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Abstract 
 
Authorsipresent sufficienticonditions for theioscillation of the generalizediperturbed quasilinearidifferenceiequation  

 1
(( 1) ) (( 1) ) (( 1) ) ( , ( )) = ( , ( ), ( ))a x i v x i v x i F x i v x i G x i v x i v x i

 
                 

 where 0 < <1 , [0, )x  and 
x

i x
 

   
 

. Examplesiillustrates the importanceiof our results are alsoiincluded. 

 
Keywords: Generalizedidifference equation; Oscillation; iQuasilinear,  

 

1. Introduction 

Difference equations represent captivating mathematical field, has 
rich field of the applications in such diverse disciplines as popula-
tion dynamics, operations research, ecology, economics, biology 

etc. For thelbackgroundlof differencelequations and its 
applicationslin diverselfields withlexamples, see [1]. The study of 

difference equations is based on the operator   defined as 

( ) = ( 1) ( ), [0, ).u x u x u x x      

Thoughlmany authors [1],[16] have discussed the definition of   
as  
 

( ) = ( ) ( ), (0, ),u x u x u x      (1) 

 
no notable progress have been taken on this line. Butlin [13] the 

authors took up the definition of   as given in (1), and given 
many important results and applications. They labeled the operator 

  defined by (1) as   and its inversely 1 , many interesting 

results in number theory were obtained. Qualitativelproperties like 
rotatory, expanding, lshrinking, spiral and web like were estab-

lished by extending theory ofl   to complex function, for the 

solutions of difference equations involving   in [2-15, 17-21]. 

In the sequel, in this paper we will be considered the generalized 

perturbed quasi linear difference equation for [0, )x    

 1
(( 1) ) (( 1) ) (( 1) )a x i v x i v x i

 
          

 

( , ( )) = ( , ( ), ( ))F x i v x i G x i v x i v x i        (2) 

 

where 0 < <1 , ( )a x i  is an eventually positive real valued 

function, land   is the generalized forward difference operator 

defined as ( ) = (( 1) ) ( )v x i v x i v x i      . 

By alsolution of (2), we mean a nontrivial real valued function 

( )v x i  satisfying (2) for [0, )x  . A solution ( )v x i  is said 

to be oscillatory if it is neither eventually positive nor negative, 
and non oscillatory otherwise. 

2. Main Results 

In this paper we assume that there exist real valued functions 

( )q x i , ( )p x i  andla function :f R R  such that 

(i).   ( ) > 0vf v  for all 0v  ;  

(ii).   ( ) ( ) = ( , )( )f v f w g v w v w   for , 0v w  , where g  is a 

nonnegativelfunction; land  

(iii).   
( , )

( )
( )

F x i v i
q x i

f v i

 
 


, 

( , , )
( )

( )

G x i v j w i
p x i

f v i

  
 


 for , 0v w  .  

Thelfollowing conditionslare usedlthroughout thislpaper:  
 

1/

1
= ,

(( 1) )a x i


 
  (3) 

 

 
1/ 1/

< , < forall > 0
( ) ( )

dx dx

f x f x  


 


    (4) 

 

 0

=
0

inf ( ( ) ( )) 0 for all large ,lim

x

x r x

q r i p r i x


     (5) 

 

1/ 1/0 0
< , < for all > 0,

( ) ( )

dx dx

f x f x

 

 




    (6) 
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=

0

1
( ( ) ( )) =

( ) ( )

r

s x

N
q s i p s i

a r i a r i

 
     

   
   (7) 

 
forlevery constantlN, 

=
0

( ( ) ( )) =limsup
x

x r x

q r i p r i


    for allllarge 
0 ,x  (8) 

 

=
0

( ( ) ( )) =limsup
x

x r x

r q r i p r i


     forlall large 
0 ,x  (9) 

 

0( ( ) ( )) ( , ) = whereq x i p x i R x i x i        

0

=
0

1
( , ) = ,

(( 1) )

x

r x

R x i x i
a r i

 
 

  (10) 

 

 
1

< ,
( ( 1) )a n i


 

  (11) 

 

 
0( ( ) ( )) ( , ) = whereq x i p x i T x i x i       (12) 

 
1

0 0

=
0

1
( , ) = (( 1) , ) = ,

(( 1) )

x

r x

T x i x i R x i x i
a r i



    
 

  

 
1

= ,
(( 1) )a x i


 

  (13) 

 

( )
1 for 1.

(( 1) )

a x i
x

a x i


 

 
 (14) 

 

Theorem 1 Supposal 1   and (5)-(7) hold. Then,  all solutions of 

(2) are oscillatory.  

Proof. Suppose that ( )v x i  is alnonoscillatory solution of (2), 

say, ( ) > 0v x i  for 0 1k k  . Since (5) holds, ( )v x i   does 

not oscillate. Welbegin withlthe followinglidentity  
 

1(( 1) ) | (( 1) ) | (( 1) )

( (( 1) ))

a x i v x i v x i

f v x i

         
  

  
 

( , ( ), ( ( ))) ( , ( ))
=

( ( )) ( ( ))

G x i v x i f v x i F x i v x i

f v x i f v x i

     


 
 

2(( 1) ) ( ( ), (( 1) ))( (( 1) ))

( (( 1) )) ( ( ))

a x i g v x i v x i v x i

f v x i f v x i

       


  
 

1| (( 1) ) |v x i       (15) 

 
whichlimplies  
 

1(( 1) ) | (( 1) ) | (( 1) )

( (( 1) ))

a x i v x i v x i

f v x i

         
  

  

 

( ) ( ).p x i q x i     (16) 

 

Case 1. Suppose that ( ) 0v x i    for 1 0x x x  . Summing 

(16) from 1( 1)x   to x  gives  
1

( ) ( ) ( )

( ( ))

a x i v x i v x i

f v x i

 
    


 

1

1 1 1

1

= 1
1

( ) ( ) ( )

( ( ))

( ( ) ( ))
x

r x

a x i v x i v x i

f v x i

q r i p r i

 



    




   

1
( ) ( )

( ( )) ( )

v x i v x i N

f v x i a x i

 
   


 

 

 

= 1
1

1
( ( ) ( ))

( )

x

r x

q r i p r i
a x i 

   


  (17) 

 

where 1

1 1 1 1= ( ) | ( ) | ( ) / ( ( ))X a x i v x i v x i f v x i       . 

Again we sum (17) from 
1( 1)k   to k , to obtain  

 
1

= 1
1

( ) ( )

( ( ))

x

r x

v r i v r i

f v r i

 



   


  (18) 

 

= 1 = 1
1 1

1
( ( ) ( )) .

( ) ( )

x r

s x s x

N
q s i p s i

a r i a r i 

 
     

   
   

By (7), the right side of (18) tends to   as x  where as the 

left side is nonnegative. 

Case 2. Suppose that ( ) < 0v x i   for 1 0x x x   . Then, lfrom 

(18) welfind 
 

= 1 = 1
1 1

1
( ( ) ( ))

( ) ( )

x r

r x s x

N
q s i p s i

a r i a r i 

 
     

   
    

= 1
1

| ( ) |

( ( ))

x

r x

v r i

f v r i





 



  (19) 

 

1/
= 1

1

| ( ) |

( ( ))

x

r x

v r i

f v r i






  
  

  
  

( 1)
1

1/( 1) ( )

v x

v x

du

f u









 
  
 
  

( 1)
1

1/0
.

( )

v x du

f u





 
  
 
  (20) 

 
By (7), the left side of (20) tends to   asl x  where as the 

right side is finite by  (6).  

 

Theorem 2 Suppose (( 1) ) 1a x i   , 1  land (4), (5), (9) 

hold.  Then all solutions of (2)  are oscillatory.  

Proof. Assume that ( )v x i  is a nonsocial atory solution of (2), 

say, ( ) > 0v x i  for 0 1x x  . Since (5)  holds,  we see that 

( )v x i   does not oscillate. 

Welbegin withlthe followinglidentity  
1( ) | (( 1) ) | (( 1) )

( ( ))

x i v x i v x i

f v x i

        
  

 
 

( ) ( , ( ), ( ( )))
=

( ( ))

x i G x i v x i f v x i

f v x i

    


 

1( ) ( , ( )) | ( ) | ( )

( ( )) ( (( 1) ))

x i F x i v x i v x i v x i

f v x i f v x i

       
 

  
 

2

1

( ) ( (( 1) ), ( ))( ( ))

( ( ))

| ( ) |

( (( 1) ))

x i g v x i v x i v x i

f v x i

v x i

f v x i

 

     




 


 

 

Which give rise to  
1( ) | (( 1) ) | (( 1) )

( ( ))

x i v x i v x i

f v x i

        
  

 
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1| ( ) | ( )

( )( ( ) ( )) .
( (( 1) ))

v x i v x i
x i p x i q x i

f v x i

    
     

 
(21) 

 

Case 1. Suppose that ( ) 0v x i    for 
1 0x x x  . Summing 

(21) from 
1( 1)x   to x  gives  

1 1

= 1 11

(( 1) )( ( ))
( )( ( ) ( ))

( (( 1) ))

x

r x

x i v x i
r i q r i p r i

f v x i





   
    

 
  

 
= 1

1

(( 1) )( ( )) ( ( ))

( (( 1) )) ( (( 1) ))

x

r x

x i v x i v r i

f v x i f v r i

 



     
 

   
  

1 1 1

= 11 1

(( 1) )( ( )) ( ( ))

( (( 1) )) ( (( 1) ))

x

r x

x i v x i v r i

f v x i f v r i

 



     
 

   
  

1 1

1/
= 11 1

(( 1) )( ( )) ( )

( (( 1) )) ( (( 1) ))

x

r x

x i v x i v r i

f v x i f v r i







      
   

     
  

( 1)
1 1

1/( 1)
11

(( 1) )( ( ))
.

( (( 1) )) ( )

v x

v x

x i v x i du

f v x i f u









    
   

   
  (22) 

 
By  (9), the left side of (22)  tends to   as x  whereas the 

right side is finite by  (4). 

Case 2. Suppose that ( ) < 0v x i   for 1 0k k k   .  Condition 

(21) implies the existence of an integer 2 1x x  such that  

 

2

= 1
1

( )( ( ) ( )) 0, 1.
x

r x

r i q r i p r i x x


        (23) 

 

Multiplying l  (2) by x i land using l (iii), welobtain  
1( )(| (( 1) ) | (( 1) ))x i v x i v x i         

( ) ( ( ))( ( ) ( ))x i f v x i p x i q x i       

 Which on summing by parts from 2( 1)x   to x  provides  

1(( 1) ) | ( ) | ( )x i v x i v x i        

1

2 2 2(( 1) ) | ( ) | ( )x i v x i v x i         

1

= 1
1

= 1
1

| ( ) | ( )

( )( ( ) ( ))

x

r x

x

r x

v r i v r i

r i q r i p r i

 





    

    




 

1

2 2 2

1

= 1
1

= (( 1) ) | ( ) | ( )

| ( ) | ( ) ( (( 1) ))
x

r x

x i v x i v x i

v r i v r i f v x i











     

       

= 1
1

( )( ( ) ( ))
x

r x

r i q r i p r i


      

= 1 = 1
1 1

( ( )) ( )( ( ) ( ))
x r

r x s x

f v r i s i q s i p s i
 

 
       

  
   

1

2 2 2= (( 1) ) | ( ) | ( )x i v x i v x i        

1

= 1
1

= 1
1

| ( ) | ( )

( (( 1) )) ( )( ( ) ( ))

x

r x

x

r x

v r i v r i

f v x i r i q r i p r i

 





    

      




 

= 1
1

( (( 1) ), ( )) ( )
x

r x

g v r i v r i v r i


       

= 1
1

( )( ( ) ( ))
r

s x

s i q s i p s i


 
     
  
  

1

2 2 2(( 1) ) | ( ) | ( )x i v x i v x i         

Where we have also used  (23) in the last inequality. It 
followslthat  

 
1/

2 2

1/

(( 1) ) | ( ) |
( ) ,

(( 1) )

x i v x i
v x i

x i





    
  

 
 (24) 

 

For 
2 1.x x    Once again we sum (24) from 

2( 1)x   to x  to 

get  

 

2(( 1) ) (( 1) )v x i v x i      

1/

2 2 1/
= 1

2

1
(( 1) ) | ( ) | .

(( 1) )

x

r x

x i v x i
r i






    
 

  (25) 

 
The right side of (25) tends to   as x , this contradicts the 

assumption that ( )v x i  is eventually positive.  
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