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Abstract
This paper presents the synthesis of full state and limited state flexible mode shape (FMS) based
controllers for the suppression of transient and forced vibration of a cantilever beam with full
and partial magnetorheological (MR) fluid treatments. The governing equations of motion of
the three layer MR sandwich beam are expressed in the state variable form comprising a
function of the control magnetic field. An optimal control strategy based on the linear quadratic
regulator (LQR) and a full state dynamic observer is formulated to suppress the vibration of the
beam under limited magnetic field intensity. The lower flexural mode shapes of the passive
beam are used to obtain estimates of the deflection states so as to formulate a limited state LQR
control synthesis. The transient and forced vibration control performances of both the full state
observer-based and the limited state FMS-based LQR control strategies are evaluated for the
fully as well as partially treated MR-fluid sandwich beams. The results show that the full state
observer-based LQR control can substantially reduce the tip deflection responses and the
settling time of free vibration oscillations. The limited state LQR control based on the mode
shapes effectively adapts to the deflections of the closed loop beam and thus yields vibration
attenuation performance comparable to that of the full state LQR controller. The partially
treated beam with MR-fluid concentration near the free end also yields vibration responses
comparable to the fully treated beam, while the natural frequencies of the partially treated
beams are considerably higher.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Control of vibration in structures via active, semi-active
and passive vibration isolation systems continues to be the
focus of many studies. A wide range of active vibration
control systems have shown significant performance gains,
while their implementations have been mostly limited due
to the associated high cost and power requirements (e.g.,
He et al 2001, Lam et al 1997, Lee and Kim 2001).
Furthermore, it is known that designs of beams, plates
and box sections, and control of their vibration are of
immense importance in numerous applications such as high
performance aeronautical/aerospace vehicles, road vehicles,
bridge structures, etc. When deployed in a vibratory
environment, the structures experience high vibratory stresses

and environmental fatigue. The most efficient way of
controlling excessive vibration and environmental fatigue is
to introduce passive damping. It is a common practice to
apply surface treatments in the form of visco-elastic layers
into the structures. The passive systems are known to be most
reliable, while fixed damping parameters involve a trade-off
between the control of vibration at resonance and the higher
frequency isolation performance (Harris 1987, Wang and
Wereley 2002). Alternatively, semi-active vibration control
devices have been shown to provide the fail-safe and reliable
features of the passive systems together with performance
gains comparable to those of active devices with minimal
power requirement (Nishitani and Inoue 2001, Spencer and
Nagarajaiah 2003, Stanway et al 1996, Ahn et al 2005).
In particular, semi-active devices with smart fluids with
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controllable rheological properties such as electrorheological
(ER) and magnetorheological (MR) fluids offer excellent
potential for achieving control of vibration over a broad
frequency range with only minimal external power (Choi et al
2005, Liu et al 2005). Such fluids can provide significant
and rapid changes in the damping and stiffness properties of
the structures with the application of an electric or magnetic
field (Spencer et al 1997, Carlson and Weiss 1994, See 2004).
Although both MR- and ER-fluids typically exhibit similar
viscosity in their non-activated or ‘off’ state, MR-fluids exhibit
a much greater increase in viscosity when activated and need
relatively low power compared to ER-fluids (See 2004, Yao
et al 2002). The yield stress of the MR-fluid MRF 100 is in
the range of 2–3 kPa in the absence of a magnetic field, but
it rapidly exceeds 80 kPa under the application of a magnetic
field of the order of 3000 Oe (Ahn et al 2005).

The properties of ER- and MR-fluid dampers have
been widely characterized analytically and experimentally
for vibration suppression of structures and systems (Pranoto
et al 2004, Dyke et al 1998, Choi 1999). Lumped
ER/MR damping elements at selected discrete locations in
the structure models have generally been employed. Such
models thus consider multiple damping elements to control
the vibration corresponding to different modes, which would
require complex controller designs. Alternatively, a few
studies have applied ER/MR-fluids in simple structure models
to achieve controllable distributed properties by embedding
ER/MR material layers between two elastic/metal layers. This
approach can yield significant variations in the distributed
stiffness and damping properties of the structure, and thus
offers superior potential for control of multiple vibration
modes. Furthermore, embedded MR/ER-fluid treatments could
yield more compact designs compared to the discrete damping
treatments proposed in previous studies (Pranoto et al 2004,
Dyke et al 1998, Choi 1999). While a number of studies
have analysed sandwich structures with ER-fluids (Gandhi et al
1989, Choi et al 1990, Yalcintas and Coulter 1995, 1998),
the application of MR materials in sandwich structures has
only been explored in very few studies over the past decade
(Yalcintas and Dai 1999, 2004, Sun et al 2003, Yeh and Shih
2006, Rajamohan et al 2010b).

The dynamic responses of a simply supported sandwich
beam comprising of an MR-fluid layer under a transverse
load have been evaluated using the energy approach (Yalcintas
and Dai 1999, 2004). The study also compared the dynamic
responses of the MR sandwich beam with those of a
beam employing ER-fluid, and concluded that the MR-fluid-
based adaptive structure can yield significantly higher natural
frequencies, nearly twice those of the ER-fluid-based adaptive
structure. Sun et al (2003) also analysed the dynamic responses
of the MR sandwich beam experimentally and analytically
using the energy approach, and derived relationships between
the applied magnetic field and complex shear modulus of the
MR material using an oscillatory rheometry technique. The
dynamic characteristics and instability of an MR-fluid-treated
cantilever structure subject to axial loading were investigated
by Yeh and Shih (2006) using the DiTaranto (1965) sixth-
order partial differential equation coupled with the incremental

harmonic balance method. Rajamohan et al (2010b) derived
finite element and Ritz formulations for a sandwich beam with
uniform MR-fluid treatment but various boundary conditions,
and demonstrated their validity through experiments conducted
on a cantilever sandwich beam. The study also proposed
nonlinear relationships between the complex shear moduli of
the MR-fluid and the applied magnetic field on the basis of the
laboratory measured free vibration responses.

The above studies have considered a uniform MR-fluid
layer subject to a uniform magnetic field. A few recent studies
have shown that a non-uniform MR-fluid treatment could be
beneficial in limiting the deflection response to a transverse
excitation (Lara-Prieto et al 2010, Haiqing et al 1993, Haiqing
and King 1997, Rajamohan et al 2010a). These studies,
however, employed distinctly different approaches. Prieto et al
(2010) experimentally investigated the dynamic responses of
a MR sandwich cantilever beam subject to a uniform and
non-uniform magnetic field. The non-uniform magnetic field
was realized by distributing five sets of permanent magnets
over the entire surface of the beam, while the field intensity
of each magnet was identical. It was concluded that the
natural frequency of the beam decreases as the permanent
magnets move away from the fixed support. The study
also investigated the dynamic responses of sandwich beams
with two different face materials, aluminum and polyethylene
terephthalate (PET), and concluded that PET plates could
provide relatively higher changes in natural frequencies with
applied magnetic field. Alternatively, Haiqing et al (1993),
Haiqing and King (1997) and Rajamohan et al (2010a)
proposed partial ER- and MR-fluid treatments, respectively, by
introducing a number of local fluid segments over the span of
the beam.

Haiqing et al (1993) experimentally analysed the vibration
characteristics of a cantilever beam with ER-fluid applied
only at the mid-section of the beam, which was coupled
to the ground. The experimental study showed that the
locally applied ER-fluid could serve as a complex spring
that would alter the damping and stiffness properties of the
structure significantly under an electric field. The vibration
response of a clamped–clamped beam with three ER-fluid
segments separated by an air cavity over the beam length
was also investigated experimentally by Haiqing and King
(1997). The results showed that the length of the ER-
fluid segments strongly influenced the resonant frequencies
and the loss factors. Rajamohan et al (2010a) presented
finite element formulations for a partially treated MR-fluid
sandwich beam comprising of various MR-fluid segments for
different boundary conditions. The free and forced vibration
responses of different configurations of partially treated MR-
fluid beams were derived for various lengths and numbers
of fluid segments. The study also performed laboratory
experiments to demonstrate the validity of the analytical
formulations and concluded that the location and length of
the MR-fluid segments have significant effects on the natural
frequencies and the loss factors, in addition to the intensity
of the magnetic field and the boundary conditions. The
influence of the locations of the MR-fluid segments on the
modal damping factor was further investigated under different
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Figure 1. (a) Fully treated MR sandwich beam. (b) Partially treated MR sandwich beam.

end conditions using a modal strain energy approach and a
finite element method by Rajamohan et al (2010c). The
optimal configurations of a partially treated MR sandwich
beam were subsequently identified to achieve maximum modal
damping factors corresponding to the first five flexural modes,
considered either individually or simultaneously.

The vibration properties of MR/ER-fluid-treated beams
have been mostly investigated under various fixed intensities
of the applied field in an open loop manner. The efforts in
deriving semi-active and active control synthesis have been
mostly limited to simple single or two degree of freedom
lumped parameter models, where the stiffness and/or damping
properties are described as a function of the applied field
(Leitmann and Reithmeier 1993, Leitmann 1994). Only
limited efforts have been made towards synthesis of semi-
active and active controllers for the ER/MR-fluid-treated
sandwich beams, although controller designs for structures
employing piezoelectric actuators have been widely reported
(Sadri et al 1999, Hu and Ma 2005, Baillargeon and Vel
2005). Shaw (2000) proposed a two-stage controller to reduce
the vibration of an ER-fluid beam subjected to harmonic
excitations and investigated the performance characteristics
through laboratory experiments. The study employed two
independent controllers: a fuzzy logic-based semi-active
controller to tune the resonance frequencies, and an active
force control for cancelling the external disturbance. Finite
element formulations of the MR sandwich beam into state
space form as a function of magnetic field, and developments
in closed loop semi-active control synthesis to control the
dynamic characteristics of the beam, however, have not yet
been explored.

In this paper, a semi-active control synthesis is presented
for control of the dynamic characteristics of fully and partially
treated MR sandwich beams. The governing equations of
motion of a three layer MR sandwich beam formulated in the
finite element form are expressed in the state variable form, and
an observer-based linear quadratic regulator (LQR) optimal
control strategy is developed. A reduced state controller
synthesis is further derived on the basis of the estimated
flexural mode shapes (FMSs) of the beam. The effectiveness
of the reduced state control is demonstrated by comparing its
vibration responses with those of a beam with full state LQR
control. Simulations are performed by using both observer-
and FMS-based LQR control strategies to investigate the tip

displacement responses of fully and partially treated MR
sandwich beams under impulse and white noise disturbances.

2. Finite element formulation of an MR sandwich
beam

The finite element formulations for fully and partially treated
three layer beam structures containing MR-fluid as the core
in between the two elastic layers, as shown in figure 1, have
been reported in Rajamohan et al (2010b), (2010a). These
formulations are considered in this study for synthesis of a
semi-active vibration control of the multilayer beam.

Energy expressions for a fully and a partially treated
MR sandwich beam have been first derived. The governing
equations of motion in the finite element form are then derived
using Lagrange’s energy approach considering a two-node
beam element with three degrees of freedom (transverse w,
axial u and rotational θ displacements of the beam) at each
node, such that

[me]{d̈} + [ke]{d} = { f e} (1)

where [me] and [ke] are the element mass and stiffness
matrices, respectively, { f e} is the element force vector and
{d} is the displacement vector. The detailed formulations
of [ke] and [me] can be found in Rajamohan et al (2010b),
(2010a). Assembling the mass and stiffness matrices and the
force vector for all the elements yields the system governing
equations of motion of the MR sandwich beam in the following
form:

[M]{d̈} + [K ]{d} = {F} (2)

where [M], [K ] and {F} are the system mass and stiffness
matrices, and the force vector, respectively. The matrix [K ] is
a complex stiffness matrix which includes both the stiffness of
the structure and the damping attributed to the complex shear
modulus of the MR-fluid layer.

3. Design of an optimal controller

Control of vibration in a structure is generally concerned with
specific modes of flexural vibration. It may thus be appropriate
to express (2) in the modal form using modal coordinates,
which would yield uncoupled governing equations of motion
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Figure 2. Variation of K ′(ui) and C ′(ui) with magnetic field at mode 1.

for the MR sandwich beam. Assuming proportional damping,
(2) can be written in the following form:

{η̈i} + [2ξiωi ]{η̇i} + [ω2
i ]{ηi} = { fi }, i = 1, 2, . . . , n

(3)
where {η} is the modal coordinate vector, which is related
to the modal matrix [q] such that {d} = [q]{η}, ξi is
the modal damping ratio for the i th normal mode, ωi is
the corresponding natural frequency of the system without
considering the structural damping, and fi = [q]T{F}. Both
the damping factor and the natural frequencies of the beam
would vary with the applied magnetic field; (3) may thus be
expressed as a function of the controlled magnetic field ui :

{η̈i} + C ′(ui){η̇i } + K ′(ui){ηi } = { fi }, i = 1, 2, . . . , n
(4)

where K ′(ui) = [ω2
i ] and C ′(ui) = [2ξiωi ].

It has been shown that the natural frequencies of the
sandwich beam vary nearly linearly with the applied magnetic
field (Rajamohan et al 2010b). The variations in K ′(ui) and
C ′(ui) with the applied magnetic field in the 0–4000 G range
were investigated for various modes of vibration and the results
showed that both factors vary approximately linearly with the
magnetic field. As an example, figure 2 illustrates variations of
K ′(ui ) and C ′(ui) corresponding to mode 1 with respect to the
applied magnetic field; nearly linear variations with the applied
magnetic field are clearly demonstrated. Hence, for the sake of
simplicity, K ′(ui) = [ω2

i ] and C ′(ui) = [2ξiωi ] are assumed
to be linear functions of the applied magnetic field ui such that

K ′(ui) = αki + βki ui , 0 � ui � umax;
C ′(ui ) = αci + βci ui , 0 � ui � umax

(5)

where umax refers to the maximum magnetic field that could be
applied, which may be limited due to the practical limitations
of the electromagnet, power requirements and/or the saturation
limit of the MR-fluid used. The coefficients αki , βki and αci ,
βci are functions of the applied magnetic field corresponding
to each mode, ui . In this study, a linear quadratic regulator
(LQR) based controller synthesis is realized using the full state
feedback. The finite element models of the fully and partially
treated beams are thus expressed in the state space form as

{ẋs} = [A]{xs} + [B]γ + { f } and {ys} = [C]{xs}
(6)

where [A] = [ [0] [I ]
[−αki ] [−αci ]

]
, [B] = [ [0] [0]

[−βki ] [−βci ]
]
, [C] =

[ I 0
0 0

]
, {γ } = [U ]{xs}[U ] = [ [ui ] [0]

[0] [ui ]
]

is the control input,

{ f } = [ [0]
[ fi ]

]
, {xs} = {{η}, {η̇}}T is the state vector, and {ys} is

the response vector.
In (6), the generalized excitation force vector { f } and the

matrix [U ] define the inputs, while {yS} is the output vector. In
the closed loop configuration, the control input vector {γ } in
(6) is related to the state feedback vector as

{γ } = −[U ]{xs} (7)

where the magnetic field matrix [U ] serves as the control gain
matrix, which is evaluated according to the desired control
law, while negative sign indicates externally applied control
magnetic field. Upon substituting for {γ } in (6), the closed
loop system can be expressed in the state space form as

{ẋs} = ([A] − [B][U ]){xs} + { f }. (8)

From (5), it can be stated that the control gain matrix [U ]
directly relates to the system damping, C ′(ui), and stiffness,
K ′(ui ), properties. An optimal control is synthesized through
minimization of a cost function that is proportional to a
measure of the system’s response and the desired control inputs
using the linear quadratic regulator (LQR) approach (Sethi and
Song 2005, Burl 1999), such that

J = 1
2

∫ ∞

0
({xs}T[Q]{xs} + {γ }T[R]{γ }) dt (9)

where [Q] and [R] are the symmetric semi-definite and
positive-definite weighting matrices, respectively. The relative
magnitudes of [Q] and [R] are selected so as to achieve
an optimal trade-off between the vibration response and the
intensity of the control magnetic field. While [Q] defines the
relative weight of each state variable, [R] defines the relative
weight of the control magnetic field (Liao and Wang 2003,
Varadarajan et al 2000).

Minimization of (9) yields a linear full state feedback
control law, {γ } = −[U ]{xs}, where the control gain matrix,
[U ] = [R]−1[B]T[P], is evaluated by solving for [P] from the
following algebraic Riccati equation (Mutambara 1999):

[A]T[P] + [P][A] + [Q] − [P][B][R]−1[B]T[P] = 0.

(10)
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3.1. Observer-based optimal controller

The LQR controller based on the full state dynamic observer
is formulated to derive the control gain matrix (Burl 1999,
Mutambara 1999). The dynamic state observer can be given by

{ ˙̂x s} = [A]{x̂s} + [B]{γ } + [L]({ys} − {ŷs}) + { f },
and {ŷs} = [C]{x̂s}

(11)

where {x̂s} is the estimated state vector, {ŷs} is the output vector
evaluated from {x̂s}, and [L] is the observer gain evaluated
from the LQR control law by solving (11) together with
equations (9) and (10). The estimated observer gain determines
the convergence of {xs} → {x̂s}.

The control input vector can also be expressed as a
function of {x̂s} such that {γ } = −[U ]{x̂s}. Equations (6)
and (11) may be written in terms of the estimated state as

{ẋs} = [A]{xs} − [B][U ]{x̂s} + { f } (12)

{ ˙̂x s} = ([A] − [B][U ] − [L][C]){x̂s} + [L]{ys} + { f }. (13)

Upon substituting for {ys} = [C]{xs} in (13) and rearranging,
the closed loop system with observer yields

{
ẋs˙̂x s

}
=

[ [A] −[B][U ]
[L][C] [A] − [B][U ] − [L][C]

]{
xs

x̂s

}
+

{
f
f

}
.

(14)
Equation (12) can also be rewritten in terms of the observer
error ε between the measured and estimated state vectors as

{ẋs} = ([A] − [B][U ]){xs} + [B][U ]ε + { f } (15)

where ε = {xs} − {x̂ s}, which can be derived from
equations (13) and (8) as

ε̇ = ([A] − [B][U ] − [L][C])ε + { f }. (16)

The closed loop system with the observed state vector feedback
can be expressed using the above two equations as
{

ẋs

ε̇

}
=

[ [A] − [B][U ] [B][U ]
0 [A] − [B][U ] − [L][C]

]{
xs

ε

}

+
{

f
f

}
. (17)

The above closed loop system with observer-based LQR
controller is known to be inherently stable, while the
observability and controllability of the system have also been
evaluated through solution of the Lyapunov equations for the
controllability Gramian [WC] and observability Gramian [WO],
given by (Ogata 2008)

[A][WC] + [WC][AT] + [B][BT] = 0, and

[AT][WO] + [WO][A] + [CT][C] = 0.
(18)

The system is said to be controllable and observable if [WC]
and [WO] are of full rank.

3.2. Flexural mode shape (FMS) based optimal controller

Unlike the full state LQR control, a limited state control
synthesis could be realized using the mode shapes of the
flexible beam. This approach could considerably reduce
the number of feedback variables and facilitate hardware
implementation by limiting the number of sensors. The known
flexural mode shapes of the beam could be applied to obtain
estimates of the state vector on the basis of measurements
of only a few state variables. The flexural mode shape
(FMS) based controller design can be further simplified when
vibration control is sought for only a few selected modes.
Using the mode summation method, the displacement response
vector of the beam can be estimated from the flexural mode
shapes as

{de(x, t)} =
n∑

i=1

{φi(x)}qi(t) (19)

where {de(x, t)} is the estimated displacement vector of the
beam, {φi(x)} is the modal vector corresponding to the normal
mode i and qi is the generalized i th coordinate. Considering
that the vibration response of a beam is generally dominated
by a few lower modes, the limited state controller synthesis
is formulated by considering only the first two modes. The
estimation of the generalized coordinate vectors corresponding
to the first two modes, {q1(t)} and {q2(t)}, would require
measurements of the state at a minimum of two locations.
Initially the mode shape vector corresponding to the two modes
φ1 and φ2 could be obtained for the open loop structure in the
absence of a magnetic field. Considering the measurements
of deflections, dm(l/2) and dm(l) at x = l/2 and x = l,
respectively, the generalized coordinates may be estimated
from

{
q1(t)
q2(t)

}
=

[
φ1(l) φ2(l)

φ1(l/2) φ2(l/2)

]−1 {
dm(l, t)

dm(l/2, t)

}
. (20)

Equation (19) yields the estimated displacement vector
{de(x, t)} on the basis of two measured deflections, which
is subsequently used to evaluate the control vector, {γ } =
−[U ]{xe(x, t)}, where the estimated state vector {xe(x, t)}
consists of {de(x, t)} and its derivatives. The equation for the
closed loop system based on an FMS optimal controller can
thus be written as

{ẋs} = ([A] − [B][U ]) {xe(x, t)} + { f }. (21)

4. Results and discussion

The fundamental characteristics of the fully and partially
treated MR sandwich beams have investigated theoretically
and experimentally (Rajamohan et al 2010b, 2010a).
Permanent magnets were used in the experimental setup to
generate the desired magnetic field over the surface of the
MR sandwich beam by varying the gap between the magnets
and the structure. The realization of a controllable MR
sandwich structure, however, would require the design of
compact electromagnets in order to apply the desired field over
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Figure 3. Selected configurations of partially treated MR sandwich beams with maximum modal damping factors corresponding to the first
five modes under a constant magnetic field: (a) configuration A, and (b) configuration B.

the surface of the beam. Designs of compact electromagnets
have been realized for MR-fluid dampers employed in vehicle
suspensions, where the electromagnet is integrated within the
damper piston (Dyke et al 1998). The design of electromagnets
for MR sandwich structures, however, involves additional
challenges, considering the larger size of the structure
compared to the damper piston. Therefore, further efforts are
needed to design compact yet high intensity electromagnets
for practical implementation of the controller. This study,
however, is limited to simulations to evaluate the effectiveness
of the developed full and limited state optimal LQR controllers
in suppressing the vibration of fully and partially treated
MR sandwich beams with clamped–free boundary conditions
under a unit impulse load and a white noise force disturbance
applied at the tip of the beam. The white noise force signal
was synthesized to yield nearly constant auto spectral density
up to 500 Hz. The simulation results were obtained by
considering identical baseline thicknesses (1 mm) of the elastic
and fluid layers, while the length and width of the fully and
partially treated beams were taken as 300 mm and 30 mm,
respectively. The material properties were considered to be
ρ1 = ρ3 = 2700 kg m−3, E1 = E3 = 68 GPa, ρr =
1233 kg m−3 and ρ2 = 3500 kg m−3, where ρ1 and ρ3 are
the mass densities of the elastic layers, and ρ2 and ρr are the
mass densities of the fluid and the sealant rubber material,
respectively. E1 and E3 are the Young’s moduli of the elastic
layers 1 and 3, respectively, as illustrated in figure 1. Two
different partially treated MR sandwich beams were configured
with four localized MR-fluid segments, each having 20 mm
length. The locations of the fluid segments were chosen on
the basis of an earlier study (Rajamohan et al 2010c), and
denoted as configurations A and B, as shown in figures 3(a)
and (b), respectively. Both configurations were shown to
yield maximum damping factors corresponding to the first five
modes when subjected to a constant magnetic field (Rajamohan
et al 2010c). Furthermore, the complex shear modulus of the
MR-fluid was considered to be a function of the storage and
loss moduli, as (Rajamohan et al 2010b)

G∗(B) = G ′(B) + iG ′′(B) (22)

where G ′ and G ′′ are the storage and loss moduli, respectively,
expressed as nonlinear functions of the magnetic field
intensity B .

4.1. Full state observer-based LQR control

4.1.1. Response to an impulse disturbance. The free
vibration responses of the closed loop fully and partially

Table 1. The lower and upper bounds of [R] and [Q] and optimal
values, [R∗] and [Q∗].
MR-fluid treatment [Rl ] [Ru] [Ql ] [Qu] [Q∗] [R∗]

Fully treated 10 100 100 2500 1390 39.45
Partially treated configuration A 10 60 100 3000 2690 50.45
Partially treated configuration B 10 175 100 2500 2300 151.5

treated clamped-free beams were evaluated under an impulse
force applied at the free end. The results are presented
to illustrate the effectiveness of the LQR controller design
described in (17). The weighting matrices [Q] and [R] of the
controller were identified through minimization of a composite
performance function of the peak displacement along the z-
axis and the settling time, such that

minimize f (x) = α1ts + α2dz(l) (23)

where ts is the settling time, dz(l) is the deflection at the tip
along the z-axis (transverse deflection), and α1 and α2 are the
constant weighting factors. The settling time was identified as
the time when the displacement responses reach the order of
10−6 m. The above minimization problem was solved using
the sequential quadratic programming (SQP) method available
in optimization toolbox [Matlab®], where the maximum field
intensity was limited, B � 4000 G. Limit constraints were also
imposed on [R] and [Q], as

[Rl] � [R] � [Ru], and [Ql] � [Q] � [Qu].
(24)

The limiting values, [Rl], [Ru], [Ql] and [Qu], were identified
through a parametric study involving the effects of variations
in [R] and [Q] on ts and dz(l) together with the required field
intensity. The lower and upper bounds were identified as the
values when the magnetic field, B , exceeded 4000 G, and are
summarized in table 1 together with the optimal values, [R∗]
and [Q∗], for the fully and partially treated beams obtained
from the solutions of the minimization problem in (24). It
should be noted that the minimization problem was solved
assuming different weighting factors ranging from 0 to 1 (α1 +
α2 = 1) and different values of the starting vectors. All of the
solutions converged to very similar values of [R∗] and [Q∗].

The time-histories and frequency spectra of the tip
deflection responses of the controlled fully treated MR
sandwich beam to an impulse excitation are compared with
those of the passive beam (B = 0) in figures 4(a)–(c). The
time-history of the required control magnetic field is also
shown in figure 4(d). From the results, it is evident that
the LQR control algorithm can significantly attenuate the tip
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Figure 4. The tip deflection responses of the fully treated MR sandwich beam to a unit load impulse with and without the LQR control: (a)
time-history, without control; (b) time-history, with observer-based control; (c) amplitude spectrum; (d) time-history of the control magnetic
field.

Figure 5. Tip deflection responses of the partially treated MR sandwich beam (configuration A) with and without the observer-based LQR
control when subjected to a unit load impulse: (a) time-history; (b) amplitude spectrum.

displacement with the permissible intensity of the control
magnetic field. The results show that the settling time of the
controlled beam is of the order of 0.59 s, which is significantly
lower than 4.325 s for the passive beam. The amplitude spectra
of the tip displacement response, illustrated in figure 4(c), also
show substantially lower deflections of the controlled beam
corresponding to all of the modes observed up to 250 Hz.

The results show that the amplitudes corresponding to the
first three natural frequencies of the controlled fully treated
beam are 18%, 28% and 32%, respectively, lower than those
of the uncontrolled beam. The natural frequencies of the

controlled beam, however, are quite close to those of the
passive beam. Although it has been shown that the application
of a constant magnetic field significantly alters the stiffness
property of the MR beam (Rajamohan et al 2010b), the results
in figure 4 do not show a notable change in the natural
frequencies corresponding to the first three modes. This is
mostly attributed to the rapid settling time of the controlled
beam, where the control magnetic field vanishes at t > 0.5 s,
as seen in figure 4(d).

Figures 5(a) and (b) show the time-histories and amplitude
spectra, respectively, of the free vibration responses of the
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Figure 6. Tip deflection responses of the partially treated MR sandwich beam (configuration B) with and without the observer-based LQR
control when subjected to a unit load impulse: (a) time-history; (b) amplitude spectrum.

partially treated sandwich beam (configuration A) with and
without the observer-based controller, evaluated at the tip.
The figures compare the responses of the controlled and
passive (B = 0) partially treated beams subject to an
impulse unit load. The results show substantially lower
settling time for the partially treated beam employing the
LQR control algorithm compared to that of the passive beam.
The settling time of the controlled partially treated beam is
0.53 s, which is slightly lower than that of the fully treated
beam (0.59 s). The deflection amplitudes of the partially
treated beam corresponding to the first three modes, however,
are significantly greater than those of the fully treated beam,
but lower than those of the respective passive beam. The
deflection amplitudes of the controlled partially treated beam
corresponding to the first three modes are 14%, 15% and
9% lower than those of the uncontrolled beam. A further
comparison of figures 4(c) and 5(b) suggests considerable
differences in the natural frequencies of the fully and partially
treated beams. These are attributable to the differences in their
structures, in particular the density of the MR-fluid and the
elastic material (ρ2 > ρ1). The total mass of the fully treated
beam is thus relatively higher. The observed frequencies of
both the fully and the partially treated beams were identical to
those reported in Rajamohan et al (2010b, 2010a).

The time-histories and amplitude spectra of the tip
displacement responses of configuration B of the controlled as
well as passive partially treated sandwich beams are illustrated
in figures 6(a) and (b), respectively. The greater treatment near
the free end yields larger reduction in the tip displacement,
while the settling time tends to be slightly higher for both
the controlled as well as the passive beams compared to the
fully treated beam and configuration A of the partially treated
beams. The implementation of the LQR control algorithm
yields a peak tip displacement of 1.45 mm and settling time
of 0.62 s. The corresponding values for the passive beam are
1.77 mm and 4.4 s, respectively. The amplitudes corresponding
to the first three natural frequencies of the controlled structure
are 15%, 41% and 56%, respectively, lower than those of the
passive beam. The deflection amplitudes of the controlled
configuration B are substantially lower than those of the
controlled configuration A. This is, in particular, attributable to

the relative higher modal damping factors of configuration B
(Rajamohan et al 2010c). Furthermore, the peak displacement
response at the tip of the passive partially treated beam
(configuration B) is almost comparable to that of the fully
treated passive beam, as observed from the time-history of
the responses. A similar trend has also been reported in
Rajamohan et al (2010b, 2010a) in the transverse response
of the fully treated beam and various configurations of the
partially treated beams. The results also show that the
implementation of the LQR control to configuration B yields
significantly higher reductions in the deflection amplitudes
corresponding to the first three modes compared to those
observed for the fully treated beam and configuration A of the
partially treated beams.

4.1.2. Response to a white noise disturbance. The
effectiveness of the LQR control in suppressing the steady state
vibration is further evaluated under a Gaussian white noise
force applied at the tip along the z-axis (variance = 3.15 N2,
mean ≈ 0). The optimal state weighing matrices, [R∗] and
[Q∗], were subsequently evaluated in a similar manner through
solution of the following minimization problem:

minimize, f (x) =
n∑

i=1

dzpi (l). (25)

The above minimization problem considers the peak transverse
deflection, dzpi (l), at the tip corresponding to the first five
modes (n = 5). The peak deflections corresponding to
different modes were extracted from the amplitude spectrum of
the tip deflection response by defining five distinct frequency
ranges around the known natural frequencies of the passive
beam (B = 0). The lower and upper bounds of [R] and [Q]
were obtained from a parametric study as in the case of impulse
excitation, and are summarized in table 2 together with the
optimal values, [R∗] and [Q∗] for the fully and partially treated
beams.

The deflection responses of the fully and partially treated
beams with and without the controller were evaluated in terms
of the transfer functions (TFs) of the tip displacement. Figure 7
compares the transfer functions of the tip displacement
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Figure 7. Comparisons of transfer functions of the tip displacement responses of beams with and without observer-based LQR control: (a)
fully treated beam; (b) partially treated configuration A; and (c) partially treated configuration B.

Table 2. The lower and upper bounds of [R] and [Q] and the
optimal values, [R∗] and [Q∗].
MR-fluid treatment [Rl ] [Ru] [Ql ] [Qu] [Q∗] [R∗]

Fully treated 43 45 4000 4300 4125 43.25
Partially treated configuration A 25 65 1750 3500 2800 51.5
Partially treated configuration B 25 65 1750 3500 2800 51.5

responses of the controlled beams with those of the
corresponding passive beams (B = 0). The results show
that the LQR control can reduce the deflection amplitudes
corresponding to all the modes considered, irrespective of
the MR-fluid treatment. It should be noted that the TFs are
presented up to only 500 Hz, while the fifth mode of the
partially treated beams lies at a frequency above 500 Hz.
The fully and partially treated (configuration B) beams, in
particular, yield the most significant reductions in the tip
deflections compared to those of the passive beams (B =
0). Configuration A of the partially treated beam, however,
exhibits relatively smaller reduction in the peak responses
compared to the respective passive beam.

The most significant reductions are evident in the
deflection corresponding to the first mode for all the beams
considered. For the fully treated beam, the TF reveals that the
LQR control yields 96%, 90%, 93%, 91% and 99% reductions
in the peaks corresponding to the first five modes, respectively.
It can also be seen that the first and fifth mode deflection
peaks are entirely attenuated, as seen in figure 7(a). The
reductions in the peak deflections of the partially treated beam

(configuration B) corresponding to the first three modes are
99%, 96% and 98%, respectively. The first and fourth mode
deflections in this case are also entirely attenuated, as seen in
figure 7(c). The reductions in the peak amplitudes of partially
treated beam, configuration A, are relatively much smaller than
those observed for configuration B for all the modes, as seen
in figure 7(b). This is mostly caused by the distribution of the
MR-fluid segments near the support, and is consistent with the
free vibration responses presented in figures 5 and 6.

4.2. Flexural mode shape (FMS) based LQR control

Simulations are performed to examine the validity of the
flexural mode shape (FMS) based optimal controller in
estimating the state vector. The effectiveness of the FMS
controller is subsequently evaluated in suppressing the free and
forced vibration responses under both impulse and white noise
force excitation at the tip. The effectiveness of the proposed
FMS estimator and control method are demonstrated for the
fully treated beam alone, while the simulation parameters are
taken as those described in section 4.1.

The validity of the FMS estimator is initially investigated
considering the impulse excitation for the passive and the
controlled fully treated beams. For this purpose, the finite
element model was analysed to yield the transverse deflection
amplitudes obtained at x = l = 300 mm and x = l/2 =
150 mm, which were applied to estimate the deflections at
different coordinates, using (19). The estimated deflection
responses at different locations were then compared with those
derived from the FE model to examine the validity of the FMS
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Figure 8. Comparisons of deflection responses of the fully treated passive beam estimated using FMS and the finite element model: (a)
x = 100 mm; and (b) x = 200 mm.

Figure 9. Comparisons of deflection responses of the fully treated beam estimated using FMS-based and observer-based LQR controllers: (a)
x = 100 mm; and (b) x = 200 mm.

estimator. The results revealed very good state estimation
for both the passive and the controlled fully treated beams.
As an example, figures 8(a) and (b) compare the estimated
deflection responses of the passive beam with those derived
from the finite element model at x = 100 mm and x =
200 mm, respectively. For the purpose of clarity, the responses
are compared only in the 0 to 1 s interval, which invariably
show that the estimated and computed responses overlap.
Figures 9(a) and (b) present a comparison of the computed
and estimated deflection responses of the fully treated beam
employing the FMS-based LQR controller at x = 100 and
200 mm which further validate the FMS-based estimator.

From figures 8 and 9, it is evident that the FMS-based
LQR control can effectively adapt to the state of the beam.
The proposed limited state control can thus yield vibration
attenuation performance similar to the full state observer-based
control. Furthermore, the tip deflection responses of the fully
treated beam with and without FMS-based LQR controllers
are shown in figure 10 under the unit impulse excitation. The
results show that the settling time and peak displacement are
significantly reduced. The settling time of the controlled beam
is of the order of 0.59 s, which is significantly lower than
4.325 s for the passive beam (B = 0).

The deflection responses of the fully treated beam with
and without the FMS-based control are further evaluated under

Figure 10. Open and closed loop tip responses of the fully treated
MR sandwich beam under an impulse excitation at the tip using the
FMS-based control.

a white noise force excitation applied at the tip. Figure 11
compares the transfer function of the tip displacement response
of the controlled beam with that of the corresponding passive
beam (B = 0). The results show that the FMS-based LQR
control can reduce the deflection amplitudes corresponding to
all the modes considered in the 0–500 Hz frequency range.
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Figure 11. Comparisons of the transfer functions of the tip
displacement responses of the fully treated beam with and without
FMS-based LQR control.

The TF reveals that the FMS-based LQR control yields a
deflection reduction as good as the observer-based LQR. The
reductions in the peaks corresponding to the first five modes
are 96%, 90%, 93%, 91% and 99%, respectively. It can also
be observed that the first and fifth mode deflection peaks are
entirely attenuated. This confirms the effectiveness of the
FMS-based limited state optimal controller.

5. Conclusions

In this study, the semi-active vibration control of a multilayer
beam fully and partially treated with MR-fluid has been
analysed. The results of the study show that the full state
observer-based LQR control can yield substantial reductions
in the settling time and free and forced vibration responses of
the beams treated either fully or partially with MR-fluid under
an impulse excitation. The observer-based LQR control of
the fully and partially treated beams resulted in nearly 85%
reduction in the free vibration settling time, and 25% reduction
in the tip deflection, when compared to the passive beams.
The vibration responses to a white noise force excitation
applied at the tip also revealed nearly 90% reduction in the
deflection amplitudes corresponding to the higher modes for
both the fully and partially treated beams while the deflection
corresponding to the first mode was entirely attenuated. The
limited state control synthesis proposed on the basis of the
flexural mode shapes of the beam also resulted in comparable
vibration spectra, while reducing the number of feedback
variables and the hardware implementation. The approach
based on the known flexural mode shapes of the beam and
measurements of only a few state variables provided effective
estimates of the state vector. Comparisons of the deflection
responses of the controlled beam using FMS-based control
with those of the passive beam under an impulse and a white
noise force applied at the tip confirmed the effectiveness of
the FMS-based limited state controller. Implementation of
the controller, however, would require further developments in
compact electromagnets to apply the controlled magnetic field
on the surfaces of the treated structures.
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