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Abstract: Fog computing brings computational services near the network

edge to meet the latency constraints of cyber-physical System (CPS) appli-

cations. Edge devices enable limited computational capacity and energy avail-

ability that hamper end user performance. We designed a novel performance

measurement index to gauge a device’s resource capacity. This examination

addresses the offloading mechanism issues, where the end user (EU) offloads

a part of its workload to a nearby edge server (ES). Sometimes, the ES

further offloads the workload to another ES or cloud server to achieve reliable

performance because of limited resources (such as storage and computation).

The manuscript aims to reduce the service offloading rate by selecting a

potential device or server to accomplish a low average latency and service

completion time to meet the deadline constraints of sub-divided services. In

this regard, an adaptive online status predictive model design is significant

for prognosticating the asset requirement of arrived services to make float

decisions. Consequently, the development of a reinforcement learning-based

flexible x-scheduling (RFXS) approach resolves the service offloading issues,

where x = service/resource for producing the low latency and high perfor-

mance of the network. Our approach to the theoretical bound and computa-

tional complexity is derived by formulating the system efficiency. A quadratic

restraint mechanism is employed to formulate the service optimization issue

according to a set of measurements, as well as the behavioural association rate

and adulation factor. Our system managed an average 0.89% of the service

offloading rate, with 39ms of delay over complex scenarios (using three servers

with a 50% service arrival rate). The simulation outcomes confirm that the

proposed scheme attained a low offloading uncertainty, and is suitable for

simulating heterogeneous CPS frameworks.

Keywords: Fog computing; task allocation; measurement models; feasible

node selection methods; performance metrics
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1 Introduction

Increasing the deployment of Internet of Things (IoT) devices andmaintaining the generated data

is a hectic challenge [1]. In this regard, cloud data centres provide reliable services for accomplishing it.

Nevertheless, several drawbacks show an impact in terms of latency network congestion, leased service

cost, and especially geographical distance, which causes the unavailability of cloud resources [2,3]. The

fog computing paradigm enlarges the services to the network edge to overcome all the disadvantages

listed above. A conventional fog computerized framework contains a group of distributed fog

computing entities (fog nodes) that are geographically connected with limited resources. Fog nodes

are frequently systematized over every level in the form of a tiered architecture, depending upon their

length of space to IoT equipment. Resource-restricted devices may use an offloading mechanism to

forward part of their workloads towards a nearby edge server (ES)/node through the communication

channel. This process minimizes vitality wastage and increases the performance of the system [4,5].

Motivation: Technically, fog computing becomes an intermediate layer for fulfilling the require-

ments of the IoT one by inheriting certain cloud services to improve the framework performance in

terms of resource usage, as well as the equilibrium of the arrived load, in addition to service latency.

Usually, most existing service offloading methods select the non-overloaded servers due to the high

resource availability to achieve high service reliability. As a result, the deadline-sensitive application

requirements can be violated due to the long queue length and excessive waiting time. Therefore, one

possible solution is to divide the task into sub-tasks, which are preferred for executing the arrived

workload parallel through the inspiration of the divide-and-conquer rule. Two fascinating research

questions may arise with a trade-off between power and latency.

1. To what extent will the workloads be offloaded towards consecutive fog tiers?

2. What allocation and estimation of resources will be needed to execute the arrived services?

That concludes the offload decision.

Making the right time decision about these questions is crucial but still ambitious because of time

variations in wireless systems, as well as unreliable offloading and unrecognized data traffic [6,7].

Stable service allocation in IoT systems is a Herculean task [8]. If the device moves to another

location, there will be a change in wireless channel conditions, leading to more time being required for

wireless transmission and degrading to achieve the quality of service (QoS) [9,10]. Furthermore, IoT

errands are distinct from various locations that may demand different computing assets. Hence, the

decisions on errand allocation are to be altered according to the required resources.

Generally, the active device location is not static, and that generates multiple computing errands

at every location, subsequently offloading all computation-intensive service requests (SRs) to nearby

edge servers (ESs). Here, the ES manager is responsible for taking all decisions related to SR

allocations. Estimating the future position based on forthcoming SRs is uncertain and unrealistic to

optimize. Hence, an optimized asset-intensive reinforcementmethod is required tomake SR allocation

decisions according to themodern status of the network [11] to address SR allocation issues.Moreover,

due to the restricted battery capacity, every device’s energy consumption between various points is

vital. In particular, the greater vitality consumption of the present location may strip energy for the

next processes as a result [12,13]. Therefore, we developed a deep reinforcement learning approach

to streamline the above-listed challenges to formulate errand allocation decisions per the demand by

designing an online service offloading algorithm. The significant contributions of our work are listed

below.
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1. Designing and developing a reinforcement learning-based flexible x-scheduling (RFXS)

approach to resolving the service offloading issues according to a reinforcement-based errand

allocation method and probabilistic resource requirement analysis model, which includes a set

of node-centric measurements, as well as the behavioural association rate and adulation factor.

2. Constructing a reinforcement-based errand allocation method to offload computation-

intensive services to various ESs to depreciate the average errand completion time by meeting

related constraints.

3. Developing a probabilistic resource requirement analysis model based on future node-centric

resource requirements and uncertain local computing information to increase the performance

of the IoT-fog system.

The remainder of this article is organized as follows. In Section 2we review relatedworks. Then, we

describe the IoT-reinforcement learning-based flexible task and resource scheduling (RFTRS) archi-

tecture for errand and resource allocation in Section 3. Section 4 describes the end user (EU) demand

and resource usage rate attribute-based deep reinforcement learningmethod. The RFTRS scheme and

feasible node selection algorithm are introduced in Section 5, and the evaluated performance of the

proposed scheme is described in Section 6. Finally, we conclude this article in Section 7.

2 Related Work

This section outlines the research gap correlations and contrasts existing works. Researchers must

optimize task allocation and asset scheduling issues in IoT environments with various probability

methods. In addition, they must concentrate on scaling the assets up and down as per demand with

the design of a novel asset policy that should meet multiple research objectives. In [14], the analysis

introduced asset scheduling approaches over a clusteringmechanismwith a distributed environment to

optimize the resource usage. In [15,16], the investigators designed an asset provision model through a

token-based service method for a cloud data centre (CDC) to enhance the service execution reliability.

The developedmethod is intended tomeet user requirements according to a planned scheduling policy

to accommodate the services at less cost. In [17], the study advanced a content-aware mapping method

which allocates the virtual machines (VMs) according to a bandwidth-intensive rate. To overcome the

consequences of a server perspective policy, the author has constructed a resource allocation method

to diminish asset conflicts using graph theory in [18], and also streamlined the VM allocation problem

through the asset equilibrium mechanism.

In [19], the researchers streamlined the workload allocation problem of an optimized multi-

objective system by conceding the service reliability rate to diminish the service cost with less

completion time, and also designed a co-operative method to regulate the asset provisioning issue

based on game theory. However, previous works have not examined the task scheduling issues of

active IoT devices in IoT-fog networks. In [20], the author has focused on optimizing the impact

of fault restoration on service performance by considering the VMs’ track record (recovery and

communication rate) outcome. However, none of the explained methods resolved fog-service request

scheduling issues over IoT environments.

In [21], the study developed an efficient data loss fetching model as well as a practical path

estimation one for the IoT framework and concentrated on designing a reliable leased cost system.

In [22], the author has created a design to estimate the nodes’ flexibility by conceding the statistical

analysis of previous node failures with log data. In [23], the researcher has used a smart mobile as a

node to accommodate computing assets at the edge with adaptive architecture to accomplish a reliable
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service system. However, the above methods are concentrated on the asset failures of the IoT-fog

system and not service offloading issues.

The offloading mechanism resolution enables flat offloading and upright offloading/collabora-

tion towards the IoT-fog environment. Most edge servers execute the accommodated data but use

flat/upright collaboration. However, a few investigations have been conductedwith nearby nodes using

flat collaboration and upright partnership towards cloud servers in [24] to achieve low latency. In

[25], the authors have designed flat and upright collaborations through novel asset allocation methods

to diminish the service request (SR) execution time. In their investigation, waiting queue time has

not been considered because of queue maintenance by the ES manager. Furthermore, various delay

constraints are vital in diminishing delays by regulating transmission and computing-related asset

distribution. The communication delay issues among deployed nodes were conceded in [26], but they

weremissed when concentrating onmulti-user scenario issues. In [27], amodel was devised tominimize

the performance delay by optimizing queue delay, which plays a vital role during the computation

offloading mechanism in multi-tenant scenarios (which receives both end tasks) in a fog environment.

The ∝-distribution method has been developed to address multi-path resource allocation issues

over a software-defined network [28]. This approach scaled the problem size to exploit the computation

power of the controller, and the cost-based switching of the allocation streamlined the system’s

accuracy. A predictive offloading and resource allocation (PORA) system has been created to address

the service offloading issue derived from the traffic prediction of fog servers, in an attempt to

minimize the energy consumption of the system [29]. A task selection-task allocation (TS-TA) method

was established to effectively allocate resources using a genetic algorithm. The author attempted to

minimize resource usage by balancing the server’s workload [30] However, the server’s current status

was neglected in the abovemodels while assisting the arrived services. In addition, none of themethods

failed to concede queue delay, mainly in fault collaboration with nearby nodes. In [31,32] a mobility-

aware security dynamic service composition (MSDSC) model-based framework has been created to

meet the requirements of deadline-sensitive applications through the restricted Boltzmannmechanism.

The suggested probabilistic models assess the process at each phase for effective service execution. In

[33], a novel communication model has been outlined to make a trade-off between cost, deadline,

and relevant constraints for accomplishing highly reliable services with a low latency rate, and an

energy usage optimization design has been described as an extension of this contribution in [34]. In

[35], a novel resource allocation model has been formed according to a deep-learning Q-network

to optimize the system latency and energy consumption to meet the deadline within the demanded

resource capacity with a 30% reduced cost in terms of energy and execution time.

To facilitate responsible fog-IoT networks, our previous work [36] discusses the fog asset schedul-

ing over IoT frameworks by contemplating VM flops to reduce the service execution cost. The trade-

off between the task allocation cost and reliability has never been examined. In this document, we

designed a multi-objective RFTRS mechanism to optimize the uncertainty in the service offloading

scheme by examining the trade-off between reliable errand allocation, asset scheduling rate and cost,

with a deep reinforcement learning system.

3 System Framework

The proposed fog-cloudRFTRS architecture enables a cloud server, edge servers (ESs) and EU, as

depicted in Fig. 1. The ES and EU sets are denoted as J = {1, . . . , J} and Z = {1, . . . ,Z}, respectively.

The edge servers (ESs) and end users (EUs) are deployed randomly over themonitoring area. However,

we consider different application workflows (AWs), and the set is denoted asW = {1, . . . ,W}, tomake
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sure that everyAWdemands several central processing unit (CPU) cycles to execute the service requests

(SRs)/tasks. Note that each EU can trigger one SR at a time and Table 1 shows the list of notations.

Figure 1: System model

Table 1: Table of notations

Notation Definition

ρz,j Content or service offloading probability

∂z Service arrival rate at device z

kiz Expected service completion time at z

v
j

i Amount of ith task data executed by server

θw
zj

Processing adulation factor

∆ Probability of resource scarcity

ξ
j

iz Energy usage to execute ith service request by the server j

comz,j Data transmission time from zth device to zth server

a
j

iz Million instructions per second (MIPS) or CPU cycles

required by the server to execute the task

3.1 User demand (UD) Entail Attribute Queuing Analysis in AW Allocation

Initially, the EU resources are used to perform the allocated SR at the time interval [τ , τ + 1) .

However, the EU may not execute and meet the SR deadline due to the huge demand for CPU cycles

since the edge user is resource-limited. Thus, the EUhas to offload a portion of SRs to nearby potential

ESs. Let us consider that each EU scheduler enables two queues (local execution and offloading) and

functions simultaneously. It is essential to measure the probability of offloading the content to the

nearby jth ES.

Consider that ρz,j is the probability of content offloading between the zth EU and jth ES. Here,∂0
z

=

ρz,j.∂z represents the SR arrival rate of the zth EU offloading queue and ∂ lc
z

=
(

1 − ρz,j

)

.∂z the SR arrival

rate of the zth EU local computing queue. The expected SR completion time must be constrained by

its deadline, which is evaluated with Eq. (1).

kiz = kcom
iz

+ kpro
iz

= aj
iz
×

(

J
∑

j=1

(

biz

comz,j

+
biz.∂iz

fj

)

)

,∴ kiz ≤ kW
z

(1)

where kcom
iz

= a
j

iz ×
biz

comz,j
, k

pro

iz = a
j

iz ×
biz .∂iz

fj
represents the communication and computation delay,

respectively.
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3.2 Identifying Potential Nodes

At first, we estimate the behavioural association rate barz,z+1 (τ ) ofz, z + 1 at the time slot with

Eq. (2).

barz,z+1 (τ ) =

∏

Corz∈Cor
j
z
actτ

z
× actτ

z+1
√

∏

Corz∈Cor
j
z

(

actτ
z

)2

×

√

∏

Corz∈Cor
j
z

(

actτz+1

)2
(2)

The feasibility factor of the EU is estimated by considering the bar value at every slot, with the

below Eq. (3). It plays a vital role in avoiding the redundancy and proficiency of the EU.

Fz (τ ) =

∑

Corz∈Cor
j
z
barz,z+1 (τ ) × actτ

z+1
∑

Corz∈Cor
j
z
barz,z+1 (τ )

(3)

where actτ
z+1

refers to the activity of the current devices at time slot τ . The targeted device accessing

probability ρ(z|z+ 1) is estimated by a weighting factor function dist(z|z+ 1) with Eq. (4). It is used

to analyse the targeted node feasibility at a given slot, and this value will be employed to assess the

completion time of the ED or ES by allocating the AW.

ρ(z|z+ 1) =
dist(z|z+ 1)

∑

Corz∈Cor
j
z
(dist (z|z+ 1) , biz)

(4)

Moreover, we examine some particular features of concern during time slots, so some of the

users may use the adulation factor without examining distance. The adulation factor is evaluated with

Eq. (5), where α refers to weight between current and long-time adulation value. The EU adulation

factor cross-verification matrix is represented in Eq. (6).

aduz|z+1 = α ×

∣

∣Mτ

z

∣

∣

∑

Corz∈Cor
j
z

∣

∣Mτ
z+1

∣

∣

(5)

Mτ

24×z
=

⎛

⎜

⎝

m11 m12 m1z

...
. . .

...

m241 m242 m24z

⎞

⎟

⎠
(6)

4 Problem Formulation

The system model concentrates on formulating task scheduling issues with minimized time

through demand-based resource sharing over the IoT system. For instance, the EU (for example, a

camera) forwarded b bits/second to the jth ES. Normally, not all SRs offload towards the cloud or

nearby ESs. When the jth ES permits bi, z, that is δ
j

i = vz
i
× biz.δ

j

i refers to the amount of data executed

by the zth EU and vz
i
that by the jth ES. In some cases, the ES might forward a portion of the workload

to nearby nodes when devices are potentially able to accommodate the workload, or else it decides to

offload towards the cloud. This means vz
i
+

∑J

j=1
vj,j+1 × biz amount of data has been executed from the

edge side. In this scenario, the following conditions and definitions should be considered.

Definition 1: Suppose the jth ES accepts accommodating the workload, although it has to manage

local sub-workloads in the pipeline to execute or offload to another nearby node, or it may offload to

the cloud. In this scenario, it may consume time, the right way to accomplish the allocated workload—

the ready time (γ i
j,j+1

) described as themost prime time, while the whole pressing antecedents of it ought

to complete the execution in Eq. (7).
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γ i

j,j+1
= max

î ∈pred(vzi )

{

max
{

℘
j

iˆj
,℘

j

iˆc
,℘com(vz

i
)
}}

(7)

Where ℘
j

iˆj
,℘

j

iˆc
,℘com(vz

i
) refers to the completion time of the ES, cloud and completion time to

transmit the data respectively. But i has three cases.

Case 1: if ℘com
(

vz
i

)

< ℘
j

iˆj
and ℘com

(

vz
i

)

< ℘
j

iˆc

Then the ready time is to be Eq. (8)

γ i

j,j+1
= max

{(

1 − x
iˆj

)

× ℘
j

iˆj
+ x

iˆj
× ℘

j

iˆc

}

(8)

Case 2: if ℘com ≥ ℘
j

iˆj
and ℘com

(

vz
i

)

≥ ℘
j

iˆc

Then the ready time is to be Eq. (9)

γ i

j,j+1
= ℘com

(

vz
i

)

(9)

Case 3: if ℘com
(

vz
i

)

|{℘
j

iˆj
,℘

j

iˆc
} then the ready time is to be Eq. (10)

γ i

j,j+1
= Max

{

{℘
j

iˆj
,℘

j

iˆc

}

(10)

Definition 2: The completion time of a SRon the jth ES.Where (j �= j+1) is defined as a summation

of ready time and computation time and is estimated as Eq. (11).

ϕ i

j,j+1

(

vj+1

j

)

= γ i

j,j+1

(

vj+1

j

)

+ xi
j,j+1

(

vj+1

j

)

(11)

Case 1: If there is no transmission wait queue during local execution on ES, then the sub-SR finish

time is estimated by Eq. (12).

ϕtrw

i,z

(

vz
i

)

= ℘com
(

℘ j

i

)

+ xi
j,z

(

vz
i

)

(12)

Case 2: Similarly, the cloud server requires some time to execute the received SR, as estimated by

Eq. (13)

ϕ i

j,c

(

vc
j

)

= γi

j,c

(

vc
j

)

+ xi
j,c

(

vc
j

)

(13)

Definition 3: The computation time on each ES is described as the summation of computation

latency
℘
j
i

2oj

(

oj−℘
j
i

) , the delay to fetch entail data to execute the SR ℘
j

i
1

oj
, required to complete the sub-task

on ES
(

xi
j,j+1

)

and is evaluated with Eq. (14)

xi
j,j+1

(

vz
i

)

=
℘

j

i

2oj
(

oj − ℘
j

i

) +
1

oj
+ xi

j,j+1
(14)

where xi
j,j+1

=
℘
j
i

μj

Now, optimizing the latency while sharing the resources among ESs accomplishes a balanced

resource usage. Therefore, the manuscript anticipation is defined as Eq. (15)

Avgmin
j,v

(

Max
(

ϕ i

j,j+1

(

vj+1

j

)

,ϕtrw

i,z

(

vz
i

)

,ϕ i

j,c

(

vc
j

))

+

Z
∑

z=1

J
∑

j=1

kcom
iz,j

)

(15)
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s.tvz
i
+

J
∑

j=1

vj+1

j
+ vc

j
= 1

where
∑Z

z=1

∑J

j=1
kcom
iz,j

refers to the total communication delay to execute the task.

5 RFTRS Algorithm

In this section, a heuristic algorithm is derived from executing the arrived SR at the device level

by the device manager strategy at each layer with complete SR demands, such as the SR length and

the compute capacity, as well as the SR deadline, etc. The system resolves the local computation issue

with less computation complexity. The fundamental objective is to allocate the SR to the ES, which

pursues a smaller processing factor (PF) value θw
zj
and it is estimated by Eq. (16). The SR allocation is

processed as per the sequence of the feasible ES set by keeping the ESs in ascending order based on

the θw
zj
value. Additionally, it should satisfy the condition in Eq. (17)

θw

zj
=

N
∑

i=1

Z
∑

z=1

J
∑

j=1

(

kj
iz
+ ξj

iz

)

(16)

N
∑

i=1

bi ≤ Sj (17)

where Sj is the total storage capacity of the ES. Otherwise, the sub-SR will be offloaded to a nearby

ES, which satisfies all listed conditions, as can be observed in algorithm 1. Lines 1–13 estimate the

proposed scheme to assign the SR to the ES node. Lines 5–11 estimate the feasible node, which has a

low θw
zj
PF value and is estimated with Eq. (16). The selected targeted node has become responsible for

executing the SR tomeet the deadline. In IoT devices, energy optimization plays a vital role. Therefore,

the energy consumption cost ξ
j

iz of each device is estimated as Eq. (18), where Ai
z
is the power usage of

a device.

Ξj

iz
=

N
∑

i=1

Z
∑

z=1

J
∑

j=1

(

Ai
z
× biz

comzj

)

× aj
iz

(18)

Selecting a feasible ES is a hectic task, but we measure the four types of attributes through graph

theory, as mentioned in algorithm 2. The second algorithm chooses the shortest path among all the

hooked nodes in the framework. Through undirected graph theory, a suitable ES is selected based

on a weighted matrix mechanism. For each ES, the bar value is estimated to analyse its location at

a comfort level and the probability of selecting a nearby ES. The adulation factor is used to analyse

the previous track record of the ES and its capability through the matrix mechanism, which can be

observed in algorithm 2. Most existing methods consider distance among nodes as a parameter for

accomplishing the task, but we considered both the range and track record of the node using a set of

measurements, as well as the behavioural association rate and adulation factor. This process iterates

in every step to choose the centralized ES over the IoT environment.

Algorithm 1: Heuristic Reinforcement-RFTRS Algorithm

Input: 1. SR set: N = {1, . . . ,N}

2. Edge servers set J[J]

Output: Adaptive SR allocation

(Continued)
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Algorithm 1: Continued

1 While i �= 0 do

2 Let initialize a
j

iz = 0;

3 for each t ∈ Ndo

4 Let estimate biz, comzj, ∂iz,Sj|z, fz, �
z|j

i , ξ
z|j

i ;

5 for each j ∈ Jdo

6 Estimate PF value by Eq. (17);

7 Estimating feasible ESs set by using algorithm 2;

8 Update J[J] in ascending order;

9 If kiz ≤ θw
zj
then

10 jthnode ← t [i];

11 Update J [J] set;

12 Update a
j

iz = 1; break;

13 end

14 else

15 Continue until SR allocation;

16 end

17 end

18 end

19 end

20 Return adaptive SR allocation a
j

iz = 1;

Algorithm 2: Heuristic ESs Algorithm

Input: 1. Edge servers set J[J with classification based on computing capacity

2. It is all resource-intensive sets

Output: Adaptive feasible ESs set

1 While j �= 0 do

2 Let initialize Si
j
�= 0;

3 Let estimate comj, ∂j, fj, ξ
j;

4 for each j ∈ Jdo

5 Estimate behavioural association rate (bas) value by Eq. (2)

6 Update J [J] set in descending order;

7 Estimate Eq. (3)

8 Update J [J] set;

9 Estimate adulation factor by Eqs. (4) and (5) to finalize the priority of ES;

10 end

11 end

12 Return adaptive feasible ESs set;

6 Simulation Setup for Performance Analysis

This section estimates the RFTRS performance for efficient SR allocation with the MATLAB

simulation system.We set the computing capacity of each device, and it is updated in Table 2. We used

100 m × 1500 m areas with J = 5 ESs, which are deployed randomly. Z = 25 EU are also deployed to

accomplish the underlying objective with respect to time. Iteratively, all parameters must be estimated
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to act as per the online demand. The SR length is assigned between 15–20 Mb. The entail computing

rate of each ES is between 250–750 CC/S, with a storage capacity range of 150–250 Gb, and 15 MHz

bandwidth. Initial device communication power is 2.5 W, and its battery capacity ξ = 250 J, and the

remaining notation definitions can be observed in Table 3. Google clusters are employed to generate

the services in our simulation, where each task contains thousands of tasks with specified resource

attributes, and as per the resource demand, the services are offloaded to the potential servers. The

computation-to-communication ratio is scaled as (0.1,10). Assume that the state-of-the-art approaches

generated 50 to 500 tasks; then, 10,000 test cases are fed to assess the performance and makespan of

our system.

Table 2: Device-level computing capacity

Device level Computing capacity

(CPU cycles/s)

fz 5 × 116

fj 10 × 116

fc 150 × 116

Table 3: Simulation attributes

Parameter name Value

No of ESs 5

No of EUs 25

ESs compute capacity 250 − 750CCs

Storage capacity 150–250 Gb

SR length 15–20 Mb

We considered five ESs deployed around a 1500 m × 1500 m area in our simulation and the

ESs are deployed around a 20 m × 20 m range. The arrival rate at each ESs is 25 − 50SR/s with

a moderate bandwidth of 0.65 Mb/s. According to the structure, we fixed the traffic range as 0.56

Mbits. The computing capacity may change as per the demand to 5 kCCS. The simulation uses a

fixed ES computing threshold value of approximately 0.99/node to achieve moderate performance.

The channel frequency is approximately 2 kMHz, the antenna loss is approximately 4 dB, the gain

rate is 1 dB, and the target node sensitivity is approximately −95 dBm.

Fig. 2 shows the workload computing variances between ESs, and our approach has a low-risk

rate compared to the rest of the approaches (α − distribution, PORA, and TS-TA). To optimize the

workload, the ESs’ compute capacities must be scaled as per the demand of arrived services to achieve

the high performance of ESs. In this scenario, the existing approaches have not conceded the latency

rate for backpropagation, but the energy optimization scheme towards respective resource usage rates.

Fig. 3a illustrates the delay analysis report during the EUs’ upload of a part of the sub-SR to the

ES along with the comparative analysis of the ES workload. We have not conceded the compute cost

when it is offloaded to the cloud or a nearby ES during local computing by an ES.Here, we can observe

the delay when the ES J = 3, the delay value is far better than for the remaining ESs and their local

computing count. However, the delay apparently rises when the EU count increases along with the
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local computing scenario. The reason for this is that while performing local computing, the ES assets

are purely utilized, even when considering a greater number of EUs as well as the SR arrival rate.

Figure 2: ESs’ computing loads

Fig. 3b, shows the delay analysis comparison with respect to the EUs. Assuming the ES count is

equal to the EU one, then there is a marked difference in performance. When the work arrival rate

raises, there is also an increase in the delay rate. Both are dependent on each other. This is because

each EU has accommodated a greater number of sub-SRs, equivalent to its computing capacity.

Additionally, the EU is restricted by limited assets (compute, storage) and a minimum number of ESs.

In many cases, services beyond the limited capacity of received data are to be offloaded towards the

cloud for the computation process. As per the outcomes rate, the delay grew due to the communication

one while offloading the sub-SR towards the cloud.

Figure 3: Delay analysis of each ES J = 4 with 0.5 Mb/s

Fig. 4a illustrates the offloading influence rate between the EU and ES. Local computing in ES

might generally have a low offloading demand since it is packed with all the entail assets. Therefore, it
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may not have an unfavourable influence because of the delay in the ES-cloud framework. Generally,

the offloading rate is low between the EU and ES, even though the ES has a notable enrichment delay.

Our errand allocation package optimally determines the available ES where it is supposed to execute

to meet the service deadline. Essentially, the developed policy ensures better computational assets

compared with its local computing of ES during cloud and ES collaboration. The ES service rate,

communication rate among the cloud, and the ES influence the total delay. Consequently, a further

rise in the offloading rate in EUs and ES has not caused the delay.

Figure 4: Delay analysis with task arrival rate ∂z = 50/s (%) and bandwidth 0.5 Mb/s

Fig. 4b describes the offloading rate influence between the ES and cloud. Subsequently, the ES-

cloud offloading rate has not affected the local computing of the ES. We can observe in Fig. 4b that

as the offloading rate from ES-cloud is raised, high SR data can offload using cloud computation

assets, and the outcome is reduced delay. If the ES count is enhanced, then, apparently, the EU’s

connection rate towards the ESs also increases. Subsequently, the offloading could be balanced among

ESs; in terms of the ES to cloud, the offloading time also increases, thereby improving the total delay.

Table 4 shows themakespan and probability of the cumulative distribution function (PCDF) outcomes

regarding proposed and state-of-the-art approaches. Our system has received an accurate makespan

4.3 × 103, 0.92% rate of PCDF, and 0.62 delay ratio. TS-TA has received the second best accurate

makespan 6.8 × 103, 0.81% rate of PCDF, and 2.91 delay ratio.

Table 4: Performance comparison analysis with state-of-the-art approaches

Method Makespan × 103 PCDF [0,1] Delay

∝ −distribution 12.1 0.68 4.2

PORA 9.6 0.76 3.68

TS − TA 6.8 0.81 2.91

RFTRS 4.3 0.92 0.62

The task queue length plays an important role in achieving high system performance. In this

regard, service arrival and the probability of resource scarcity are essential parameters impacting
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system latency. Fig. 5 shows the offloading rate and delay comparative analysis study based on the task

arrival rate concerning the probability of the resource scarcity of devices. Consequently, Fig. 5a shows

the performance of the proposed system according to the average service execution delay analysis when

the resource scarcity probability is ∆ = 0.75. The state-of-the-art approach has achieved an abnormal

execution rate than the proposed system, but the PORA approach accomplishes a notably lower delay

than TS-TA and ∝-distribution. Eventually, our approach produced a lower delay rate than other

approaches, even at moderate resource scarcity probability, which is approximately ∆ = 0.5, as can be

observed in Fig. 5b.

Figure 5: Offloading rate and delay analysis based on task arrival rate concerning the probability of

the resource scarcity of devices

Subsequently, the service offloading rate is analysed when the resource scarcity probability is ∆ =

0.75 and the server size is j = 2 where the proposed system achieved a low offloading error rate because

of the reinforcement-based errand allocation method and probabilistic resource requirement analysis

model analysis using a set of measurements, as well as the behavioural association rate and adulation

factor. During simulation, it is observed that the offloading error rate is reduced, and the success rate

of service completion is increased because of the pre-estimation of node-centric measurements. It is
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recommended to refer to Table 5 and the optimized offloading error rate can be observed in Fig. 5c.

When the service count is increased with moderate resource scarcity probability∆ = 0.5, the proposed

performance is drastically increased, which can be observed in Fig. 5d.

Offloading Strategy Functionality Analysis

Let us assume five servers are deployed on an IoT framework with different computation

resources. The service arrival rate is also high when the server becomes overloaded. In such a scenario,

the server offloads computation-intensive tasks to the suitable sever by an assessment of node-centric

attributes, as listed in Table 5.

Table 5: Offloading strategy functionality analysis

J Adjacent server/device-centric attributes Decision

Completion

time (ms)

Waiting time

(ms)

Residual

storage

capacity (MB)

Frequency

(GHz)

1 2.8 510.2 160 5 Offload

2 3.2 410.6 450 7.5 Not suitable

3 4.1 395.2 200 4.9 Not suitable

4 1.2 230.6 400 3.5 Offloadee

5 5.6 671.6 360 8 Not suitable

The Table 5 enables two colours of tuples, where the red-coloured one offloads the computation-

intensive tasks to the suitable device, which is in green, based on a set of measurements, in addition

to the behavioural association rate and adulation factor. In brief, these include the targeted node task

frequency, waiting time concerning the task length, task completion time and residual memory to

accommodate the offloaded services. The green tuple of server j= 5 is selected because it is potentially

rich with computation resources. Using this offloading strategy, the server performance has increased

more than the state-of-the-art approaches, which can be observed in the below section.

7 Conclusion

In this paper, we examined the performance of the reinforcement learning-based flexible task and

resource scheduling (RFTRS) approach to reduce the average latency and errand completion time,

stifled by potential battery capacity and the sub-task deadline. The designed adaptive online status

predictive model accurately prognosticates the asset requirement of upcoming tasks to make float

decisions. In our proposed offloading strategy, a flat collaboration is conceded with nearby ESs and an

uplink collaborationwith the cloud server for offloading. Furthermore, theRFTRS system considered

the communication and computation delay by estimating queuing and local computing time before

the service offloading decision using a set of node-centric measurements, as well as the behavioural

association rate and adulation factor. The proposed system achieved an average of 0.89% of the

service offloading rate, with 39ms of delay over complex scenarios (using three servers with a 50%

service arrival rate). The simulation outcomes confirmed that our system stipulated the uncertainty

by explicitly analysing the errand execution with various parameters.
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In future, we would like to implement an adaptive mix-integer linear programming (MILP)

optimization strategy to increase the system performance to meet the delay-sensitive applications.

Subsequently, balancing the performance and convergence time represents a global challenge for

accelerating offloading decisions.
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