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Abstract Optimal size and location of shunt capacitors in the distribution system plays a signifi-

cant role in minimizing the energy loss and the cost of reactive power compensation. This paper

presents a new efficient technique to find optimal size and location of shunt capacitors with the

objective of minimizing cost due to energy loss and reactive power compensation of distribution sys-

tem. A new Shark Smell Optimization (SSO) algorithm is proposed to solve the optimal capacitor

placement problem satisfying the operating constraints. The SSO algorithm is a recently developed

metaheuristic optimization algorithm conceptualized using the shark’s hunting ability. It uses a

momentum incorporated gradient search and a rotational movement based local search for opti-

mization. To demonstrate the applicability of proposed method, it is tested on IEEE 34-bus and

118-bus radial distribution systems. The simulation results obtained are compared with previous

methods reported in the literature and found to be encouraging.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Distribution systems normally consist of a main feeder and lat-
eral distributors. It acts as a link between high voltage trans-

mission line and the low voltage consumers. The low voltage
and high current characteristics of distribution system leads
to high power losses compared to that of transmission system.
About 13% of total power generated is consumed as power

losses at the distribution system [1]. The power losses can be
separated into two parts based on the active and reactive com-
ponents of branch currents. The losses produced by reactive
hm, Ain

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ngnanasekaran69@gmail.com
mailto:c_dramo@annauniv.edu
mailto:sathish07ee@gmail.com
mailto:mohamedimran.a@vit.ac.in
http://dx.doi.org/10.1016/j.asej.2016.01.006
http://dx.doi.org/10.1016/j.asej.2016.01.006
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2016.01.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.asej.2016.01.006


Nomenclature

vn voltage at nth bus

vmin minimum voltage of the system in p.u.
rn, n+1 resistance of branch connecting buses ‘n’ and

‘n + 1’
xn, n+1 reactance of branch connecting buses ‘n’ and

‘n + 1’
PTLoss total real power loss of the system
nb number of branches

Ke cost of energy losses in $/kW h
T time duration (8760 h)
r depreciation factor

Kins installation cost of capacitor in $ per node
NC number of buses for capacitor placement
Kc purchase cost of capacitor in $ per kVAr
Kope operating cost of capacitor in $ per year per node

vn, min minimum permitted voltage at nth bus in p.u.
vn, max maximum permitted voltage at nth bus in p.u.

QT total reactive power demand of system in kVAr

Qcn reactive power injection at bus-n in kVAr
Qcn;min minimum reactive power compensation in kVAr
Qcn;max maximum reactive power compensation in kVAr
X position of sharks (solution vector)

NP population size
ND number of elements/dimensions of each solution
V vector representing velocity of sharks

kmax number of iterations for SSO
R1, R2 uniform random numbers in the interval [0, 1]
g gradient scaling factor

ak inertial constant, 2[0, 1]
bk velocity limiter ratio
R3 random number from uniform distribution in the

interval [�1, 1]

M rotational movement variable

Sub station n n+1

Bn,n+1 Bn+1,n+2

Sn

n+2

Sn+2Sn+1

Figure 1 Single line diagram of a sample system.
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components of branch currents can be reduced by the installa-
tion of shunt capacitors. Capacitive compensation reduces
power loss, improves voltage profile of system, increases the

power factor and releases kVA capacity of distribution equip-
ments for additional load growth. The most critical factors
that influence the technology and economical impacts of

capacitor placement problem are the type, size and location
of shunt capacitors in distribution systems. The objective of
the optimal capacitor placement problem is to find the optimal
locations, type and size of capacitors to be placed on the

Radial Distribution System (RDS). Optimal capacitor place-
ment is a complex combinatorial problem. Analytical methods
[2,3] have been used in most of the early works of optimal

placement of capacitors which require no powerful computing
resources. Simulated Annealing (SA) is an iterative optimiza-
tion algorithm which is based on the annealing of solids. SA

has been used to minimize capacitor installation costs in [4].
Heuristic search strategies [5,6] were implemented to find solu-
tion to the capacitor placement problem using heuristic rules

which searches through a set of possible solutions.
In the recent years optimal placement of capacitor prob-

lems has been solved using population based optimization
algorithms such as Genetic Algorithm [7], Particle Swarm

Optimization algorithm [8], Artificial Bee Colony (ABC) algo-
rithm [9,10] and Cuckoo Search Algorithm (CSA) [11]. In [12],
a direct search algorithm has been proposed to find optimal

locations and optimal sizes of fixed and switched capacitors.
An evolutionary algorithm called modified cultural algorithm
has been implemented to the optimal capacitor allocation

problem in [13]. In [14], a combination of Fuzzy-GA approach
is presented to find the optimal sizes of fixed and switched
capacitors. Plant growth simulation algorithm is based on

the process of plant growth and has been applied to find the
optimal size of capacitors to the identified candidate buses in
[15].

Shark smell optimization algorithm is a new metaheuristic

algorithm based on ability of shark to find prey. The effective-
ness of SSO algorithm has been proven by comparing it with
Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capac
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many other heuristic optimization methods after implementing
it to the bench mark functions [16]. The main contribution of
this paper is application of SSO algorithm to optimal capacitor

placement problem. In this paper, the shark smell optimization
algorithm has been proposed for finding optimal locations and
sizes of shunt capacitors. The objective function has been

considered as minimization of cost function. Size of capacitor
banks is taken as discrete values.

2. Problem formulation

2.1. Power flow equations

Distribution load flow plays an important role in finding solu-
tion for capacitor placement problem. Generally distribution
networks are radial and the R/X ratio is very high. Hence,

the conventional Gauss Seidel, Newton–Raphson and Fast
Decoupled load flow methods are inefficient in solving such
networks. The distribution load flow algorithm proposed in

[17] has been used in this paper.
Distribution system power flow is calculated by a set of

recursive equations derived from single line diagram shown

in Fig. 1.
Equivalent current injection at the nth bus is calculated as

In ¼ Sn

vn

� ��
¼ Pn þ jQn

vn

� ��
ð1Þ
itors in radial distribution system using shark smell optimization algorithm, Ain
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Branch current ‘B’ in the line section between buses ‘n’ and
‘n+ 1’ is calculated Kirchhoff’s current law as

Bn;nþ1 ¼ Inþ1 þ Inþ2 ð2Þ
Eq. (2) can be written in generalized form as

½B� ¼ ½BIBC� � ½I� ð3Þ
The relationship between branch currents and bus voltages

can be expressed as

vnþ1 ¼ vn � Bn;nþ1ðrn;nþ1 þ jxn;nþ1Þ ð4Þ
Power loss in the line section between buses ‘n’ and ‘n + 1’

is given by Eq. (5).

Plossn; nþ 1 ¼ P2
n;nþ1 þQ2

n;nþ1

jvnþ1j2
 !

rn;nþ1 ð5Þ

PTLoss ¼
Xnb
n¼1

Plossn; nþ 1 ð6Þ
2.2. Objective function

The objective of capacitor placement problem in the distribu-

tion system is to minimize the cost due to system energy loss
and reactive power compensation subject to the constraints.
The cost of reactive power compensation includes purchase,

installation and operation costs of capacitors. As the location
and size of capacitors are to be treated discrete, the mathemat-
ical model can be expressed as a constrained nonlinear integer

optimization problem:

Minimize f ¼ Cost of energy loss

þ Cost of reactive power compensation

Min: f¼Ke�PTLoss�Tþr ðKins�NCÞþKc

XNC

n¼1

Qcn

" #
þðKope�NCÞ

ð7Þ
Subject to the constraints:

(i) The voltage magnitude at each bus must be maintained
within its limits and is expressed as follows:
Please
Shams
Vn;min 6 jvnj 6 vn;max
(ii) The total reactive power injected is not to exceed the
total reactive power demand in radial distribution
system:
XNC

n¼1

Qcn < QT ð8Þ
(iii) The reactive power injection at each candidate bus is
given by its minimum and maximum compensation
limit.
Qcn;min 6 Qcn 6 Qcn;max ð9Þ
In order to measure the value of voltage stability in the
system, voltage stability index (VSI) [18] is determined. VSI
at node (n + 1) for the line section between buses ‘n’ and

‘(n+ 1)’ in single line diagram shown in Fig. 1 can be
calculated using Eq. (10).
cite this article in press as: Gnanasekaran N et al., Optimal placement of capac
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VSInþ1 ¼ v4n � 4fPn;nþ1xn;nþ1 �Qn;nþ1rn;nþ1g2

� 4fPn;nþ1rn;nþ1 þQn;nþ1xn;nþ1gv2n ð10Þ
For stable operation of the radial distribution system the

value of VSI should be greater than or equal to zero at each
node. The reactive power support provided by the capacitors

also helps to enhance the voltage stability of the system.

3. Shark smell optimization algorithm

3.1. Overview of shark smell optimization algorithm

Shark smell optimization algorithm [16] is a metaheuristic
algorithm, which finds its inspiration from the superior hunt-
ing behavior of sharks and their ability to sense the odor of
prey even from miles away. When a prey is injured and blood

is injected into the water, shark smells the odor of blood and
move toward the prey. The movement of shark toward prey
is based mainly on concentration and gradient of blood odor

in the water particles. If the concentration increases as the
shark moves, the movement is true. This behavior of sharks
is used in SSO algorithm. The following assumptions are made

while modeling movement of sharks.

1. The prey is injured and injects blood into the sea (search

environment). So, the velocity of the prey movement is
low and neglected against the shark’s velocity. Hence, the
source (prey) is approximately assumed to be fixed.

2. The blood is regularly injected into the sea and the effect of

the water flow on distortion of the odor particles is
neglected.

3. There is only one blood source (i.e. one injured prey) in the

search environment of the shark.

The important steps of SSO algorithm include initializa-

tion, forward movement, rotational movement and position
update. In the optimization problem, the search process starts
when the shark smells an odor particle and each solution rep-
resents odor particle released by prey which is a possible posi-

tion of shark. The optimal solution is represented by food
source (prey). The odor intensity at a position represents the
quality of solution. As the blood is released in the water, shark

smells the odor and moves toward the prey by moving toward
high odor intensity and hence to a high quality solution. In this
way, shark smell algorithm can be applied to optimal capacitor

placement problem.
3.1.1. Initialization of odor particles

A population of initial solutions is generated randomly within

the feasible search space. Each solution represents one odor
particle which is a possible position of the shark. The initial
solution of the vector is given by the following:

X1 ¼ X1
1X

1
2X

1
3X

1
4 . . .X

1
NP

� � ð11Þ
Each Xi

1 is given as,

X1
i;1X

1
i;2X

1
i;3X

1
i;4 . . . X

1
i;ND

h i
ð12Þ

i = 1, 2, . . . , NP;Xi,j represents jth dimension of the ith shark
position.
itors in radial distribution system using shark smell optimization algorithm, Ain
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3.1.2. Forward movement of sharks

Shark in each position moves toward stronger odor particles

with a velocity ‘V’, to become closer to the prey. Thus,
corresponding to the initial position vector, we have initial
velocity vector as follows:

V1 ¼ V1
1V

1
2V

1
3 . . . V

1
NP

� � ð13Þ
Dimensional components element is given by

V1
i ¼ V1

i;1V
1
i;2V

1
i;3V

1
i;4 . . . V

1
i;ND

h i
ð14Þ

Consider the velocity of sharks at kth iteration Vk.

Magnitude of each Vk
ij is given by

Vk
i;j

��� ��� ¼ min
gk � R1 � g � @ðofÞ@Xj

��� ���Xk
i;j

þak � R2 � Vk�1
i;j ; bk � Vk�1

i;j

��� ���
2
64

3
75 ð15Þ

j = 1, 2, . . . , ND; i= 1, 2, . . . , NP; k = 1, 2, . . . , kmax;

k= 1, 2, . . . , kmax; gk 2 [0, 1].

The term @ðofÞ
@ðXjÞ

���Xk
i;j gives the gradient rk

i;j

� �
at the position

Xk
i;j. Direction (sign) of dimensional velocity Vk

i;j

� �
is given

by the direction of the term selected by the minimum operator
in Eq. (15). The positional update equation based on the

velocity vector is given by Eq. (16). For simplicity Dtk can be
taken as 1.

Ykþ1
i ¼ Xk

i þ Vk
i � Dtk ð16Þ

i= 1, 2, . . . , NP; k= 1, 2, . . . , kmax.

3.1.3. Rotational movement

Along with forward movement sharks also perform rotational
movements in order to find the stronger odor particles. This
behavior of sharks is modeled as local search process in the
SSO algorithm. The local search is modeled as

Zkþ1;m
i ¼ Ykþ1

i þ R3 � Ykþ1
i ð17Þ

m = 1, 2, . . . , M; i= 1, 2, . . . , NP; k= 1, 2, . . . , kmax.
A closed contour could be obtained by connecting M

points, simulating rotational movement of sharks.

3.1.4. Position update

New position of particles is updated according to Eq. (18).

Xkþ1
i ¼ arg max f Ykþ1

i

	 

; f Zkþ1;1

i

	 

; . . . ; f Zkþ1;M

i

	 
� � ð18Þ
i = 1, 2, . . . , NP.

Globally best individual will be selected from the final
population of shark positions Xkmax.

3.2. Application of shark smell optimization algorithm to

capacitor placement problem

Application of SSO algorithm to the capacitor placement
problem is discussed here. The available discrete sized banks
could be placed at any location and could be any size. Hence,

capacitor placement in a radial distribution system is a combi-
natorial problem. This paper reports the successful application
of SSO algorithm for the capacitor placement problem to
Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capac
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minimize the cost due to system energy loss and reactive power
compensation.

Algorithm steps:

Step 1. Get system data and SSO algorithm parameters like
a, b, M, NP, kmax, g and NC.

Step 2. Initialize k= 1 and initialize solution vector, X1.

The solution can be split into two parts, first part carries the

locations for capacitor banks and second part carries the inte-
ger representing size of capacitor bank to be placed. To extract
the size of capacitor bank, a multiplication factor is employed.
kVAr = a * 50 + 100, where, ‘a’ is an integer representing the

size of bank.

X ¼

30 22 31 ..
.

4 5 6

12 30 11 ..
.

3 6 8

11 33 12 ..
.

3 1 4

26 30 8 ..
.

2 8 2

2
666666664

3
777777775

ð19Þ

Each row of the solution vector is one complete solution

having information on locations and sizes of capacitor banks.
For example consider the first solution vector X1 = [30 22 31:
4 5 6]. The first part gives the location and the second part

gives the capacitor banks to be placed at corresponding loca-
tions. (30:4), (22:5) and (31:6) the location-bank pairs, (30:4)
imply that at the 30th bus a capacitor of size 300 kVAr

(4 * 50 + 100) will be placed and so for other pairs.

Step 3. Evaluate the solutions Xk using load flow and find

(odors’) objective function using Eq. (7).
Step 4. Calculate gradients (r) at the position vector Xk.

The gradient is calculated by perturbing the current solu-

tion. For the gradient of first part (location) of the solution,
the change in total cost with respect to change in location
(same bank size) is taken. For the second part (size) the change

in total cost with respect to change in bank size (at the same
location) is taken as gradient. Consider a solution vector
Xi = [A. . .:B. . .] corresponding gradient can be found as

ri = [r1. . .:r2....], for the location-bank pair (A:B). The
gradient r1 and r2, for the minimization function, can be
calculated as shown in Eq. (20).

r1 ¼ @ðofÞ
@X

���
Xij

¼ ðfjA;B � fjðAþ1Þ;BÞ

r2 ¼ @ðofÞ
@X

���
Xij

¼ ðfjA;B � fjA;ðBþ1ÞÞ

9>=
>; ð20Þ

Step 5. Multiply r by ‘g’ to scale the gradient. Move

solution Xk to new position Yk+1 using Eq. (16).
Step 6. Perform rotational movements at Yi

k+1 using
Eq. (17) and find ‘M’ neighbor odor positions, Zi

k+1,m for

each Xi.
Step 7. Update sharks to new positions, choosing the
best location from rotational movements and forward

movement Eq. (18).
Step 8. Increment ‘k’; if k < kmax, go to step 3.
Step 9. Choose the global minimum at the final position

Xkmax.
itors in radial distribution system using shark smell optimization algorithm, Ain
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Figure 2 Single line diagram of 34-bus system.

Table 1 Compensation for 34-bus system at full load.

Method Capacitor size in kVAr with node number Total kVAr

SSO 800(9); 900(19); 700(25) 2400

ABC 850(19); 750(24); 700(31) 2300

HSA 800(9); 850(19); 750(24) 2400

CSA 850(9); 850(19); 700(25) 2400

GSA 800(9); 850(19); 750(24) 2400
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Figure 3 Comparison of voltage profile of 34-bus system at full

load.
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Figure 4 Comparison of proposed approach with other methods

for 34-bus system at full load.
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4. Simulation results

The proposed method is tested on standard IEEE 34-bus and

IEEE 118-bus systems. The algorithm was developed in
MATLAB environment and run in a Pentium IV, 2.1-GHz
personal computer. The minimum and maximum bus voltage

limits are fixed at 0.9 p.u. and 1.1 p.u. respectively. The results
are obtained for three different load levels. The load levels con-
sidered are light, full and heavy with base load multiplied by
factor of 0.75, 1.0 and 1.25 respectively. A fixed and switched

capacitor scheme, considering variation of load levels, is pro-
vided for each system.

The loads are treated as constant power load and consid-

ered as balanced. Design period of one year is taken at full
load condition for the purpose of analysis and comparison.
The number of buses for compensation is selected based on

the size of the system. Various constants assumed and applied
in the calculations are [10]: cost of energy losses (Ke) = 0.06 $
Table 2 Comparison of performances for 34-bus system at full load.

Parameters Uncompensated Compensated

GSA CSA HSA ABC SSO

Total cost ($) 116,536 85,857 85,864 85,857 86,134 85,848

Cost reduction (%) – 26.32 26.31 26.32 26.08 26.33

Real power loss (kW) 221.72 160.41 160.42 160.41 160.97 160.38

Loss reduction (%) – 27.65 27.64 27.65 27.39 27.66

Reactive power loss (kVAr) 65.11 46.96 46.96 46.96 47.12 46.96

Loss reduction (%) – 27.87 27.87 27.87 27.63 27.87

vmin (p.u.) 0.9417 0.9502 0.9502 0.9502 0.9500 0.9503

VSImin 0.7864 0.8150 0.8152 0.8150 0.8144 0.8155

Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm, Ain
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Table 3 Performance analysis of SSO for 34-bus system at nominal load (for 50 runs).

Parameter GSA CSA HSA ABC SSO

Best objective($) 85,857.37 85,864.35 85,857.37 86,133.97 85,847.55

Worst objective ($) 86,442.86 85,959 85,887.20 86,665.42 85,865.78

Average objective ($) 86,102.22 85,907 85,869.63 86,346.22 85,854.55

Standard deviation 200.22 30.17 13.09 162.37 9.0426

Variance 40,090.75 910.62 171.40 26,364.49 81.76

Average loss 160.88 160.49 160.42 161.33 160.39

Average time taken (s) 16.19 15.51 15.07 15.62 14.74

6 N. Gnanasekaran et al.
per kW h, purchase cost of capacitor (Kc) = 25 $ per kVAr,
installation cost (Kins) = 1600 $ per location and operating
cost (Kope) = 300 $ per year per location. Depreciation factor

(r) of 10% is applied to installation and purchase cost of
capacitor banks. The SSO algorithm parameters set for the
system are [16]: a, g, b and g are set to 0.1, 0.9, 4 and 10�3

respectively and are common for both the systems.
To validate the applicability of proposed method, it is

compared with the results of other classical methods such as

Gravitational Search Algorithm (GSA) [19], CSA [11],
Harmony Search Algorithm (HSA) [20] and ABC algorithm
[9] and is applied to both the test systems under the same load
conditions using the same objective function. The parameters

chosen for GSA, CSA, HSA and ABC are as in [19,11,20,9].

4.1. 34-bus test system

It consists of a main feeder and 4 laterals as shown in Fig. 2.
The line and load data are taken from [5]. The active and reac-
tive loads of the system are 4636.5 kW and 2873.5 kVAr
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Figure 5 Convergence characteristics of SSO algorithm for

34-bus system at full load.

Table 4 Type and size of capacitors placed for 34-bus system at di

Capacitive compensation in kVAr

Node number 9 19

Load level and Capacitor

size in kVAr

Light(0.75) 600 650

Nominal(1.0) 800 900

Heavy(1.25) 1000 1200

Fixed – 600 (1 No) 650 (1 No)

Switched – 200 (2 Nos) 250 (1 No)

300 (1 No)

Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capac
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respectively. The total power loss and annual cost of operation
of the system for the base case are 221.72 kW and 1, 16,536 $
respectively. The number of stages (number of iterations),

kmax = 75, number of shark positions initialized, NP= 10,
the rotational movement variable, M = 10 and the number
of buses for compensation, NC = 3. The possible capacitor

banks in discrete sizes are assumed to be from 150 kVAr up
to 1300 kVAr in multiples of 50.

Table 1 shows the total kVAr injected and nodes selected

for compensation by various methods. The optimal nodes
and capacitor sizes obtained by the proposed algorithm are
9, 19 and 25 and 800 kVAr, 900 kVAr and 700 kVAr respec-
tively. Total compensation of 2400 kVAr is injected at full load

condition. The results of proposed approach using SSO algo-
rithm are compared with the results of other methods and
are shown in Table 2. The total power loss and annual cost

of operation of the system for the optimum case are
160.38 kW and 85,848 $ respectively at full load condition.
The net cost saving per year is 30,688 $. The loss and cost

saving per year are 27.66% and 26.33% respectively. The
minimum voltage of the system is improved to 0.9503 p.u.
from 0.9417 p.u. The minimum value of VSI is 0.8155. The

voltage profile of the system before and after compensation
is shown in Fig. 3. It can be evidently seen from Table 2 and
Fig. 4 that the proposed approach serves better cost and loss
reduction compared to other methods.

The performance of the SSO and other algorithms for the
34-bus system at full load is shown in Table 3. From the table,
the average cost, worst cost and best cost obtained for 50 runs

are 85,854.55 $, 86,865.78 $ and 85,847.55 $ respectively. The
average time taken by the CPU for the system is 14.74 s. Fig. 5
shows the convergence characteristics of SSO algorithm for

this test system which is compared with the above classical
algorithms. From Fig. 5 and Table 3, it is clear that the SSO
algorithm outperformed the other algorithms compared.

The fixed and switched capacitor scheme to be followed at
various load levels is provided in Table 4. Three fixed type
fferent load levels.

Real power loss (kW)

25 Uncompensated Compensated % Loss reduction

550 121.72 88.64 27.17

700 221.72 160.38 27.66

850 355.31 256.02 27.94

550 (1 No) – – –

150 (2 Nos) – – –
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Figure 6 Single line diagram of 118-bus system.

Table 5 Compensation for 118-bus system at full load.

Method Capacitor size in kVAr with node number Total kVAr

SSO 1350(6); 1350(21); 1100(32); 1300(39); 900(40); 950(47); 1300(73); 1550(82); 800(90); 1100(109); 1200(110) 12,900

ABC 1100(20); 1200(34); 1450(41); 1000(70); 650(75); 1250(80); 350(84); 1300(99); 1400(102); 1100(103); 1450(108) 12,250

HSA 1000(20); 800(26); 1200(34); 1450(39); 850(44); 950(61); 1400(72); 1450(81); 1150(97); 1400(108); 1450(118) 13,100

CSA 850(24); 550(32); 700(38); 1500(40); 1500(46); 1100(73); 400(78); 1100(86); 1450(96); 1400(106); 1500(110) 12,050

GSA 400(43); 800(96); 450(61); 1250(37); 750(80); 950(72); 850(110); 800(112); 400(85); 1050(55); 350(35) 8050
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Figure 7 Comparison of voltage profile of 118-bus system at full

load.
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capacitors of size 600 kVAr, 650 kVAr and 550 kVAr are

placed at nodes 9, 19 and 25 respectively. Switched capacitors
of sizes 200 kVAr * 2, 250 kVAr and 300 kVAr and
150 kVAr * 2 are placed at nodes 9, 19 and 25 respectively

and are switched according to the prevailing load condition.
The loss and percent loss reduction at the various load levels
are also presented. The analyses clearly indicate the suitability
of proposed approach to the capacitor placement problem for

cost reduction in RDS.

4.2. 118-bus test system

It consists of 118 buses and 117 branches as shown in Fig. 6.
The line and load data are taken from [21]. The active and
Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm, Ain
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Table 6 Comparison of performances for 118-bus system at full load.

Parameters Uncompensated Compensated

GSA CSA HSA ABC SSO

Total cost ($) 682,281 474,824.32 446,613.58 444,845.66 459,625.97 443,028.34

Cost reduction (%) – 30.40 34.54 34.80 32.63 35.06

Real power loss (kW) 1298.10 892.95 837.37 833.51 862.03 830.15

Loss reduction (%) – 31.21 35.49 35.79 33.59 36.04

Reactive power loss (kVAr) 978.72 668.98 622.93 621.07 639.72 621.51

Loss reduction (%) – 31.64 36.35 36.54 34.63 36.49

vmin (p.u.) 0.8688 0.8932 0.9000 0.9033 0.9092 0.9145

VSImin 0.5697 0.6365 0.6562 0.6659 0.6833 0.6995

8 N. Gnanasekaran et al.
reactive loads of the system are 22,709.70 kW and

17,041.10 kVAr respectively. The total power loss and annual
cost of operation of the system for the base case are
1298.10 kW and 6, 82,281 $ respectively. The number of stages

used (number of iterations), kmax = 75, number of shark posi-
tions initialized, NP = 20, the rotational movement variable,
M = 20 and the number of buses for compensation,

NC = 11. The possible capacitor banks in discrete sizes are
assumed to be from 150 kVAr up to 1500 kVAr in multiples
of 50.

Table 5 shows the total kVAr injected and nodes selected for
capacitor placement by various methods. The optimal nodes
and capacitor sizes obtained by the proposed algorithm are 6,
21, 32, 39, 40, 47, 73, 82, 90,109 and 110 and 1350 kVAr,

1350 kVAr, 1100 kVAr, 1300 kVAr, 900 kVAr, 950 kVAr,
1300 kVAr, 1550 kVAr, 800 kVAr, 1100 kVAr and 1200
kVAr respectively. Total compensation of 12,900 kVAr is

injected at full load condition. The voltage profile of the
system before and after compensation is shown in Fig. 7. The
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Figure 8 Comparison of proposed approach with other methods

for 118-bus system at full load.

Table 7 Performance analysis of SSO for 118-bus system at nomin

Parameter GSA CSA

Best objective ($) 474,824.32 44,6613.58

Worst objective ($) 492,322.52 450,418.27

Average objective ($) 480,491.91 448,916.25

standard deviation 5087.53 1166.13

Variance 25,883,005.75 1,359,881.00

Average loss 902.71 842.17

Average time taken (s) 88.17 75.44

Please cite this article in press as: Gnanasekaran N et al., Optimal placement of capac
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performance of SSO algorithm on 118-bus system is compared

with the above mentioned classical algorithms and is shown in
Table 6. The total power loss and annual cost of operation of
the system for the optimum case are 830.15 kW and 4,

43,028.34 $ respectively at full load condition. The net cost sav-
ing per year is 2, 39,252.66 $. The loss and cost saving per year
are 36.04% and 35.06% respectively and found to be better

than other methods. The minimum voltage of the system is
improved to 0.9145 p.u. from 0.8688 p.u. The minimum value
of VSI is 0.6995. It can be seen from Table 6 and Fig. 8 that

the proposed approach serves better cost and loss reduction
compared to other methods even in a large scale system.

The performance of the SSO algorithm for the 118-bus sys-
tem at full load condition is shown in Table 7. From the table,

the average cost, worst cost and best cost obtained during 50
runs are 4, 45,123.26 $, 4, 45,973.47 $ and 4, 43,028.34 $
respectively. The average time taken by the CPU for the sys-

tem is 71.75 s. Fig. 9 shows the comparison of convergence
characteristics of SSO algorithm with other algorithms for this
al load (For 50 runs).

HSA ABC SSO

444,845.66 459,625.97 443,028.34

449,704.52 484,046.08 445,973.47

446,164.99 471,688.56 445,123.26

1500.59 9562.02 941.76
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Figure 9 Convergence characteristics of SSO algorithm for 118-

bus system at full load.
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Table 8 Type and size of capacitors placed for 118-bus system at different load levels.

Capacitive compensation in kVAr

Node number 6 21 32 39 40 47 73 82 90 109 110

Load level and

Capacitor size in

kVAr

Light

(0.75)

1250 850 1100 950 550 850 1100 900 800 700 1050

Nominal

(1.0)

1350 1350 1100 1300 900 950 1300 1550 800 1100 1200

Heavy

(1.25)

1500 1150 1400 1450 1150 1300 1450 1450 1200 1500 1450

Fixed – 1250

(1 No)

850

(1 No)

1100

(1 No)

950

(1 No)

550

(1 No)

850

(1 No)

1100

(1 No)

900

(1 No)

800

(1 No)

700

(1 No)

1050

(1 No)

Switched – 100

(1 No)

200

(1 No)

300

(1 No)

150

(1 No)

250

(1 No)

100

(1 No)

150

(1 No)

100

(1 No)

400

(1 No)

400

(2 No)

150

(1 No)

150

(1 No)

300

(1 No)

350

(1 No)

350

(1 No)

350

(1 No)

200

(1 No)

550

(1 No)

250

(1 No)
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system. From Fig. 9 and Table 7, it is evident that the pro-
posed method is better than the other methods in terms of

quality of solutions. This analysis implicates the suitability of
proposed approach in a large scale system.

The fixed and switched capacitor scheme to be followed at

various probable load factors is provided in Table 8. The
power loss during light load for uncompensated and compen-
sated systems is found to be 697.29 kW and 444.64 kW, respec-

tively. Similarly the power loss during heavy load for
uncompensated and compensated systems is 2134.38 kW and
1346.02 kW, respectively.

5. Conclusion

In this paper, a recently developed metaheuristic shark smell
optimization algorithm has been applied to find the optimal

location and size of capacitors to be placed in radial distribu-
tion system with the objective of minimizing the cost due to
energy loss and reactive power compensation of distribution

system. Computational results showed that the performance
of the SSO algorithm is better than the other classical algo-
rithms compared. The bus voltage profile is also improved.

This work can also be implemented to any large scale practical
radial distribution network. The fixed and switched capacitor
scheme to be followed during various load factors is also pro-

vided. Capacitor bank sizes have been taken as a discrete vari-
able, which is an added advantage for the practical
applicability of the solution. The advantage of SSO algorithm
lies in the fact that it gives optimum results with simpler for-

mulation satisfying the constraints.
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