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Abstract. This paper  is imposed an oscillatory behavior of nonlinear delay differential 

equation (NDDE). In particular, the main results got improve those studied in the literature 

survey. A variety of oscillatory behaviorsare given. 

1.  Introduction 

In this research, there has been an involving importance on the oscillatory behavior of NDDE. For example, see 

the recent papers [1] – [15]. In this paper, we discuss our attention of NDDE of the form

   
'

0,p t   (A)     

where      
1

' ' , .x t x t f x t


    


        

Here we will study the properties of hypotheses (H1) - (H5): 

(H1) 1      is a real constant; 

(H2)     ;0,,0  tptCp  

(H3)    1

0 , ,C t  lim
𝑡→∞

𝑥   ; t  

(H4)   ,, Cf f is non-decreasing o        ,,00,,,, 1  MMCf

 0 0.for x t     

(H5)       1 ,xC T   The equation of (A) we assume    1

0, , .x xx t C T T t     which has the 

hypotheses (H5) and satisfies (A) on  , .xT   Hence we obtain the result of (A) that satisfy 

  sup : 0 .xx t t T for all T T      The condition  
0

p s ds



  is oscillatory for the equation of 

(A). This paper is to discuss oscillatory results that are consider for ,2  equation (A) for the NDDE                              

   
'

0,p t    (1) 

where    ' ' .x t x t    
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2. Main Results of NDDE 

In this section, we will prove the main results of this research work. 

 

Theorem 2.1Let .2 Let   'f x t  be increasing open interval  t ,   and decreasing open 

interval   .0,,  tt Let us assume that  

   
0

p s f c s ds


     for all  c   0                                       (2) 

  And moreover 

   
 

 

'

2

'

0

0
x t

x t p s ds for some
f s


 



  
     

    
  (3) 

Then equation (1) is oscillatory. 

Proof :Assume that Equ .(1) has a positive solution of   .x t      Then 

    .
'

0 tp (4) 

Hence   is decreasing. Therefore, either    ' '' 0, ' 0.x t or x t           since 

0 >  
'

2 ,    

We assume that  '' 0.  Then yields .as t   This is a contradiction. So we conclude that 

0, ' 0, '' 0       and  

   
'

2
' p t    

 
.                                                                                        

We define               
 

2
'

y t





  (5) 

Then    0y t    and 

 
   

'
2

3

'
''

2y t


 
 

 
    -  

    
2 2'

2

' 'f  


 

              =   2        
  

2'
2 '' f

y t p t y t
 

  
 

    (6) 

 We declare that ' 0 .as t   To prove it is contradiction, that is ' 2 , 0.c as t c     Then 

' 2c  that on integration implies 1t to t  

 1 12c t t ct     (7) 

We get (4) from 1t to  t and substitute (7) 

           
1 1

2 2' '

t t

t t

p s f x s ds p s f c s ds                 

Putting t  we have 

     .

1




dsscfsp
t

  

It contains that ' 0 .as t   Hence , for any 0  there exists a 1t such that 12 '. .t t    

Integrate from ttot1  we have   
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 1 1 2 1,
2

t t t t t t


        (8)            

 '' f t       

Conversely since 
'
is decreasing and 

.'  tas0
 

It  consider that   2' '' '   
(9) 

Equating (8) and (9) substitute with (6) we have 

     
 

 
'

' 2 2

2

''
2

f t
y t p t y t y t

  
   

 

       
 

               =  
 

 
    

2
' 2

2

22 '
'

' f t
p t y t

f t f t

    
 

    

           
          

(10) 

        Integrating the above inequality from 2t to  t   we conclude in the point of (3) that  y t    as 

t . This is a contradiction. Hence the proof is complete. 

For   2 theorem 2.1 gives. 

Corollary 2.1 Let   'f x t  be increasing on  , 0 and decreasing on  0, , 0.t   Let us consider 

that (2) holds for any 0c  and 

   
 

   

'

'

0

x s
x s p s ds

x s f s




 

  
    

     
 for   some   .0 (11)         

Then we have 

   
'

0p t   (12)      

is oscillatory 

 

Theorem 2.2 Let .2 Let  'f    be decreasing on  , 0  and increasing on  0, , 0.t   Let us 

consider that (2) holds for any .0c  If   

       2

0

' 0.x s p s M x s ds for some M  


      (13)   

Then Eqn. (1) is oscillatory. 

Proof:     Let   M > 0.   In theorem 2.1, we prove that ' 0 ,   

0 0 .and as t       Then there exists c > 0 such that .c   If  y t  be defined by (5), 

then   0y t    and (6) is determined. It is uncomplicated to verify that 

'      
1' 2' 'f c  


 (14) 

Since ' 0    then for any 0 we have ' .  see from (14)  that 

 

     
2 2' 1' ' 'f c K      

Where   is taken such that    
1

' 1 21 .f c M and K f    We have 

         ' 2 2'
2

'
y t p t y t K y t

 
   

 
        
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                    =     -    
2 2

2

2 2

'
p t K y t

K K

  
 



  
     

   

 

 2 1
'.p t

K
    (15) 

Integrate from ,ttot1  and then putting .t This is contradiction. The proof is over. 

 

For 2    theorem 2.2 gives 

Corollary 2.2 Let  .2 Let us assume that  

 

   
2

0

x s p s ds


   (16) 

and for some   M  > 0 

      2 1

0

'x s p s Mx s ds  



     (17) 

Then we have 

   
'

0p t     (18)  

is oscillatory. 
 

Theorem 2.3            
Let us assume that  

   sgn ( ) sgn ( ) , 0h f       (19)                 

and (H1 –H5) holds. Then Eqn. (1) is oscillatory. 

Proof:     Let us consider that   is a positive solution of Eq. (1) . Then ' 0, '' 0    and 

        
'

2
' .p t h p        

Let  y t   be defined by (5) . Then   0y t      and 

       
 
 

'

' 2
''

2
f

y t y t p t y t
f

 
   

 
       

 The proof is same to the previous proof and so it can be absent. 

 

Example 1   Consider the second order NDDE 

   '' ln 1 sgn 0.p t     (20)    

From Eq.(20), 

    
0

ln 1 0p s c s ds for any c


    and 

   
 

 
 '

0

1
0.

s
x s p s x s ds for some

x s


  



  
        

  

We take  , .
4

t p t t therefore we get      

'

'1 1 1 33
12 33 arctan 0.

2 2 2 2 2 4

t te t t e t
 

   
      

                     
 

Hence, equation (1) is oscillatory. 
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Remark 1 Let (H4 and H5) and (19) holds.  We consider that all results of Theorem 2.1 is verified.  Then Eqn. 

(1) is oscillatory. It gives the same oscillatory criteria proof to Theorem 2.2 and 2.3 for (1) with .2  

   It is an open problem how to conclude oscillatory behavior similar to Theorem 2.1 to2.3 for Eqn. (1) with 

.2 The following theorem gives a different result. 

 

Theorem 2.4  

We assume that 

 

 
0

1f
t

dx







  and 

   
0

1
' .

t s

x s p x dx ds
  

  
 

    Then Eq.(1)   is oscillatory. 

Proof:    

  Let us assume that  is a positive solution of (1). Here ' 0 '' 0.and   Integrate (1) from t to s we have 

           ' ' .

s s

t t

p x f dx f p s ds
         

Using conditions of   andtu '
putting s we have 

       ' '' .
t

f p s ds
   



   (21)                                                                             

It contains from (21) that  

 
 

12

1
'

t

p x dx
f










 
  

 
  

integrate from ttot1   gives 

 
   

1 1

1

'

1
.

t

t s

ds
x s p x dx ds

f s

 


  



 

 

 
   

 
   (22) 

The left side of the inequality (22) is bounded; on the other hand the right side of the inequality (22) as  .t    

Hence the proof is complete. 

Remark 2:  Theorem 2.4 cannot be developed to equation (1) with f    x x t      and  .1

For
2

1
   theorems 2.4 gives: 

Let us assume that  

 0

2

t

du

f 



 


  

and 

 
0

2

'
t s

p x dx ds
  

 
 

  . 

Then Eqn. (1) is oscillatory. 
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