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Abstract: Let ( ) = + ∑ =f z z a zk n
k

n
n

2
be the sequence of partial sums of the analytic function ( ) = +f z z

∑ =
∞

a zn n
n

2
. In this paper, we determine sharp lower bounds for { ( )/ ( )}f z f zRe k , { ( )/ ( )}f z f zRe k , { ′( )/ ′( )}f z f zRe k

and { ′( )/ ′( )}f z f zRe k , where ( )f z belongs to the subclass � ( )μ α β, ,p q
m
, of analytic functions, defined by

Sălăgean ( )p q, -differential operator. In addition, the inclusion relations involving ( )N eδ of this generalized

function class are considered.

Keywords: analytic, univalent, (p, q)-differential operator, partial sum, inclusion relation

MSC 2020: 30C45, 30C50

1 Introduction and preliminaries

Let � denote the class of functions of the form

∑( ) = +
=

∞
f z z a z ,

n

n
n

2

(1.1)

which are analytic and univalent in the open disc � = { ∣ ∣ < }z z: 1 . We also denote � a subclass of �

introduced and studied by Silverman [1], consisting of functions of the form:

�∑( ) = − ≥ ∈
=

∞
f z z a z a z, 0; .

n

n
n

n

2

(1.2)

For functions �∈f given by (1.1) and �∈g given by ( ) = + ∑ =
∞

g z z b zn n
n

2
, we define the Hadamard

product (or convolution) of f and g by �( ∗ )( ) = + ∑ ∈=
∞

f g z z a b z z,n n n
n

2
.

We briefly recall here the notion of q-operators i.e. q-difference operator that plays vital role in the theory

of hypergeometric series, quantum physics and in the operator theory. The application of q-calculus was

initiated by Jackson [2] (also see [3–5]). Kanas and Răducanu [4] have used the fractional q-calculus operators
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in investigations of certain classes of functions which are analytic in�. For > >p q0, 0 the (p; q)-differential

operator of a function f, analytic in � is defined for a function �∈f is, by definition, given as follows [2]:

( ) = ( ) − ( )
( − )

( ≠ )D f z
f pz f qz

p q z
p q .p q, (1.3)

From (1.3), we have

∑( ) = + [ ]
=

∞
−D f z n a z1 ,p q

n

p q n
n

,

2

,
1 (1.4)

where

[ ] = −
−

[ ] =n
p q

p q
, 0 0.p q

n n

p q, , (1.5)

The twin-basic number is a natural generalization of q-number, that is

[ ] = −
−

( ≠ )n
q

q
q

1

1
, 1 ,q

n

(1.6)

which is sometimes called the basic number n.

One can easily verify that ( ) → ′( )D f z f zp q, as → −p 1 and → −q 1 . It is clear that q-integers and

( )p q; -integers differ, that is, we cannot obtain ( )p q; -integers just by replacing q by q
p
in the definition of

q-integers. However, (1.5) reduces to (1.6) for the case =p 1. Thus, we can say that ( )p q; -calculus can be

taken as a generalization of q-calculus. The ( )p q; -factorial is defined by

∏[ ] ! = [ ] ! ( ≥ ) [ ] ! =
=

n k n 1 , 0 1.p q

k

n

p q p q,

1

, , (1.7)

Note that → −p 1 the ( )p q; -factorial reduces to the q-factorial. Also, clearly

= [ ] ! = ! = [ ] =
→ → → →− − − −

n n n nlim lim and lim lim .
p q

p q
p a

p q
1 1

,
1 1

,

For details on q-calculus and (p, q)-calculus, one can refer to [2,6,7] and also references cited therein.

Recently for �∈f , Govindaraj and Sivasubramanian [8] defined Sălăgean (q)-differential operator and

further Kanas and Răducanu [4] defined and discussed Sălăgean (p, q)-differential operator as follows:

� �

�

� �

� � �

� ∑

( ) = ( )
( ) = ( )
( ) = ( ( ))

( ) = + [ ] ( ∈ ∈ )

−

=

∞

f z f z

f z z f z

f z z f z

f z z n a z m z

,

,

,

, .

p q

p q p q

p q
m

p q
m

p q
m

p q
m

n

p q
m

n
n

,
0

,
1

,

, , ,
1

,

2

, 0

(1.8)

It is interesting that one can observe

� �� � ∑( ) = ( ) = + ( ∈ ∈ )
( )→( ) =

∞

− −
f z f z z n a z m zlim , ,

p q
p q
m m

n

m
n

n

, 1 ,1
,

2

0 (1.9)

the familiar Sălăgean derivative [9].

For ≤ ≤μ0 1, ≤ <α0 1, ≥β 0 and �∈m 0, we let � ( )μ α β, ,p q
m
, be the subclass of � , consisting of

functions of the form (1.1) and satisfying the analytic criterion

R








 �

�

�

�

�

( )
( − ) + ( )

− >
( )

( − ) + ( )
− ∈

+ +f z

μ z μ f z
α β

f z

μ z μ f z
z

1 1
1 , ,

p q
m

p q
m

p q
m

p q
m

,
1

,

,
1

,

(1.10)

where � ( )f zp q
m
, is given by (1.8). We further let �� � �( ) = ( ) ∩μ α β μ α β, , , ,p q

m
p q
m

, , .
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By taking =μ 1 we get �� ���( ) ≡ ( )α β α β1, , ,p q
m

p q
m

, , studied by Kanas and Răducanu [4]. Further by

specializing the parameter =μ 0, we define the following new subclass:

Remark 1.1. For =μ 0, �∈m 0, ≤ <α0 1 and ≥β 0, let �� ���( ) ≡ ( )α β α β0, , ,p q
m

p q
m

, , be the subclass

of � , consisting of functions of the form (1.1) and satisfying the analytic criterion

R








 �

� �( )
− >

( )
− ∈

+ +f z

z
α β

f z

z
z1 , ,

p q
m

p q
m

,
1

,
1

(1.11)

where � ( )f zp q
m
, is given by (1.8).

Remark 1.2. For = =μ β0, 0, ≤ <α0 1 and �∈m ,0 let �� 	( ) ≡ ( )α α1, , 0p q
m

p q
m

, , be the subclass of � ,

consisting of functions of the form (1.1) and satisfying the analytic criterion

R








 �

� ( )
> ∈

+ f z

z
α z ,

p q
m
,
1

(1.12)

where � ( )f zp q
m
, is given by (1.8).

Remark 1.3. As ( )→( )− −lim p q, 1 ,1 , � ( )f zp q
m
, reduces to various interesting subclasses (as mentioned earlier)

satisfying the analytic criterion

R








 �

�

�

�

�

( )
( − ) + ( )

− > ( )
( − ) + ( )

− ∈
+ f z

μ z μ f z
α β

f z

μ z μ f z
z

1 1
1 , ,

m

m

m

m

1

(1.13)

where � ( )f zm is given by (1.9).

2 Basic properties

In this section, we obtain the characterization properties for the classes �� ( )μ α β, ,p q
m
, .

Theorem 2.1. A function ( )f z of the form (1.1) is in � ( )μ α β, ,p q
m
, if

∑[ ] ([ ] ( + ) − ( + )) ∣ ∣ ≤ −
=

∞
n n β μ α β a α1 1 ,

n

p q
m

p q n

2

, , (2.1)

where ≤ ≤μ0 1, ≤ <α0 1, ≥β 0 and �∈m 0.

The result is sharp for the function

( ) = − −
[ ] ([ ] ( + ) − ( + ))

f z z
α

n n β μ α β
z

1

1
.n

p q
m

p q

n

, ,

Proof. It suffices to show that

R










�

�

�

�

( )
( − ) + ( )

− −
( )

( − ) + ( )
− ≤ −

+ +
β

f z

μ z μ f z

f z

μ z μ f z
α

1
1

1
1 1 .

p q
m

p q
m

p q
m

p q
m

,
1

,

,
1

,

We have

R










�

�

�

�

�

�

∑
∑

( )
( − ) + ( )

− −
( )

( − ) + ( )
−

≤ ( + )
( )

( − ) + ( )
− ≤

( + ) [ ] ([ ] − )∣ ∣∣ ∣
− [ ] ∣ ∣∣ ∣

+ +

+
=
∞ −

=
∞ −

β
f z

μ z μ f z

f z

μ z μ f z

β
f z

μ z μ f z

β n n μ a z

n μ a z

1
1

1
1

1
1

1
1

1
.

p q
m

p q
m

p q
m

p q
m

p q
m

p q
m

n p q
m

p q n
n

n p q
m

n
n

,
1

,

,
1

,

,
1

,

2 , ,
1

2 ,
1
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As ∣ ∣ → −z 1 , the last expression is bounded above by − α1 if (2.1) holds. It is obvious that the function fn
satisfies the inequality (2.1), and thus − α1 cannot be replaced by a larger number. Therefore, we need only

to prove that ��∈ ( )f μ α β, ,p q
m
, . Since

R










− ∑ [ ]
− ∑ [ ]

− >
∑ [ ] ([ ] − )
− ∑ [ ]

=
∞ + −

=
∞ −

=
∞ −

=
∞ −

n a z

n μa z
α β

n n μ a z

n μa z

1

1 1
.

n p q
m

n
n

n p q
m

n
n

n p q
m

p q n
n

n p q
m

n
n

2 ,
1 1

2 ,
1

2 , ,
1

2 ,
1

Letting →z 1 along the real axis, we obtain the desired inequality given in (2.1). □

Corollary 2.2. If ��∈ ( )f μ α β, ,p q
m
, , then

∣ ∣ ≤ −
( )

a
α

μ α β

1

Φ , ,
.n

p q
m
,

(2.2)

Equality holds for the function ( ) = − −
( )f z z z
α

μ α β
n1

Φ , ,p q
m
,

, where

( ) = [ ] ([ ] ( + ) − ( + ))μ α β n n β μ α βΦ , , 1 .p q
m

p q
m

p q, , ,

Throughout this paper for convenience, unless otherwise stated, we let

= ( ) = [ ] ([ ] ( + ) − ( + ))μ α β n n β μ α βΦ Φ , , 1n
m

p q
m

p q
m

p q, , , (2.3)

and

= ( ) = [ ] ([ ] ( + ) − ( + ))μ α β β μ α βΦ Φ , , 2 2 1 ,m
p q
m

p q
m

p q2 , , , (2.4)

where ≤ ≤μ0 1, ≤ <α0 1, ≥β 0 and �∈m 0.

3 Partial sums

Silverman [10] determined sharp lower bounds on the real part of the quotients between the normalized

starlike or convex functions and their sequences of partial sums. In this section, following the earlier work

by Silverman [10] and also the work cited in [11–15] on partial sums of analytic functions, we study the ratio

of a function of the form (1.1) to its sequence of partial sums of the form

∑( ) = +
=

f z z a z ,k

n

k

n
n

2

when the coefficients of ( )f z satisfy the condition (2.1).

Theorem 3.1. If �∈f of the form (1.1) satisfies the condition (2.1), then

R








 �
( )
( )
≥ − + ( ∈ )+

+

f z

f z

α
z

Φ 1

Φ
,

k

k
m

k
m

1

1

(3.1)

where





= ( ) ≥ − = …
= + + …+

μ α β
α if n k

if n k k
Φ Φ , ,

1 , 2, 3, , ,

Φ , 1, 2, .
n
m

p q
m

k
m,

1

(3.2)

The result (3.1) is sharp with the function given by

( ) = + −
+

+f z z
α
z

1

Φ
.

k
m

k

1

1 (3.3)
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Proof. Define the function ( )w z by











( )+ ( )
− ( )

=
−
( )
( )
− − + =

+ ∑ + ∑

+ ∑
+ +

+

=
−

− = +
∞ −

=
−

+
w z

w z α

f z

f z

α a z a z

a z

1

1

Φ

1

Φ 1

Φ

1

1
.

k
m

k

k
m

k
m

n
k

n
n

α n k n
n

n
k

n
n

1 1

1

2
1 Φ

1 1
1

2
1

k
m

1

(3.4)

It suffices to show that ∣ ( )∣ ≤w z 1. Now, from (3.4) we can write

( )
( )( ) =
∑

+ ∑ + ∑
− = +

∞ −

=
−

− = +
∞ −

+

+
w z

a z

a z a z2 2

.
α n k n

n

n
k

n
n

α n k n
n

Φ

1 1
1

2
1 Φ

1 1
1

k
m

k
m

1

1

Hence, we obtain

( )
( )∣ ( )∣ ≤
∑ ∣ ∣

− ∑ ∣ ∣ − ∑ ∣ ∣
− = +

∞

= − = +
∞

+

+
w z

a

a a2 2

.
α n k n

n
k

n α n k n

Φ

1 1

2

Φ

1 1

k
m

k
m

1

1

Now ∣ ( )∣ ≤w z 1 if and only if









 ∑ ∑−
∣ ∣ ≤ − ∣ ∣+

= +

∞

=α
a a2

Φ

1
2 2 ,

k
m

n k

n

n

k

n
1

1 2

or, equivalently,

∑ ∑∣ ∣ +
−
∣ ∣ ≤

= = +

∞
+a
α
a

Φ

1
1.

n

k

n

n k

k
m

n

2 1

1

From the condition (2.1), it is sufficient to show that

∑ ∑ ∑∣ ∣ +
−
∣ ∣ ≤

−
∣ ∣

= = +

∞
+

=

∞
a

α
a

α
a

Φ

1

Φ

1
,

n

k

n

n k

k
m

n

n

n
m

n

2 1

1

2

which is equivalent to



















∑ ∑− +

−
∣ ∣ + −

−
∣ ∣ ≥

= = +

∞
+α

α
a

α
a

Φ 1

1

Φ Φ

1
0.

n

k
k
m

n

n k

k
m

k
m

n

2 1

1 (3.5)

To see that the function given by (3.3) gives the sharp result, we observe that for = /z reiπ n

( )
( )
= + − → − − = − + →

+ +

+

+

−f z

f z

α
z

α α
r1

1

Φ
1

1

Φ

Φ 1

Φ
, when 1 . □

k k
m

n

k
m

k
m

k
m

1 1

1

1

Theorem 3.2. If f of the form (1.1) satisfies the condition (2.1), then

R
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( )
( )
≥

+ −
( ∈ )+

+

f z

f z α
z

Φ

Φ 1
,

k k
m

k
m

1

1

(3.6)

where ≥ −+ αΦ 1n
m

1 and




≥ − = …

= + + …+

α if n k

if n k k
Φ

1 , 2, 3, , ,

Φ , 1, 2, .
k
m

k
m

1

(3.7)

The result (3.6) is sharp with the function given by (3.3).
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Proof. The proof follows by defining











+ ( )
− ( )

= + −
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+ +

+
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α

α

f z
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1

1
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1

Φ

Φ 1

k
m

k k
m
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m

1 1

1

and much akin to similar arguments in Theorem 3.1. □

We next turn to ratios involving derivatives.

Theorem 3.3. If f of the form (1.1) satisfies the condition (2.1), then
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and
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where ≥ ( + )( − )+ n αΦ 1 1n
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The results are sharp with the function given by (3.3).

Proof. We write
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From the condition (2.1), it is sufficient to show that
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which is equivalent to
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To prove the result (3.9), we define the function ( )w z by
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and by similar arguments in the first part we get desired result. □
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4 Inclusion relations involving N eδ( )
In this section following [16–18], we define the n δ, neighborhood of function �( ) ∈f z and discuss

the inclusion relations involving ( )N eδ .
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Particularly for the identity function ( ) =e z z , we have
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On the other hand, from (2.1) and (4.4) we have
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□

Now we determine the neighborhood for each of the class �� ( )μ α β, ,p q
m
, , which we define as follows.

A function �∈f is said to be in the class �� ( )μ α β, ,p q
m
, if there exists a function ��∈ ( )g μ α β η, , ,m

such that

�
( )
( )
− < − ( ∈ ≤ < )f z

g z
η z η1 1 , , 0 1 . (4.6)

Theorem 4.2. If ��∈ ( )g μ α β, ,p q
m
, and

= −
[ ] ([ ] ( + ) − ( + ))
[ ] ([ ] ( + ) − ( + ))

η
δ β μ α β

β μ α β
1

2 2 1

2 2 2 1
.

p q
m

p q

p q
m

p q

, ,

, ,

(4.7)

Then ��( ) ⊂ ( )N g μ α β η, , ,δ p q
m
, .
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Proof. Suppose that ∈ ( )f N gδ , then we find from 4.1 that

∑ ∣ − ∣ ≤
=

∞
n a b δ,

n

n n

2

which implies that the coefficient inequality

∑∣ − ∣ ≤
=

∞
a b

δ

2
.

n

n n

2

Next, since ��∈ ( )g μ α β, ,p q
m
, , we have

∑ ≤ −
[ ] ([ ] ( + ) − ( + ))=

∞
b

α

β μ α β

1

2 2 1
.

n

n
p q
m

p q2 , ,

So that

( )
( )
− <
∑ ∣ − ∣
− ∑

≤ ×
[ ] ([ ] ( + ) − ( + ))

[ ] ([ ] ( + ) − ( + )) − ( − )
≤ −=

∞

=
∞

f z

g z

a b

b

δ β μ α β

β μ α β α
η1

1 2

2 2 1

2 2 1 1
1 ,

n n n

n n

p q
m

p q

p q
m

p q

2

2

, ,

, ,

provided that η is given precisely by (4.7). Thus by definition, ��∈ ( )f μ α β η, , ,p q
m
, for η given by (4.7),

which completes the proof. □

5 Concluding remarks and observations

As a special case of the aforementioned theorems, we can determine new sharp lower bounds forR( )( )( )f z

f zn
,

R( )( )( )f z

f z

n ,R( )′ ( )( )′f z

f zn
and R( )( )′ ( )′f z

f z

n for various function classes stated in Remarks 1.1 and 1.2 and upon specia-

lizing the values of μ and β one can deduce various new subclasses on p q, -difference operator and prove

the above partial sums and neighborhood results.
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