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Abstract Nano crystalline materials are an area of interest for the researchers all over the world

due to its superior mechanical properties such as high strength and high hardness. But the cost

of nano-crystals is high because of the complexity and cost incurred during its production. This

paper focuses on the application of Taguchi method with Fuzzy logic for optimizing the machining

parameters of nano-crystalline structured chips production in High Carbon Steel (HCS) through

machining. An orthogonal array, multi-response performance index, signals to noise ratio and

analysis of variance are used to study the machining process with multi-response performance char-

acteristics. The machining parameters namely rake angle, depth of cut, heat treatment, feed and cut-

ting velocity are optimized with considerations of the multi-response performance characteristics.

Using the Taguchi and Fuzzy logic method optimum cutting conditions are identified in order to

obtain the smallest nanocrystalline structure via machining.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanocrystalline material stands out in the material science
domain due to its superior mechanical properties like higher

strength, hardness, ductility, etc. For synthesizing the
nanocrystalline material bottom-up approach and top-down
approach are used. Severe Plastic Deformation (SPD) is one
of the top down approach for synthesizing the materials. The
SPD breaks down the microstructure into finer and finer

grains. The use of the SPD for the processing of bulk ultra
fine-grained materials is now widespread [1]. The interest in
ultra-fine grained materials which exhibit significantly
enhanced mechanical properties has been developed and the

attention has been focussed on the application of SPD in the
view of achieving microstructure refinement in metals and
alloys. A commonly used approach for refinement of

microstructure in metals and alloys is the SPD [2]. The SPD
generally refers to a class of processes wherein a material is
deformed to large plastic strains through the use of multiple
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passes of deformation. The SPD has become a preferred meth-
odology for producing bulk nanostructured material. The
Equal Channel Angular Pressing/Extrusion (ECAE), drawing,

rolling, or HPT, High Energy Ball Milling (HEBM) and
machining are some of typical SPD approaches existing today
to produce bulk nanocrystalline materials.

Top-down approach starts with materials that have conven-
tional crystalline microstructures. Typically in metals and
alloys, defects such as dislocations and point defects intro-

duced during SPD such as Mechanical Alloying (MA),
Equal Channel Pressing (ECAP), Equal Channel Angular
Extrusion (ECAE) and High-Pressure Torsional straining
(HPT) result in nanocrystalline structures [3,4]. In bottom-up

approach, materials are built up with atom by atom, molecule
by molecule or cluster by cluster from bottom such as Physical
Vapor Deposition (PVD) and Chemical vapors Deposition

(CVD). This method requires a highly complex and controlled
environment and hence it is very costly whereas top-down
approach requires no controlled environment and so its pro-

cessing cost is less. This research focuses on the SPD approach
for the production of nanocrystalline materials.

Brown et al. [5] demonstrated that the chips produced form

plain strain machining of a material exhibit nanocrystalline
structures and high hardness. Swaminathan et al. [3] have pro-
duced nanocrystalline metals and alloy chips by plain strain
machining. Swaminathan et al. [6] demonstrated that the chips

produced in the machining of a material experience very large
shear strains and so plane strain machining (2-D) can be an
attractive route for creating very large plastic strains in a single

stage of deformation thus overcoming the limitations of the
SPD process. Iglesias et al. [7] have defined that the chip for-
mation approach is a top-down approach and it is applicable

essentially to any metal or alloy, including high-strength
materials such as Ni-based alloys, stainless steels and Ti alloys.
Suryanarayana [8] has defined that nanocrystalline metals and

alloys of high strength can be formed through a normal
machining process. Ravi Shankar et al. [9] have identified that
the machining parameters such as rake angle, depth of cut,
speed influences the strain rate imposed by the cutting tools.

These studies suggest that machining is an attractive process
for producing nanocrystalline materials. Most of the existing
researchers have worked on plain strain machining. This

research work focuses on production of nanocrystalline
materials through normal oblique machining route. In this
experiment the machining parameters to be considered are

rake angle, depth of cut, feed, nose radius and cutting velocity.
However a great in-depth knowledge and experience is
required to find the optimal parameters and adding to that
numerous experiments are also need to be conducted.

Therefore to conduct the experiment, Taguchi method is
adopted which is a powerful tool for design of experiments
method using orthogonal arrays. It provides a simple, efficient

and systematic approach to optimize the parameters.
However, most published Taguchi applications have been
dealing with the optimization of a single performance charac-

teristic. But the problem still remaining is that of multiple per-
formance characteristics [10,11]. The theory of fuzzy logics,
initiated by Zadeh [12] proven to be useful for dealing with

uncertain and unclear information. In fact, the definition of
performance characteristics such as lower-the-better, higher-
the-better, and nominal-the-better contains a certain degree
of uncertainty and vagueness. So an optimization of the
multiple characteristics is done by fuzzy. In this study, a fuzzy
reasoning of the multiple performance characteristics has been
developed based on fuzzy logic and using that complicated

characteristics can be transformed into the optimization of a
single multi-response performance index (MRPI). In short,
the research work focuses on production of nanocrystalline

chips through oblique machining and optimizing the machin-
ing parameters.

2. Proposed multi-response performance index (MRPI) model

The experimental design methods were developed by Fisher
[13] to select and set the ranges of the control variables.

The classic experimental design requires conducting of
numerous experiments which further increases the overall
cost, complexity and time. The orthogonal arrays enable

the study of entire parameter space with less number of
experiments. The experimental results are then transformed
into signal-to-noise ratio that can be used to measure perfor-
mance characteristics deviating from the desired values.

Usually there are three categories of signal-to-noise ratio:
the lower-the-better, higher-the-better and nominal-the-bet-
ter. In this experiment microhardness has higher-the-better

characteristics and crystalline size has lower-the-better char-
acteristics. As a result improving one performance character-
istics may affect the other’s performance. Hence,

optimization of such multiple performance characteristics is
much more complex than optimization of a single perfor-
mance characteristic [14]. So Taguchi method with fuzzy
logic is used to investigate the multiple performance charac-

teristics in the machining process.
Firstly, the process parameters namely rake angle, depth of

cut, feed, nose radius and cutting velocity are selected and then

Taguchi’s L16 orthogonal array is created. Using the array
machining process is carried out and the outputs are taken.
Microhardness of the machined chips is measured using micro-

hardness tester and the values are converted to S/N ratio.
Crystalline sizes of the chips are analyzed using XRD method
and then converted to S/N ratio. In the Fuzzy logic system, the

calculated S/N ratios of both crystalline size and microstruc-
ture are converted into MRPI. From the MRPI response,
the optimum value for the machining parameters is found
out and finally image characterization of the chips is carried

out using Scanning Electron Microscope (SEM). The research
procedure methodology is shown in Fig. 1.

3. Methods

3.1. Experimental procedure

Foremost step is the machining process which is done with
CNC Fanuc lathe. Tungsten carbide coated tool is used for

this machining process with a negative rake angle [3].
High resolution FEG–SEM is used for characterization of

chips. For this analysis, the mounted specimens are etched.

The etchant is prepared as per the ASM (American Society
of Metals) standards i.e. 45 ml of Hydrochloric acid, 15 ml
of Nitric acid and 20 ml of methanol. The etching time is
10–30s.

The following procedures are adopted to characterize the
samples
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Figure 1 Research procedure methodology of MRP.
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� The polished mounted chips are etched as per the ASM
standards.
� The etched specimen is coated with platinum with the help

of platinum coater in order to make the surface conductive.
� Then the coated specimen is placed in the specimen holder
of the FEG–SEM and vacuum is created.
� The images of the specimen are captured at different

magnifications.
� From the captured image the average crystalline size is esti-
mated based on the scale. Fig. 2 shows the flow diagram of

the image capturing procedure.
Figure 2 FEG–SEM
The machined chips are then mounted on a Rigaku Ultima
X-ray diffractometer to measure the crystalline size. Then the
microhardness of the polished samples was measured by inden-

tation with a Vickers indenter with a 200 g load and 30 s dwell
time on a Mitutoyo micro hardness tester. The mounted chips
were analyzed using XRD and SEM. X-ray diffraction pat-

terns were recorded using Rigaku Ultima III XRD, in the 2h
range from 30� to 80�. Scherer equation has been applied to
estimate the size of crystallites [15].

T ¼ kk
B cos h

ð1Þ

where T is the crystalline size, k is a constant that varies with
the method of taking the breath, k is the wavelength of incident

X-rays (k = 1.5406 Å), B is the width of the peak at half maxi-
mum intensity of a specific phase (hkl in radians), h is a Bragg
angle.

3.2. Orthogonal array experiments

In order to follow the Taguchi method, it is important to fix
the parameters that influence the machining output to a

greater extent. From the literatures and previous work [9],
the important machining parameters considered are (1) rake
angle, (2) depth of cut, (3) heat treatment, (4) feed, (5) cutting

velocity for which the output response used to measure the
machinability is crystalline size and micro hardness.
Different levels of machining parameters are chosen to deter-
mine the optimal machining parameters to get the desired out-

put response (i.e.) higher hardness and lower crystalline size.
All the machining parameters and their corresponding levels
are shown in Table 1.

The appropriate orthogonal array for this experiment
depends upon the degrees of freedom. The degrees of freedom
is defined as the number of comparisons between process

parameters that must be made to determine which level is
– flow diagram.



Table 1 Machining parameters and their levels for HCS.

Symbol Parameter Levels

Level 1 Level

2

Level

3

Level

4

A Rake angle

(degree)

�6 �10 �14 �18

B Depth of cut (mm) 0.2 0.4 0.6 0.8

C Heat treatment Annealed – – –

D Feed (mm/rev) 0.1 0.15 0.20 0.25

E Cutting velocity

(m/min)

20 40 60 80
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better and specifically how much better it is. In this experiment
there are fifteen degrees of freedom. After determining the

degrees of freedom, the next step is to fix the orthogonal array.
An L16 orthogonal array is considered with five columns and
sixteen rows and it is shown in Table 2. The array deals with

a three level process parameters. Every machining parameter
is assigned to a column and every row indicates the parametric
combination.

3.3. Signals-to-noise (s/n) ratio

In Taguchi method, Taguchi recommends the use of loss func-
tion to measure the deviation between the experimental value

and the desired value which is further transformed into sig-
nal-to noise ratio (S/N). There are three different categories
of the performance characteristics in evaluation of the S/N

ratios to obtain the optimum parameters setting. i.e., the
lower-the better, the higher-the better and the nominal-the bet-
ter. To obtain optimal machining performance, the minimum

crystalline size and the maximum micro hardness are desired.
Therefore, the lower-the-better crystalline size and the
higher-the-better micro hardness should be selected.

(1) Loss function Lij of the lower the better performance
characteristic can be expressed as
Table 2 Experimental layout using L16 orthogonal array.

Experiment

number

Rake

angle

(degree)

Depth

of cut

(mm)

Heat

treatment

(mm)

Feed

(mm/

rev)

Cutting

velocity

(mm/min)

1 1 1 1 1 1

2 1 2 1 2 2

3 1 3 2 3 3

4 1 4 2 4 4

5 2 1 1 4 3

6 2 2 1 3 4

7 2 3 2 2 2

8 2 4 2 1 1

9 3 1 2 2 4

10 3 2 2 1 3

11 3 3 1 4 2

12 3 4 1 3 1

13 4 1 2 3 2

14 4 2 2 4 1

15 4 3 1 1 4

16 4 4 1 2 3
Lij ¼
1

n

Xn
i¼1

y2i

" #
ð2Þ

Loss function Lij of the higher the better performance char-
acteristic can be expressed as

Lij ¼
1

n

Xn
i¼1

1

y2i

" #
ð3Þ

where n represents the number of repeated experiments, Lij is

the loss function of the ith performance characteristic in the
jth experiment, and yijk is the experimental value of the ith per-
formance characteristic in the jth experiment at the kth test.

(2) The loss function is further transferred into an s/n ratio.
The S/N ratio Zij for the ith performance characteristic
in the jth experiment can be expressed as

Zij ¼ �10log10ðLijÞ ð4Þ
3.4. Fuzzy logic unit

Fuzzy logic was developed by Prof. Zadeh [12] to deal with

vagueness, uncertainty and imprecision in decision making
process for real world applications. A fuzzy system is a system
of variables and there are input and output linguistic variables.
The fuzzy logic approach is based on the definition of a fuzzy

sets, linguistic variables and fuzzy If-then rules. It consists of
three basic elements: fuzzification, inferencing, defuzzification
and are described as follows.

3.4.1. Fuzzification

Fuzzification is a process which converts input data to degrees
of membership by a lookup in one or several membership func-

tions [16]. Membership functions are numerical functions
corresponding to linguistic terms. Triangular, Trapezoidal
and bell shaped membership functions are commonly used

for engineering applications. Among which triangular mem-
bership functions is chosen for this research work.
Triangular membership functions require less computational

process, most economical one and well suited for real time
applications [17]. The triangular membership function can be
represented as follows,

lðxÞ ¼

0 for x < a
x�a
b�a for a < x < b
c�x
c�b for b < x < c

0 for c > 0

8>>><
>>>:

where a, b, and c indexes show the crisp values of triangular
membership functions.

3.4.2. Fuzzy inferencing

Fuzzy inferencing is the process of formulating the relationship

between given input and output variables based on their lin-
guistics terms. Membership functions, If-Then rules and logi-
cal operations are involved in the process of fuzzy
inferencing. The rules are created by analyzing experimental

data along with membership functions of each linguistic
variable.



Table 3 Experimental results and S/N ratio.

Trail no. Micro hardness (VHN) S/N ratio (dB) Crystalline size (nm) S/N ratio (dB)

Reading 1 Reading 2 Reading 1 Reading 2

1 546.5 650.5 55.44 28.53 32.64 29.73

2 630.5 662.5 56.20 28.52 32.10 29.65

3 672.5 655.5 56.44 42.85 42.76 32.63

4 683 635.5 56.36 34.97 28.53 30.08

5 509 545.5 54.42 64.20 51.32 35.29

6 488 462 53.052 73.39 53.32 36.14

7 738.5 747.5 57.42 45.28 42.81 32.88

8 877 751.5 58.14 36.67 64.20 34.37

9 750.5 774.5 57.64 32.09 42.87 31.56

10 804 834.5 58.26 51.35 36.67 32.99

11 614.5 695 56.27 32.10 51.33 32.63

12 777.5 771.5 57.78 42.87 61.38 34.48

13 703 694.5 56.89 54.38 64.19 35.49

14 819.5 779.5 58.05 30.73 32.10 29.94

15 559 502.5 54.46 42.78 42.85 32.63

16 779 768 57.77 32.11 32.09 30.13

Figure 3 Membership function for the micro hardness.
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3.4.3. Defuzzification

The output values which are obtained on analyzing are in the
form of linguistic or symbolic value. Conversion of this value
into crisp data is called defuzzification. In literatures, there are

many types of defuzzification methods are described such as
center of gravity/area, center of mass, center of largest area,
first of maxima, middle of maxima, and height [17]. The

defuzzification method derives a crisp output value that best
represents the linguistic result obtained from the fuzzy infer-
ence process.
Figure 4 Membership function for the crystalline size.
3.5. Analysis of variance (ANOVA)

The technique of ANOVA is used to establish the relative sig-
nificance of the individual processing factors and the interac-
tion between them. The ANOVA is based on the variance

(V), the degree of freedom (DOF), the sum of the squares
(SS), and the percentage of contribution to the total variation
(C) [18].

4. Analysis of experimental results

The experimental results based on the experimental scheme are

tabulated in second and fourth column of Table 3. The
microhardness and crystalline size S/N ratio are calculated
using Eqs. 2–4 and the obtained values are tabulated in third

and fifth column of Table 3.

4.1. Construction of fuzzy logic model

4.1.1. Fuzzification

The proposed model was developed using the FIS Editor
graphical user interface in the Fuzzy Logic Toolbox within

the framework of LABVIEW� V10.0. S/N ratios are converted
Figure 5 Membership function for the MRPI.



Table 4 Results of MRPI.

Trail no. MRPI Trail no. MRPI

1 0.4430 9 0.6508

2 0.5244 10 0.6781

3 0.5481 11 0.5319

4 0.5541 12 0.5146

5 0.3343 13 0.4327

6 0.2549 14 0.6912

7 0.6199 15 0.3724

8 0.5408 16 0.6646

Table 5 Response table for MRPI.

Machining parameter Level 1 Level 2 Level 3 Level 4

Rake angle 0.5149 0.4374 0.5938 0.5402

Depth of cut (mm) 0.4295 0.5371 0.4128 0.5660

Heat treatment 0.4550 0.5703 – –

Feed (mm/rev) 0.5085 0.6149 0.4375 0.525

Cutting velocity (m/min) 0.5671 0.5074 0.5562 0.4555

Mean 0.6592

0.35

0.4

0.45

0.5

0.55

0.6

0.65
A (Rake angle)

-6 -10 -14 -18

Figure 6 MRPI response graph for Rake angle.

0.35

0.4

0.45

0.5

0.55

0.6

B (Depth of Cut)

0.2 0.4 0.6 0.8

Figure 7 MRPI response graph for depth of cut.

0.35

0.4

0.45

0.5

0.55

0.6
C (Heat Treatment)

Annealed Hardened

Figure 8 MRPI response graph for heat treatment.

0.35

0.4

0.45

0.5

0.55

0.6

0.65
D (Feed)

0.1 0.15 0.2 0.25

Figure 9 MRPI response graph for feed.

0.35

0.4

0.45

0.5

0.55

0.6

20 40 60 80

E (Cu�ng Velocity)

Figure 10 MRPI response graph for cutting velocity.
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to MRPI and are shown in Figs. 3–5. Here S/N ratios of crys-
talline size and microhardness are considered as inputs and

MRPI is considered as output. The input and output variables
are quantified by using linguistic terms. For this model input
variables are expressed into three fuzzy sets, namely low, med-

ium, and high. The output variable is expressed into five fuzzy
sets namely very low, low, medium, large and very large. In
this model triangular membership function is used for describ-
ing the inputs and outputs variables. The graphical representa-

tion of input and output variables membership functions is
depicted in Figs. 3–5.

4.1.2. Fuzzy inferencing

The next stage of the fuzzy logic is to construct the IF-THEN
rules to represent the relationship between input and output
variables based on the linguistic terms. In this model, nine

rules are written by using rule editor for the best fit of the
model.

4.1.3. Defuzzification

The last stage of fuzzy model is Defuzzification process. In this
model, center of area method is used for Defuzzification. The
developed fuzzy model provides the values of MRPI when

proper input data are fed into the model. The final values
for MRPI are shown in Table 4.



Table 6 ANOVA of HCS chip for crystalline size.

Factors Sum of squares DOF Variance Pure sum F-ratio Percentage contribution

Rake angle (degree) 35.96 3 11.99 32.17 9.51 44.40

Depth of cut (mm) 1.83 3 0.61 1.96 0.48 2.71

Heat treatment 0.03 1 0.03 1.23 0.02 1.70

Feed (mm/rev) 28.48 3 9.49 24.69 7.53 34.08

Cutting velocity 3.63 3 1.21 0.96 0.96 0.22

Table 7 ANOVA of HCS chip for micro hardness.

Factors Sum of squares DOF Variance Pure sum F-ratio Percentage contribution

Rake angle (degree) 6.34 3 2.11 6.00 19.18 18.59

Depth of cut (mm) 5.17 3 1.72 4.83 15.63 14.97

Heat treatment 11.10 1 11.10 10.98 100.90 34.05

Feed (mm/rev) 0.97 3 0.97 2.58 8.81 7.99

Cutting velocity (m/min) 2.17 3 2.17 6.18 19.72 19.16

Other factors 0.23 2 0.11 – – 5.24

Total 32.18 15 18.18 – – 100

Table 8 ANOVA of HCS chip for simultaneous optimization.

Factors Sum of squares DOF Variance Pure sum F-ratio Percentage contribution

Rake angle (degree) 215.157 3 71.719 199.77 14.0 32.550

Depth of cut (mm) 55.466 3 18.488 40.079 3.6 6.5330

Heat treatment 84.464 1 84.464 79.335 16.49 12.926

Feed (mm/rev) 149.693 3 49.897 134.307 9.74 21.884

Cutting velocity (m/min) 98.682 3 32.894 83.296 6.42 13.572

Other factors 10.257 2 5.128 – – 12.538

Total 623.722 15 262.58 – – 100

Figure 11 HCS chip SEM image of experiment trial 1.
Figure 12 HCS chip SEM image of experiment trial 2.
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Since we are using Taguchi’s orthogonal array for this
experiment, it is possible to separate the effect of each machin-

ing parameter on the MRPI at different levels. For example,
the mean of MRPI for rake angle at levels 1, 2, 3 and 4 can
be found out by averaging MRPI values from 1 to 4, 5 to 8,
9 to 12 and 13 to 16 respectively. For other parameters also

the same method of finding the average of each level can be
implemented. Then the mean MRPI at each level for the
different parameters is presented in Table 5 which is called

as response table, which also contains the mean of the MRPI.
The influence of each machining parameter can be more

clearly presented by means of MRPI response graph shown

in Figs. 6–10. Figs. 6–10 show the change in response when
a given factor moves from level 1 to level 4. Based on the
response graph and response table, the optimal machining



Figure 13 HCS chip SEM image of experiment trial 13.

Figure 14 HCS chip SEM image of experiment trial 14.
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parameters for the production of nanocrystalline structure in
HCS chips can be obtained. Basically larger MRPI value is

preferred and it was found that for experiment number 14
had the highest MRPI value. Therefore, experiment 14
machining parameter settings are optimal for attaining desired

multiple performances simultaneously among 16 experiments.
However the relative importance among the machining
parameters for the multiple performance characteristics still

needs to be analyzed, so that the optimal combinations of
Figure 15 HCS chip XRD
the machining parameter levels can be determined more
clearly. The relative importance among the factors can be ana-
lyzed through an analysis of variance (ANOVA).

4.2. ANOVA

Analysis of variance (ANOVA) is a collection of statistical

methods to analyze the difference between group means and
their associated procedures. The purpose of ANOVA is to
investigate which process parameters significantly affect the

performance characteristics. In Table 6, last column shows
the percent contribution (P) of each factor as the total varia-
tion, indicating its influence on the result. From the ANOVA

result, the depth of cut is the most significant factor affecting
the crystalline size. Rake angle, nose radius, feed and cutting
velocity are the least significant factors affecting the crystalline
size. In Table 7, the last column shows the percent contribution

(P) of each factor as the total variation, indicating its influence
on the result. From the ANOVA results, rake angle, feed and
nose radius are the most significant factors affecting the micro

hardness. Depth of cut and cutting velocity are least significant
factors affecting the micro hardness. From Table 8, rake angle,
feed and cutting velocity are most significant factors affecting

both the micro hardness and crystalline size whereas other fac-
tors are least significant factors affecting both the micro hard-
ness and crystalline size.

5. Image characterization of chips

FE-SEM image shows that the microstructure of the machined
HCS chips that are refined to sub-micron level due to large

strain deformation imposed by cutting tool at the cutting con-
ditions. In Equal Channel Pressing, Equal Channel Angular
Extrusion (ECAE) and High-Pressure Torsional straining

(HPT) processing methods materials microstructure is non
equiaxed structure whereas in this machining methods SEM
images show equiaxed nanocrystalline structure which

improves the mechanical properties of the materials. Some
sample XRD is shown in Fig. 15. From the XRD graph, peak
widths are measured. The measured peak width is substituted

in the Scherer equation and found the crystalline size. The
crystalline size of the chips which calculated from Scherer
image of experiment 12.
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equation is in submicron range. The crystalline size which is
calculated from XRD peak is validated by comparing the
approximate values estimated from the FE-SEM image using

the micron scale obtained. The FE-SEM and XRD images
of the samples for selected trials are shown in Figs. 11–15.

6. Conclusion

This paper has presented an application of fuzzy logic in the
Taguchi method for the optimization of machining parameter

for producing the nanostructure in HCS chips. The fuzzy
logic is used to eliminate the vagueness in the information
and produces the best machining conditions. The proposed

fuzzy Taguchi model is used to convert the complicated
multiple performance characteristics into the optimization
of single multi response performance index. As a result, the

optimization methodology developed in this research is useful
for enhancing the multiple performances characterizing in the
production of nanostructure in HCS chips. From the experi-
ence and knowledge gained through this study, the work can

be further extended to the low cost production of nano pow-
ders by high energy ball milling of the nano structured HCS
chips.
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