Hindawi Publishing Corporation
International Journal of Analysis

Volume 2014, Article ID 793709, 10 pages
http://dx.doi.org/10.1155/2014/793709

Research Article

Pascu-Type Harmonic Functions with Positive Coefficients

Involving Salagean Operator

K. Vijaya, G. Murugusundaramoorthy, and M. Kasthuri

School of Advanced Sciences, VIT University, Vellore 632014, India

Correspondence should be addressed to K. Vijaya; kvijaya@vit.ac.in

Received 25 November 2013; Accepted 21 February 2014; Published 6 April 2014

Academic Editor: Remi Léandre

Copyright © 2014 K. Vijaya et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Making use of a Salagean operator, we introduce a new class of complex valued harmonic functions which are orientation preserving
and univalent in the open unit disc. Among the results presented in this paper including the coeffcient bounds, distortion inequality,
and covering property, extreme points, certain inclusion results, convolution properties, and partial sums for this generalized class

of functions are discussed.

1. Introduction and Preliminaries

A continuous function f = wu + iv is a complex-valued
harmonic function in a complex domain € if both u and v
are real and harmonic in €. In any simply connected domain
2 ¢ &, we can write f = h + g, where h and g are analytic
in @. We call h the analytic part and g the coanalytic part
of f. A necessary and sufficient condition for f to be locally
univalent and orientation preserving in 9 is that W' (2)| >
Ig'(z)l in D (see [1]).
Denote by # the family of functions

f=h+g )

which are harmonic, univalent, and orientation preserving in
the open unitdisc % = {z : |z| < 1} so that f is normalized by
f(0) = f,(0)-1 = 0. Thus, for f = h+g € , the functions h
and g are analytic in % and can be expressed in the following
forms:

hz)=z+ Y az', g@=)Ybz" (0<b<1),
n=2

n=1

2)
and f(z) is then given by

f@)=z+ ianz" + ib,,z" (o<|p|<1). B
n=2 n=1

We note that the family # of orientation preserving, normal-
ized harmonic univalent functions reduces to the well-known
class & of normalized univalent functions if the coanalytic
part of f is identically zero; that is, g = 0.

For functions f € #, Jahangiri et al. [2] defined Salagean
operator on harmonic functions given by

D'f (z) = D'h(2) + (-1)'Dtg (2), (4)
where

D'h(z) =z + ananz”, Dg(2) = Znebnz".

n=2 n=1
(5)
In 1975, Silverman [3] introduced a new class I of
analytic functions of the form f(z) = z - Y2, la,lz"

and opened up a new direction of studies in the theory of
univalent functions as well as in harmonic functions with
negative coefficients [4]. Uralegaddi et al. [5] introduced
analogous subclasses of star-like, convex functions with
positive coeflicients and opened up a new and interesting
direction of research. In fact, they considered the functions
where the coefficients are positive rather than negative real
numbers. Motivated by the initial work of Uralegaddi et al.
[5], many researchers (see [6-9]) introduced and studied
various new subclasses of analytic functions with positive
coefficients but analogues results on harmonic univalent



functions have not been explored in the literature. Very
recently, Dixit and Porwal [10] attempted to fill this gap by
introducing a new subclass of harmonic univalent functions
with positive coefficients.

Denote by 7', the subfamily of % consisting of har-
monic functions f = h + g of the form

= nn_oobnn
f(2) z+nZéaz ,,Zi z ©)

(a,>0; b,>0,0< || <1).

Motivated by the earlier works of [11-14] on the subject
of harmonic functions, in this paper an attempt has been
made to study the class of functions f € 7’5, associated with
Salagean operator on harmonic functions. Further, we obtain
a sufficient coefficient condition for functions f € # given by
(3) and also show that this coefficient condition is necessary
for functions f € 74, the class of harmonic functions with
positive coefficients. Distortion results and extreme points,
inclusion relations, and convolution properties and results on
partial sums are discussed extensively.

For0 < A < 1,1 < y < 4/3, we let 9’;[(/\,)/) be a
new subclass of 7, consisting of all functions of the form (3)
satistying the condition

(1-1) D' f (2) + AD* f (2)
m( (1-A)DEf (2) + ADP f (2) ><y’ @)

where Def(z) is given by (4) (see [2]). Also let ‘7;,()\, y) =

2. Coefficient Bounds

In our first theorem, we obtain a sufficient coeflicient condi-
tion for harmonic functions in 9{;,@, ).

Theorem 1. Let f = h + g be given by (3). If

QX 1=A+n)[(n-y)
I |a,|
n=2 Y_ 1

[1-2-nA|( ®
< ol=A-mA(n+y
+Zn£

)|bn| <1,
-1

n=1

wherea, = 1and 1 < y < 4/3, then f € %, (A, y).

Proof. We let (8) hold for the coefficients of f = h+ g. It
suffices to show that

A(z)/B(z) -1
A(z)/B(z) - (2y-1)

<l, ze%, 9)
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where

A(z) = (1-A) D" f(2) + AD*f (2)

(o)
=z+ Zne“ (1-A+nd)a,z"
n=2

(10)
- (—1)€§n€+1 (1-A-nl)bz",
n=1
B(z) = (1-A)D°f () + AD*' f (2)
I TP g
z+n;n ( +nl)a,z a

+ (DY (1-1-nL)bz2".

n=1

Substituting for A(z) and B(z) in (9), we get

I A(z)/B(z) - I
A(2)/B(z) - (2y-1)

< (Zne 1= A+nA(n-1)|a,]l2]"" + (1)

n=2

x Y n[1=A-nA|(n+1) b, |z|”‘1)

n=1

X(Z(y—l)—inell—/\+n)\| [ (2y-1)]

n=2

x |a,| 121" = (-1)°

><io:n(Z I1-A=n)|[n+(2y-1)]|b,| |Z|n_1>

n=1

< (Z nell—/\+n)tl(n—1)|an|

n=2

+ (—1)5§n€ 1—A—n)|(n+1) |b,,|>

n=1

x(z(y—l)—inell—/\+nll [n-(2y-1)]|a,

n=2

o -1
- (—1)€Zn€ [1-A-nA|[n+(2y-1)] |bn|> .

n=1

(12)
The above expression is bounded above by 1 if
ZZnE [1-A+nA|(n-1) |an|
n=2
(13)

+2) n [1=A=nA(n+1)|p,|<2(y-1)

n=1
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which is equivalent to

S|l -A+nA|(n-y)
Z y_l |an|
n=2
(14)
i -A- n/\|(n+y)|bl<1

n=1

But (8) is true by hypothesis. Hence, |(A(z)/B(z) — 1)/
(A(2)/B(z) - (2y—-1))| < 1,z € %, and the theorem is proved
for A(z) and B(z) is given by (10) and (11), respectively. [

Theorem 2. Fora;, = land1 < y < 4/3, f = h+g €
7% (Ay) ifand only if
1-A+nk
Zé" +n|(” Y)|an|
(15)
S ¢ll-A-nA
P Sz A )

n=1 )/—1

Proof. Since 7% 7(A,p) C P (A, y), we only need to prove the
“only if” part of the theorem To this end, for functions f of
the form (6), we notice that the condition

(1-1) D' f(2) + AD*"* f (2)
m( (1- V) Dff (2) + AD™1 £ (2) ) <y ()
Equivalently,
ﬂ(((l—y)z— in‘?(l ~A+n)) (n-y)a,z
n=2
_ (—l)zfine (1 - YlA) (n + Y) bnzn)
n=1

17)

X (z - Zne(l -A+n))a,z"

n=2

0 -1
+ (1Y n’ (1= 1 -nd) b,,z”) )

n=1

The above required condition must hold for all values of z in
% . Upon choosing the values of z on the positive real axis
where 0 < z = r < 1, we must have

(1 -y- Znell—/\+n)t| (n-y)a,""

n=2

_Zne 1-A=—nA|l(n+7y) bnr"_l)

n=1

><(1—iozngl(l—/1+n)\)|anr"_1 (18)

o -1
+Zne [1-A-nA| bnr"_l)
n=1

> 0.

If condition (15) does not hold, then the numerator in (18)
is negative for r sufficiently close to 1. Hence, there exists
z, = 1, in (0,1) for which the quotient of (18) is negative
This contradicts the required condition for f € 7°%,(1, y)
This completes the proof of the theorem.

3. Distortion Bounds and Extreme Points

By routine procedure (see [10-13]), we can easily prove the
following results; hence we state the following theorems

without proof for functions in 7/,;,(/1, ).

Theorem 3 (distortion bounds). Let f € 7 o (A, p). Then for
|z| = r < 1, we have

y-1 I+y )
(-l - 3o (A= - s )
1+y| |>
-y

Corollary 4 (covering result). If f(z) € VA o (As p), then

{w‘|w|< 27 (1) +1-[2°(1+y) + 1]y

<|f ()

1 y-1
S(1+|b1|)r+2e(1+/\)< -
(19)

26(2-y)(1+ 1)

2 (14y) 1= [2°(1+y) +1]y (20)
_ b,
26(2-9)(1+A) }

c f(U).

Next we state the extreme points of closed convex hulls of
"7;()», y) denoted by clco ‘7;,(/\, ).

Theorem 5. Afunctzon f(2) € 75\ y) ifand only if f(z) =
Zn—l(X h,(z) +Y,g,(2)) whereh () =2 h,(z)=z+((y -
1/ = A+ nA|(n—y))2", (n > 2), and g,(z) = z + ((y -
D/ = A = nA|(n + Y)Z", (n > 1) also Z;“;I(Xn +Y,) =
1, X, > 0andY, > 0. In particular, the extreme points of
75, (N, y) are {h,} and {g,}.



Theorem 6. The family 75, (A, y) is closed under convex
combinations.

4. Inclusion Results

Now, we will examine the closure properties of the class
7%(A,y) under the generalized Bernardi-Libera-Livingston
integral operator Z () which is defined by Z.(f) = ((c +

1)/2°) [, 7 ft)dt, ¢ > -1.

Theorem 7. Let f(z) ¢ 7;[(&)/). Then £ (f(z)) €
75\, y).

Lemma 8 (see [15]). Let f = h + g be given by (3). If

22N -A+nA|(n-a)
Z -« 2]

n=2

00 Af 1
+ZZ [1-A—nA|l(n+ )

IO <,

n=1
wherea, =1 and 0 < a < 1, then f € M5, (A, ).

Theorem 9. Let f = h+g € 7%, (A, «) be given by (6). Then
fe?sM (4-3y)/(3-2y)).

Proof. Since f € 7°5,(A,y), then by Theorem 1 we must have

D21 -A+nA(n-y)
2, 2

n=2 Y- 1
(22)

i |1—)\ n)tl(n+y b <1

To show that f € 7t (A, (4 =
Lemma 8 we have to show that

3y)/(3 = 2y)), by virtue of

O 21— A+n)[n-

((4-3y)/(3-2y))]
,;z 1-((4-3y)/(3-2y)) |a,|
2601 = A—nA|[n+ ((4-3y)/(3-2y))]
1-((4-3y)/(3-2y))

bl <1,

+
i

(23)

where 0 < (4 — 3y)/(3 — 2y) < L. For this, it is sufficient to
prove that

1-A+n)(n-1y)
y-1
= Al [ (4= 39)/ G 29))
- 1-((4-3y)/(3-2y))
n=2,3,...),

>
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[1-A-nA[(n+y)
y-1
[1-A-nAl[n+((4-3y)/(3-2y))]
1-((4-3y)/(3-2y))
(n=1,23,.)

(24)
or equivalently (y — 1)|[1 —A +nA|(n—-y) 20 (n=2,3,...),

and (y - 11 -A-nA|[(n+y) >0 (n=123,...), which is
true and the theorem is proved. O

Corollary 10. 7%,(A,y) c 75, (A, 4/3) c 7%,.

5. Convolution Properties

For functions f € # given by (3) and F € # given by

F(z)=H(z)+G(z) =z + OZO:Anz” + OZO:an", (25)

n=2 n=1

we recall the Hadamard product (or convolution) of f and F
by

(f*F)(z)=z+OZO:a WZ +Zsz" (ze%).

n=2

(26)

Let F;(z) e 7% (M) (j=1,2,3,..., p) be given by

o O
Fi(z)=z+ Zz |a,,;| 2" + (—1)€Z1 bz @7)
n= n=

then the convolution is defined by

© P

(Fy % %F,)(2) =2~ ZH |a,, ;| "
e (28)
+(—1)6§]£[ b,;|z
n=1j=1
Theorem 11. LetF( ) eV 7 (A, y) (G=123....p) then

(Fy -+ % F,)(2) € 7t o (A, B), where

P(VJ )

—1+ = . (29)
Pt aon 2, (2+y;) - T, (v, - 1)

Proof. We use the pr1nc1ple of mathematical induction in our

proof. Let F, € 7%,(Ly,), and F, € 7%, (),y,). By using
Theorem 2, we have

€|1—A+n/\|(n—yj)
—1 'a”J|
Y

n=2

Sl
+yn
n=1

(30)
1—x\—n)t|(n+yj)

y;—1

[B] < 1
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Therefore, if

then
. : ingll—)t+n)nl(n—oc)|a ol
Z \jneu_l"’n/”(n_)’l) la l = a—1 12
1,1
n=2 YI_I
S 1-A+nA|(n- -
A < Z\jnze| (+1’l |1(;l( Vl)l(;'l VZ) lan,lan,2|’
-~ 1-A+nr(n- n=2 Nn-—HW-
« Z \j”e| +n |(” Yz) |an)2| (34)
=2 -1 S 1-A- nAl(n+a)
Zn | n,2|
0 ’ 1
+ Z n€|1_l_”/\|(n+}}1) |b | (D) o
n=1 n-1 ! SZ\]”MH_A nAl (n+y,) (n+7y,)
et m-1D0-1)
2 1/2
XOZO“ \jn| ~ A - n( ””’2 |6, that is, if
n=1 Y2~
—1 [I1=A+nM(n—y)(n-y,)
<1 p1Gy0| < >
flend < 3= G
(35)
i . i i -1 [[1-A-nA|(n+ n+
Thus, by applying Cauchy-Schwarz inequality, we have llbn,lbn,zl < \j (n+y) ( Yz)’
nt+a (n-1D@(-1)
2
i(\]nzell—k+n)t| (n-v,) (n-y,) 6, |> then (F, * F,)(z) € 7% % (A, &). By (30) we have
n,1%n,2
n=2 (n-D(-1)
ya1/2 ® ell—)t+n)t|(n—yj)
© _ _ n a,i| <1
< Z \]n€|1 A+nA|(” YI) |an)1| nzz\j yj_l J
n=2 YI_I (36)
& 1-A—nA|(n+y;
of i, N Z\jnel ” |1(n D=1
- A+nr|(n- o
% Z \jne Y2 |an’2| , n=1 Vi
n=2 ))2_1
(32) Hence we get
Z(\]nzzu—)t(—n}tl()n(wl 1n+y2 b, bn’2|> o] < y;—1
5 Y V2= T -AtnAl(n-y)
2+1/2 1 (37)
B Z \jne|1—A+nA|(n+y1 b, ] < Y .
n=1 -1 |1—)\—n)t|(n+yj)
2712 Consequently, if
(o] 1_
y |iz<\jn€| A+n/\|1(n+y2) |bn2|> ] ‘
n= Y2~ ’
: ’ n-D»-1)
nL = A+mAl* (n—y;) (n—7y,)
Then, we get
<a—l\jll—)tw/\l(n—yl)(n—yz)
o Tn-a -1)(y, -1 ’
Z\/nell_/l"'”)” (H_YI)(n_YZ) |a a | (YI )(yz ) (38)
n,1"%n,2
s} (n-1D@(-1) (1 -1) (3, - 1)
(33) 21— A—nA? (n+y,) (n+y,)

3

n=1

y—1

n,1 n,2|

\/n2€|1—/\—n)[|(n+y1) b, b

[1-A-nM(n+y)(n+7y,)
(n-D-1) .

a—1
<
n+ao
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That is, if
—a _[1=A+nAl(n=y) (n-y,)
a=-1" n-1(-1) ’

(39)

nta _[1-A-nA(n+y)(n+y,)
a—1" rn-Dmn-1)

then (F, * F,)(z) cev? o (A, ). Then we see that

a>1

N (n=1)(y,—1)(y,— 1)
n L= A+nM(n+y) (n+y,)+(n-1)(n-1)
=¢(n),
a>1

N (n+1)(y = 1) (y, 1)
L= A=nA[(n+y)(n+p,)-(n-1)(n-1)

=y (n).
(40)
Since ¢(n) for n > 2 and y(n) for n > 1 are increasing,
(n-D(-1)
B 2€|1+)\|(2+Y1)(2+Y2)+(Y1 )(y,-1)
(41)
> 14 (Vl - 1) (Vz )
T2 () (- D (-
(42)
and also
(Vl - 1) (Yz - 1)
N+ MCH+y) Q)+ (n—-1) (- 1)
(43)
§ 2(n -1 n-1)
T2 (1) () - -1 (1)
then (F, * F,)(z) € 7t o (A, ) where
(1~ 1) (s 1) |
- 2€(1+/\)(2+Y1)(2+V2) n-D(-1)
(44)
Next, we suppose that (F, = F, % --- % F )(z) e ¢ o (As B
where
P
B=1+ = 1()/, ) - .
261+ 1) Hj:1 (2 + Yj) - Hj:l (Yj - 1)
(45)
We can show that (F; * F,  --- +1)(z) e 7t (A, 0),
where
5>1+ (ﬁ_1)<)}p+1_1) )
(3(1 +A) (2+/3) (2+Yp+1)+(/3_ 1) (Vp+1 - 1)
(46)
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Since
(ﬁ - 1)( Xpi1 ~ )
_ I (v - 1)
2+ N1, 2+y;) -T2, (v, - 1)’
(47)
(/3 2)( p+1 )
] I (5,1
20 NI, (2+yy) - TIL, (v - 1)
we have
~ 177 (v;-1)
- 25(1+)L) 12 (2+,) - T15 (v -1)
(48)
O
Corollary 12. Let F, (z) e 7¢ 7MY = 1,2,3,...,p), then
(Fy * -+ % F,)(2) € ‘77[()& B), where
Y.
=1+ (r=1) . (49)

201+ 1) 2+y)f = (y-1)°

6. Partial Sums Results

In 1985, Silvia [16] studied the partial sums of convex
functions of order & (0 < « < 1). Later on, Silverman [17]
and several researchers studied and generalized the results
on partial sums for various classes of analytic functions
only but analogues results on harmonic functions have not
been explored in the literature. Very recently, Porwal [18]
and Porwal and Dixit [19] filled this gap by investigating
interesting results on the partial sums of star-like harmonic
univalent functions. Now in this section we discussed the
partial sums results for the class of harmonic functions with
positive coefficients based on Salagean operator of order
y (1 <y <4/3) on lines similar to Porwal [18].

Let @;K(An /8, B, /8) denote the subclass of # consisting
of functions f = h + g of the form (3) which satisfy the
inequality

2% |a,| + z% b,] < 1, (50)
where

A, n 1= A +n (n-y)

8 y-1 -

B, n‘ll-A-n)(n+y)

5 y-1

and & = y — 1, unless otherwise stated.
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Now, we discuss the ratio of a function of the form (6)
with b, = 0 being

fm(z)—z+2az +sz”

n=1
00 k
fi@=z+Yaz"+ )bz, (52)
n=2 n=2

m k
i (&) =2+ Zanz" + anz".
n=2 n=2
We first obtain the sharp bounds for R{f(z)/ f,,(2)}.

Theorem 13. If f of the form (6) with b, = 0 satisfies the
condition (50), then

el

(z €U, (53)

where

iff’l=2,3,--~,m,
ifn=m+1lm+2,..., (54)

A, > {6’
Am+1’

>08, if n=2,3,....

The result (53) is sharp with the function given by

f(z)=z+ A‘S 2™ (55)

m+1

Proof. Define the function w(z) by

1+LU(Z) _ Am+1
l-w(z) o

F0) A 3
fm (reiﬂ) Am+1

m
- <1 + Zanr"_lel("_l)e

n=2

2 n—1 _-1(n 0
1 i(n+1
+ b 11’ e i )

n=2

A © 1 i(n-1)0
m+ n— 1(n—
s ( E a,r" e ))
n=m+1
m .
X (1 + E anrn_lel(n_l)e

n=2

(56)

© ) -1
+ anrn—le—t(nﬂ)ﬂ ) )

n=2

It suffices to show that |w(z)| <
write

w(z):( m+1 ( Z a, rn 1 1(n 1)9))
n=m+1

<2+2<Zar Lefnm18
OO_ .
+anrn—le—l(n+l)9)

n=2
-1
i(n— 1)9))

1. Now, from (56), we can

(57)

mﬂ(zm

n=m+1
Hence we obtain
lw (2)]

(Am+1/8)( n=m+1 |61 |

2-2 [anzz |an| + anz |bn| (Am+1/6) szﬂ |an| .
(58)

Now |w(z)| < 1if

Zlal+Zlb|+ Aut §plct (9)

n=m+1

From condition (50), it is sufficient to show that

ZIaI+ZIbI+ At §° g

n=m+1 (60)
< ;7 |a| +g§§ |a|
which is equivalently to
< [(A,-06 < (B,-6
3 (525 Yl X (P50 e
(61)
+ Z < n+1 ) |a | > 0.
n=m+1

To see that the function given by (55) gives the sharp result,

we observe that for z = re™/"

f(z)=1+ 0 Z"—1- 0
fm (Z) Am+1 Am+1
5 (62)
_Amn =0 when r — 17.
Am+1 O

We next determine bounds for R{f,,(z)/ f(2)}.

Theorem 14. If f of the form (6) with b, = 0 satisfies condition
(50), then

R {fm (Z)} > Am+1 (Z € %)’ (63)

f(Z) A +1+8)



where

iff’l=2,3,---,m,
ifn=m+1lm+2,..., (64)

A, > {6’
Am+1’

>08, if n=2,3,....

The result (63) is sharp with the function given by

flz)=z+ A‘S 2™ (65)

m+1

Proof. Define the function w(z) by

1+w(z) _ Ay +0 fm (reiQ) _ A
l-w(z) & f(re®) A, +0

<1+Zar—l i(n—1)0

© ) 0
+ anrn—le—t(nﬂ)

n=2

(66)
Am+1 ( 00 n—1 i(n—1)9>>
- ar e
6 n=;+1 "
<1+Zar A
o -1
+Zb_nrnlei(n+1)9) )
n=2
Hence we obtain
jw () s( ’””“S( Y la, I)>
n=m+1
m [ee]
X (2 -2 Z |an| + Z |bn|]
n=2 n=2 (67)

(A -8)/0) 3 |an|)_

n=m+1

<1

The last inequality is equivalent to

Z|a|+Z|b|+ Amt Z |a,| < 1. (68)

n=m+1

Making use of (50) and the condition (64), we obtain (61).
Finally, equality holds in (63) for the extremal function f(z)
given by (65). O

We next turns to ratios for iR{f'(z)/f,:q(z)} and
R{f,(2)/f' (@)}
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Theorem 15. If f of the form (6) with b, = 0 satisfies condition
(50), then

!
m{fr(Z)}ZA” D0 ew, (@)
fm @) A
where
Az 0, if n=2,3,...,m,
Ay ifn=m+lm+2,..., (70)

>0, ifn=23....

The result (69) is sharp with the function given by f(z) = z +
(8/A,)Z".

Proof. Define the function w(z) by

1+w(z)_ Am+1 fl(z)_Am+1_(n’l'|'1)(S
1-w(z) (m+1)3|f](2) A

m
= (1 + Znanr"_le'("_l)e

n=2

i T el im0
+ T’lb rn—le—z n+l
n=2 !
N (71)

)
m -

n=m+1

m
X (1 + Znanrnfle’(”’l)e

n=2
© ) 0 -1
_annrnlet(n+l)) )
n=2

The result (69) follows by using the techniques as used in
Theorem 13. O

Proceeding exactly as in the proof of Theorem 14, we can
prove the following theorem.

Theorem 16. If f of the form (6) with b, = 0 satisfies the
condition (50), then

m{frln(‘z)}z Am+1 ,
f'(z) A, +(m+1)98

The result is sharp with the function given by f(z) =
(8/A,)2".

(ze%). (72)

We next determine bounds for R{f(z)/fi(z)} and
R{f(2)/ f(2)}.

Theorem 17. If f of the form (6) with b, = 0 satisfies condition
(50), then

f(Z) } By -6
R {fk (2) = By, (2%, 73)
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where
B, > 0, z‘fn:2,3,...,k,
Bi,, ifn=k+1Lk+2,..., (74)
A, 28, ifn=23,....

The result (73) is sharp with the function given by f(z) = z +
(8/Bi )2

Theorem 18. If f of the form (6) with b, = 0 satisfies condition

(50), then
fk(z)} Bk+1
?1{ > , (zeU), (75
F@ )7 By +o )
where
B> g, if n=2,3,...,k,
" Bk+1’ ifn=k+l,k+2,..., (76)
A, =268, ifn=2,3,....

The result (75) is sharp with the function given by f(z) = z +
(8/B, )2

Proof. Define the function w(z) by

1+w(2) _ By, +96 fk (reiQ) _ By
l-w(z) 6 f(re®) Bp,+90

0 k
_ (1 + Zanrn—lez(n—l)e + anrn—le—t(nﬂ)e

n=2 n=2

Bk i 1 _-i(n-1)0

+1 7. .n—1 —i(n—

kL Nl 77)
Bk+1 + 87; !

0

X (1 + Zanrnfle’("fl)e
n=2

k -1
+anrnlez(n+1)9> )
n=2

We omit the details of proof, because it runs parallel to that
from Theorem 14. O

Theorem 19. If f of the form (6) with b, = 0 satisfies condition
(50), then

A,.1-0
m{ f }2 mlZO cewy,  (78)
fm,k(z) Am+1
where
A > 0, 1:fn:2,3,...,m,m+1,
A ifn=m+1lm+2,...,
(79)
B > 0, z:fn:2,3,...,m,
A, ifn=m+1lm+2,....

The result (78) is sharp with the function given by f(z) = z +
(8/A,0)2".

Theorem 20. If f of the form (6) with b, = 0 satisfies condition

(50), then
m{ f) }sz“_‘S, (z e %) (80)
S (2) By
where
B > 0, if n=2,3,... .k
" By ifn=k+Lk+2,...,
(81)
A s 6, if n=2,3,...,k
" B ifn=k+1lL,k+2,....

Theorem 21. If f of the form (6) with b, = 0 satisfies condition
(50), then

A
STy w0 o
m+1

Theorem 22. If f of the form (6) with b, = 0 satisfies condition
(50), then

(zeU). (83)

R {fm,k (Z)} s B

1@ Byyy +6

The result (83) is sharp with the function given by f(z) = z +
(8/By, )z

Theorem 23. If f of the form (6) with b, = 0 satisfies condition
(50), then

@] Apn-(m+1)8
Q‘A‘{fmz)}2 A . (ze%),  (84)

m+1
where
0, ] =2,3,...,m,
A > zfn m
A, ifn=m+1lm+2,...,
(85)
0, ] =2,3,...,m,
B, > zfn m
A, ifn=m+1lm+2,....

The result (84) is sharp with the function given by f(z) = z +
(8/A,)2".

Theorem 24. If f of the form (6) with b, = 0 satisfies condition
(50), then

R ffln,k (2) > A
@) |~ Ay +(m+ 15
The result (86) is sharp with the function given by f(z) = z +
(8/A,)2".

(ze). (86)

Concluding Remarks. By choosing A = 0 (or A = 1) and
¢ = 0 (or £ = 1), the various results presented in this paper
would provide interesting extensions and generalizations of
the subclasses of harmonic star-like functions with positive
coeflicients of order y (1 < y < 4/3) based on Salagean
operator and similarly for convex functions. The details
involved in the derivations of such specializations of the
results presented in this paper are fairly straight-forward and
hence omitted.
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