (61,2120,0.81) 2750 7.21 (18,480,0.77) (61,2060,0.83) (66,530,0.82) 3070 4.30 

PSO[27] (61, 2240, 0.81) 23.16 (17,630,0.82) (61,2130,0.81) 2760 7.20 (11,600,0.83) (18,460,0.81) (61,2060,0.81) 3120 4.28 

AM [11] (61, 2220, 0.81) 23.20 (17,610,0.82) (61,2290,0.82) 2900 8.06 - -  - - 

KHA [23] (61, 2290, 0.82) 23.22 - - - - (11,560,0.86) (22,357,0.86) (61,1773,0.86) 2690 5.91 

IPSO[16] (61, 2235, 0.85) 23.90 (21,378,0.85) (61,1861,0.85) 2567 13.600 (21,375,0.85) (61,1515,0.85) (64,353,0.85) 2243 12.80 

 

 
Fig. 4.   Voltage profile improvement of the IEEE 69-bus RDS with the addition of PQ+-type DG units 
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TABLE VI.  Least and highest bus voltages for 69-bus RDS after DG allocation 

69-bus 
Least Highest 

Bus V (p.u.) Bus V (p.u.) 

P-type or Type-I 

1DG unit 27 0.968272 1 1 

2DG units 65 0.979958 1 1 

3DG units 65 0.979956 1 1 

Q-type or Type-II 

1DG unit 65 0.931131 1 1 

2DG units 65 0.931556 1 1 

3DG units 65 0.931773 1 1 

PQ+-type or Type-

III 

1DG unit 27 0.972454 62 1.000753 

2DG units 69 0.994158 62 1.000593 

3DG units 50 0.994271 19 1.003012 

 

TABLE VII.  Simulation results of HGWO for P-type and PQ+-type DG units, for 85-bus RDS 

Method 

1 DG unit 2 DG units 3DG units 

(Optimal bus 

no, Optimal 

size (kVA), 

Optimal  pf) 

Total 

power 

loss  

(kW) 

Per  

cent  

redu- 

ction 

(Optimal bus 

no, Optimal 

size (kVA), 

Optimal  pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal  

pf) 

Total 

DG 

(kVA) 

Total 

power 

loss  

(kW) 

Per  

cent  

redu- 

ction 

(Optimal bus 

no, Optimal 

size (kVA), 

Optimal  pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal  

pf) 

(Optimal bus no, 

Optimal size 

(kVA), Optimal  

pf) 

Total 

DG 

(kVA) 

Total 

power 

loss  

(kW) 

Per  

cent  

redu- 

ction 

 Base Case - 316.1 - - 
 

316.1 - - 
 

316.1 - 

P-type (Type-I) 

HGWO (8,2368,1) 175.5 44.48 (34,676,1) (9,1629,1) 2305 156.53 50.48 (48,416,1) (70,198,1) (9,1876,1) 2490 46.394 85.32 

PQ+-type (Type-III) 

HGWO (8,3192,0.708) 62.656 80.18 (34,952,0.7) (9,2123,0.7) 3075 29.33 90.72 (34,967,0.7) (10,1062,0.7) (64,931,0.62) 2960 16.543 94.77 

 
 Table VI  shows the least and highest bus voltages in the 
RDS after DG allocation. It is seen that these are within the 
pre-specified lower and upper limits of 0.9 p.u. and 1.05 p.u. 
respectively. It is also seen that, for each type, as the number 
of DG units increase, there’s an improvement in the least bus 
voltages (Column 4). 

The effect of power factor as a variable in the problem 
formulation shows up as a marked improvement in both the 
least and highest voltages for PQ+-type (Columns 4 and 6 of 
the last three rows, compared to the same columns of the first 
six rows). The voltage profile across the RDS is almost flat, 
for this Case.  

C. Indian 85-bus RDS 

     This system consists of 85 buses and 84 distribution 
lines. The total real power demand of the system is 2,570.28 
kW and the reactive power demand is 2,621.936 kVAr. The 
base values are 100 MVA, 11 kV [38]. The uncompensated, or 
base case power loss is 316.1 kW. This RDS is solved for P-
type, Q-type and PQ+-type DG units,  using the proposed 
HGWO algorithm. Since there are no other results in the 
literature for this problem, the only comparison is the base 
case.  

Table VII shows the simulation results for P-type and PQ+-
type DG units, for the all these three Cases. The percentage 
reduction in the power loss as compared to the base case is, 
44.48 % for the 1 DG unit Case, 50.48 % for the 2 DG units 
Case, and 85.32 % for the 3 DG units Case.  

The percentage reduction in power loss for the PQ+-type DG 
units is 80.18 % for the 1 DG unit Case, 90.72 % for the 2 DG 
units Case, and 94.77 % for the 3 DG units Case. Obviously, 
among all the Types, it is the PQ+-type that leads to the 
maximum reduction of power loss. 

 
VII. CONCLUSION 

The work reported in this paper applied the HGWO, a new 
metaheuristic algorithm, to solve the non-convex, discrete, 
optimal DG allocation problem to the IEEE 33-, IEEE 69- and 
Indian 85-bus RDS. The HGWO compares favorably with 
other best results in the literature - including exhaustive search 
- in terms of optimality of the solution, thereby suggesting that 
the solution is a globally optimal one. A careful study of the 
tables also shows that, by and large,  the HGWO outperforms 
all the other metaheuristic methods, and matches the results by 
exhaustive search.  

  Between P-type, Q-type and PQ+-type DG units, the best 
results were produced by PQ+-type DG units, for all the three 
test cases of IEEE 33-, IEEE 69- and Indian 85-bus RDSs, 
considered in this paper. This is easily explained, as the 
addition of one more variable (the power factor) in the 
solution vector leads to more freedom in the choice of other 
variables.  

 Classical, gradient-based methods are most suitable for 
solving convex programming problems. Metaheuristic 
algorithms are free from the convexity condition required by 
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classical methods, and hence are inherently capable of finding 
the global optimum of non-convex problems like the optimal 
capacitor allocation problem. However, this capability is not 
automatic; it is dependent on factors like the operators the 
algorithm has, to perform an efficient search of the non-
convex solution space. The results in this paper show that 
HGWO meets this requirement eminently, thereby 
outperforming all the other metaheuristic algorithms on this 
problem.  

 Metaheuristic algorithms being probabilistic in nature, the 
solution produced is often nearly the global optimum, but not 
the exact global optimum. HGWO performs so well that, the 
results produced by it matches those by exhaustive search, 
indicating that HGWO is an exceptional performer among 
metaheuristic algorithms.  

Metaheuristic methods have the limitation that, they often 
require tuning on the part of the user, to work correctly. Given 
some practical optimization problem, this is can often make 
the difference between solving successfully and not solving 
the problem. The HGWO is an exception in this respect too: 
except for the specification of the population size by the user, 
no other tuning is needed for the HGWO.   
Future works can consider applying this promising algorithm 
to other difficult optimization problems in power systems and 
other areas. Future refinements of the optimal DG allocation 
problem can include other real life objectives like reliability 
and robustness, under uncertainties of load and generation.   
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