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Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of
manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the
travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing
productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm.
This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the
proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in
this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process.

1. Introduction

In the manufacturing industry, hole-drilling operation is
almost always unavoidable. In particular in electronic man-
ufacturing, drilling holes on the printed circuit board (PCB)
is one of the most crucial processes. With the escalating
growth in demand for computers and electronic gadgets, PCB
assembly has undoubtedly become a competitive market.
The increasing variety of products in need of PCB has
made it inevitable for circuit board manufacturing industry
to automate the hole-drilling operations. Many industries
have adopted the computer numerical control system in
automating the hole-drilling operations because of its control
flexibility. In all machining processes, time is spent on both
positioning the cutting tool and carrying out the machining
operation and the hole-drilling operation is of no exception.

Due to the point-to-point tool movement in hole making
and requirement of different tools for making each hole,
a considerable amount of the processing time is spent on
switching tools and moving the table from one location
to another. The survey by Merchant [1] reported that tool
movement and switching time take 70% of the total time in a

manufacturing process, on average. Therefore, optimization
of hole making operations can lead to significant reduction
in machining time which directly improves productivity of
manufacturing systems [2]. A crucial issue in manufacturing
is cost effectiveness. Production costs must be minimized if
the product is to compete in themarketplace.Maximizing the
production of products that meet customer requirements is
the prime objective of a manufacturing enterprise.Therefore,
any strategy that can be adopted to minimize the production
time will havemuch impact on achieving the firm’s objectives
[3].

Due to the significant amount of time required for
moving the drill bit from one point to another, holes drill
routing optimization problem attracts a great interest among
the academicians, researchers, and engineers to solve it. This
concern for calculation of the minimum tool path length
between holes (the drilling device has to be steered to the
location of each hole exactly once) is similar to a very well-
known problem from the operational research field called
the (symmetric, single objective, and Euclidean) traveling
salesman problem (TSP).The problem of finding the best way
the points to be drilled are traversed can bemodeled as TSP in
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order to cut down the production cost. In this case, the holes
to be drilled are the cities, and the cost of travel is the time it
takes to move the drill head from one hole to the next. The
routing of production through a manufacturing facility has
often been identified as a TSP [4]. Tong et al. [5] indicated
that, during leather machining, when punching holes in the
surface of the leather, the machining sequence optimization
of the holes is similar to TSP.

Despite the importance of drilling path optimization,
few researchers worked on this problem in the literature.
First, Kolahan and Liang [6] have formulated the problem
as TSP and worked on applying tabu search algorithm to
solve the problem, and then they extended their research to
a more complex case [7]. Consequently, several researchers
have demonstrated the applicability of TSP techniques to
the drilling path optimization problem over the past few
years. The drilling path optimization has been solved using
genetic algorithm [8], particle swarm optimization [3], global
convergence particle swarm optimization [9], and ant colony
system [10, 11]. Ghaiebi and Solimanpur [2] have used ant
colony algorithm. Krishnaiyer and Cheraghi [12] used the
same algorithm and they proposed a web base system. Adam
et al. [13] have used particle swarm algorithm, and then
Zhu and Zhang [9] have extended the research on drill
path optimization problem and applied global convergence
particle swarm optimization algorithm to obtain the global
optimization solution.

The Hopfield algorithm was used for drilling path opti-
mization [14]. The evolutionary ant colony system algorithm
and artificial immune algorithm were used for the single
objective andmultiobjective drilling path optimization prob-
lems [15]. The greedy 2-opt algorithm was used in leather
punch path optimization [5].The genetic algorithm was used
for the process route optimization [16]. The tabu search
algorithm was used for holes drilling path optimization [7].
The simulated annealing algorithm was used to obtain the
economical machining process [4]. The adaptive particle
swarm optimization (adaptive PSO) was used by Onwubolu
and Clerc [3] to solve the problem of path optimization
in automated drilling operation. Walas and Askin [17] and
Chauny et al. [18] proposed heuristic algorithms based on the
travelling salesman problem tominimize total tool travel dis-
tance in punching operations. Using an artificial intelligence
approach, Ssemakula and Rangachar [19] proposed amethod
to generate an operation sequence applicable to a variety of
manufacturing processes.

Numerous researches have been oriented towards the
development of algorithms for calculating theminimum drill
path between holes [20–22]. Specifically in CNC machine,
one of the earliest routing problems in holes drilling is a paper
written by Sigl and Mayer [23]. They introduced the 2-opt
heuristic evolutionary algorithm in solving drill routing for
computer numerical control (CNC) machine. Using CNC as
the subject, Qudeiri et al. [24] employed genetic algorithm
(GA) in searching the optimized route for holes cutting
process in CNCmachine tool. Also, Ghaiebi and Solimanpur
[2] have introduced an ant algorithm for holes drilling of
multiple holes sizes.Medina-Rodŕıguez et al. [25] presented a
parallel ant colony optimization algorithm to find an efficient

sequence of operation for a set of holes located in a PCB
board that achieves the shortest tool path. Saealal et al. [10]
implemented ant colony system for PCB holes drilling route
optimization problem with an objective to minimize the
distance of the route chosen by the CNC machine.

Recently, cuckoo search (CS) was developed by Yang and
Deb [26], which was inspired by cuckoo birds that lay eggs
in the nests of other birds. Preliminary studies have shown
that CS successfully outperforms the existing algorithms
such as GA and PSO on various testing functions. However,
there has been little development of CS in solving discrete
combinatorial problems. In this paper, we will extend CS to
solve combinatorial problems and suggest an approach for
solving the drilling path optimization problem.

The rest of the paper is organized as follows: mathe-
matical formulation of the route optimization in PCB holes
drilling problem is presented in Section 2. The proposed
cuckoo search algorithm is illustrated in Section 3. Section 4
describes the implementation and verification results for
three case study problems. Section 5 outlines the conclusion.
A comprehensive list of references ends the paper.

2. Routing Problem in PCB Drilling Process

When drilling a group of holes in a PCB using a CNCmilling
machine, the machine table is driven back and forth in the𝑋-𝑌 directions so that each hole is to be drilled in its designed
position. The optimum drilling sequence can minimize the
total table movements, thus shortening the no-cutting time
and lengtheningworking life of the table’s driving system.The𝑥 and 𝑦 motions, which are realized using stepper motors,
are sequential and based on the coordinates to be drilled [3].
However, Wei et al. [8] formulated the problem differently.
The two perpendicular gears are allowed tomove together at a
certain rotational speed. Hence, the time taken for the cutting
tool to move from one hole to another hole is the longest of 𝑥
and 𝑦. By considering the above saidmachine characteristics,
the problem to be solved here is to find a sequence in which
the holes are to be drilled such that the tool travelling time
is minimized. The travelling time is the time required for the
machine to move from position 𝑖 to position 𝑗 and it depends
strongly on the machine characteristics. In practice, usually,
this travelling time cannot be computed exactly. Travelling
consists of three phases: accelerating the machine, running
at full speed, slowing down to a complete stop. For small
distances, full speed may not be reached and we may have
anomalies in the sense that a farther position can be reached
faster than a nearer position. Even if a timing function is
available it may be not accurate or so complicated that its
evaluation takes too long for large problem instances (where
we cannot store a distance matrix). Therefore, one has to be
satisfied with making reasonable approximations on the true
movement time. In this paper, the gears are taken to rotate at
the constant speed at all times. The formula to calculate the
travelling time for the drill to move from hole 𝑖 to hole 𝑗 is as
follows.
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Figure 1: Worktable movements for Case 1.

Case 1.

𝑡𝑖𝑗 =
󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗󵄨󵄨󵄨󵄨󵄨𝑉𝑥 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑗󵄨󵄨󵄨󵄨󵄨𝑉𝑦 , (1)

Case 2.

𝑡𝑖𝑗 = max(󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗󵄨󵄨󵄨󵄨󵄨𝑉𝑥 , 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑗󵄨󵄨󵄨󵄨󵄨𝑉𝑦 ) , (2)

where 𝑉𝑥 and 𝑉𝑦 are the linear velocities in the 𝑥 and 𝑦
directions, respectively.

For the first case, only one gear is allowed to turn at a time.
In actuality, the time taken for the drill to travel fromone hole
to another hole is the same regardless of which gear is tomove
first. But for simplicity, the 𝑥 gear is always chosen to move
first.When themovement in the 𝑥 direction is completed, the
worktable will continue to move in the 𝑦 direction as shown
in Figure 1. For the second case, both of the gears are allowed
to turn at the same time. Hence, the time taken for the travel
is dependent on the gear that requires more time to turn. If
the rotational speeds of the gears are the same, then the path
of the drill will be as shown in Figure 2. To further simplify
the problem, both 𝑉𝑥 and 𝑉𝑦 are taken to be the same, 𝑉𝑥 =𝑉𝑦 = 𝑉 as follows.

Case 1.

𝑡𝑖𝑗 = 1𝑉 (󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑗󵄨󵄨󵄨󵄨󵄨) . (3)

Case 2.

𝑡𝑖𝑗 = 1𝑉max (󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑗󵄨󵄨󵄨󵄨󵄨) . (4)

Unlike the classical TSP, drilling path optimization problem
does not need the cutting tool to return to its starting
position. This is because drilling five holes in the sequence
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Figure 2: Worktable movements for Case 2.

1→ 2→ 3→ 4→ 5 on a workpiece has the same distance
travelled and time taken as drilling five holes in the opposite
sequence 5→ 4→ 3→ 2→ 1. After the best route for the
cutting tool is found, say 3→ 4→ 5→ 1→ 2, the cutting tool
has to just drill all five holes and stop at the last hole and
reverse the sequence of drilling for the next workpiece, 2→
1→ 5→ 4→ 3. With this in mind, the objective function of
PCB drilling process can be expressed as

min
𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑡𝑖𝑗𝑥𝑖𝑗, (5)

subject to
𝑛∏
𝑖=1

max( 𝑛∑
𝑗=1
𝑥𝑖𝑗, 𝑛∑
𝑗=1
𝑥𝑗𝑖) = 1, (6)

where 𝑛 is the number of holes to be drilled. Let 𝑥𝑖𝑗 be the
decision variable related to the movement of the robotic arm
from hole 𝑖 to hole 𝑗. If there is a movement of the worktable
from hole 𝑖 to hole 𝑗, 𝑥𝑖𝑗 = 1; otherwise, 𝑥𝑖𝑗 = 0. The
constraint equation (6) ensures that every specified hole is
drilled and is only drilled once.

For solving this kind of problems, one of the simple
approaches is to list all the possible paths and then compare
all the path lengths to find out which one is the shortest.
Unfortunately, there are too many paths. The number of
possible paths increases if the number of holes in the PCB
increases. For example, if 10 holes are to be drilled in a PCB,
then the number of possible path is 3, 628, 800 (i.e., 10!/2)
and for 20 holes, there are 2, 432, 902, 008, 176, 640, 000 (i.e.,
20!/2) possible paths. Since the number of possible solutions
is increasing exponentially with the number of holes to be
drilled, it is time-consuming to exhaustively evaluate each
and every possible solution to obtain the best solution for
any problems of appreciable size. Thus, there is a need for
metaheuristics to solve these problems. Metaheuristics is not
guaranteed to obtain the best solution, but it is able to obtain
suboptimal solution in a reasonable time [27]. In this paper,
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combinatorial cuckoo search algorithm is proposed to find
the optimal solutions.

3. Combinatorial Cuckoo Search

In order to extend the cuckoo search for combinatorial
discrete optimization problems, let us briefly review the
interesting breed behavior of certain cuckoo species. Then,
we will outline the basic ideas and steps of the proposed
algorithm.

3.1. Cuckoo Search Behavior. Thecuckoo search (CS) is one of
the latest nature inspiredmetaheuristic algorithms developed
by Yang and Deb in 2009 [26]. It was inspired by the obligate
brood parasitism of some cuckoo species by laying their eggs
in the nests of other host birds (of other species). Some host
birds can engage in direct conflict with the intruding cuckoos.
For example, if a host bird discovers that the eggs are not
its own, it will either throw these alien eggs away or simply
abandon its nest and build a new nest elsewhere.

3.2. Lévy Flights. In nature, animals search for food in a
random or quasirandom manner. In general, the foraging
path of an animal is effectively a random walk because the
next move is based on the current location/state and the
transition probability to the next location. Which direction
it chooses depends implicitly on a probability which can be
modeled mathematically. For example, various studies have
shown that the flight behavior of many animals and insects
has demonstrated the typical characteristics of Lévy flights
[28].

A recent study by Reynolds and Frye [29] shows that
fruit flies or Drosophila melanogaster explore their landscape
using a series of straight flight paths punctuated by a sudden
90∘ turn, leading to a Lévy-flight-style intermittent scale-free
search pattern. Even light can be related to Lévy flights [30].
Subsequently, such behavior has been applied to optimization
and optimal search, and preliminary results show its promis-
ing capability [31].

3.3. Combinatorial Cuckoo Search Algorithm. We begin this
section with an overview of the proposed cuckoo search
algorithm. This is followed by a discussion of the original
cuckoo search algorithm, including detailed descriptions of
the solution encoding and decoding, evolutionary process,
fitness function evaluations, and implementation.

In the original cuckoo search for continuous problems,
three idealized rules are used by [26].

(i) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

(ii) Best nests with high quality of eggs (solutions) will be
carried over to the next generations.

(iii) The number of available host nests is fixed, and a
host bird can discover an alien egg with a probability𝑝𝑎 ∈ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a
completely new nest in a new location.

Based on these rules, the basic steps of the original
cuckoo search can be summarized and the corresponding
pseudocode is shown in Pseudocode 1.

For combinatorial problems, we modify the first and the
last rule to cater for our needs.

(i) The best cuckoo lays many eggs at a time and dumps
one egg in every nest.

(ii) All host birds lay one egg each at a time. Each time an
egg is laid, it differs from the existing egg by a fraction
of 𝑝𝑎 since eggs from the same host birds are similar
but not identical. If the new egg has a higher quality,
it will be hatched first and the host bird will discard
the alien egg. If the new egg has a lower quality, the
cuckoo eggwill be hatched first and the young cuckoo
will kick the new egg out of the nest.

In the original cuckoo search, only one egg is laid at
one time. According to the life style of cuckoo birds, each
cuckoo will lay more than one egg at a time in different
nests. For the combinatorial cuckoo search algorithm, the
cuckoo is vectorized, so that the best cuckoo can lay eggs
at every nest as stated in the first rule. When laying eggs
at different nests, the cuckoo will try to lay eggs that are
similar to the eggs of the host nest to reduce the possibility of
host birds discovering the alien egg. The second rule selects
the best solutions to be passed onto the next generation and
such selection ensures the algorithm converge properly. The
third rule can be considered as mutation with a fraction
of 𝑝𝑎 where new solutions are generated according to the
similarity solutions to the other solutions. These unique
features work in combination, ensuring the efficiency of the
proposed algorithm. Based on these three rules, the steps of
the combinatorial cuckoo search can be summarized and the
corresponding pseudocode is shown in Pseudocode 2.

3.3.1. Encoding of Solution Representation. Cuckoo search
was initially designed to solve continuous problems. In order
to apply it to discrete combinatorial problems, encoding of
solutions is needed. For drilling path optimization, encoded
solutions are represented as a vector of numbers in the range
of (−1, 1). To decode the encoded solution, the numbers are
sorted in an ascending order to represent the sequence of
holes to be drilled. In this paper we adopted the five principles
of encoding the solutions proposed by Gen and Cheng [32].
They are explained below.

(1) Nonredundancy. Mapping from encoding to solutions
may belong to one of the following three cases: 1-to-1
mapping, 𝑛-to-1 mapping, and 1-to-𝑛 mapping. The encod-
ing method used in this paper is 𝑛-to-1 mapping. For
example, an encoded solution for a five-hole problem is[0.34 −0.09 0.88 −0.66 0.91].The tour for the drill would
be the ascending order of the numbers [4 2 1 3 5]. Let
us say that a random walk is performed on the encoded
solution and yields [0.11 0.03 0.75 −0.39 0.85]. Although
the random walk did not change the order of the holes to
be visited, the random walk brought the numbers of the first
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begin
Objective function 𝑓(𝑥)
Generate initial population of 𝑛 host nest
Evaluate fitness and rank eggs
while (𝑡 >MaxGeneration) or Stop criterion𝑡 = 𝑡 + 1

Get a cuckoo randomly/generate new solution by Lévy flights
Evaluate quality/fitness, 𝐹𝑖
Choose a random nest 𝑗
if (𝐹𝑖 > 𝐹𝑗)

Replace 𝑗 by the new solution
end if
Worst nest is abandoned with probability 𝑃𝑎 and new nest is built
Evaluate fitness and Rank the solutions and find current best

end while
Post process results and visualization

end

Pseudocode 1: Pseudocode of the cuckoo search algorithm.

begin
Evaluation Matrix
Objective function 𝑓(𝑥);
Generate initial population of 𝑛 host nest;
Evaluate fitness and rank eggs;
while (𝑡 >MaxGeneration) or Stop criterion𝑡 = 𝑡 + 1

Best cuckoo performs Lévy flights and lay eggs (say 𝑥new) in all nests;
Evaluate quality/fitness, 𝐹𝑥new ;
if (𝐹𝑥new < 𝐹𝑥)

Replace current solution with new solution
end if
New eggs (say 𝑥new) are laid by host birds via Lévy flights

with a mutation fraction of 𝑃𝑎;
Evaluate quality/fitness, 𝐹𝑥new ;
if (𝐹𝑥new < 𝐹𝑥)

Replace current solution with new solution
end if
Rank the solutions and find current best

end while
Post process results and visualization
end

Pseudocode 2: Pseudocode of the combinatorial cuckoo search algorithm.

two holes closer to each other, making the next iteration of
random walk more probable for them to switch places.

(2) Legality. The permutations of an encoding should corre-
spond to a solution. In our case, whichever way the order of
the numbers in the encoded solution turns out would also
yield a legal solution.

(3) Completeness. The encoding should allow all possible
solutions in the search space to be accessible for the search
operation. In our case, all solutions in the search space can be
encoded.

(4) Lamarckian Property. Lamarckian property is simply the
property of each solution being able to relate to one another
regardless of the context. For example, two cuckoo eggs
could have a solution of [0.44 0.21 −0.23 −0.01 0.91]
and [0.08 0.21 − 0.03 0.14 − 0.66], respectively. The
tour for these two solutions would be [3 4 2 1 5] and[5 3 1 4 2]. In the former solution, 0.21 means that the
second hole is to be drilled third. Even though in the second
solution 0.21 is in the same position as the first solution,
0.21 in the second solution means that the second hole is
to be visited last. In this case, the solution representation
is said to be no Lamarckian property. To overcome this
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Figure 3: Description of the points to be drilled.

problem, the numbers in the second egg are changed to
follow the values in the first egg yet not altering the tour. In
this case, the solution of the second egg will be changed to[0.21, 0.91 −0.01 0.44 −0.23] before applying any search
operators.This technique induces Lamarckian property as the
context will be the same.

(5) Causality. It is also important to have a strong causality
where a small change in the encoded solutions gives a
small change in the decoded solutions. This will prevent the
neighborhood structure of the solutions to be destroyed with
just a small change. In our case, the encoded solution exhibits
strong causality as the change of an element of a vector is not
destroying the neighborhood structure.

3.3.2. Evaluation Matrix. The evaluation matrix is defined as
an 𝑛 × 𝑛 matrix of the holes being drilled (where 𝑛 is the
number of holes to be drilled) for which we seek the optimal
drill path to reduce the travelling time for table movements.
The distances between every two points are computed to
generate the evaluation matrix.

For a simple drilling path optimization problem of 5
holes in a component as shown in Figure 3, to be drilled
using a CNC drilling machine such that the coordinates for𝑥 = [1, 3, 5, 3, 1] and 𝑦 = [2, 1, 2, 3, 4]. The corresponding
evaluationmatrix for worktable movements (Case 1 and Case
2) are shown in the following matrices, respectively.

Evaluation matrix for Case 1 is as follows:

[[[[[
[

034
303

430
323

25632 25 36 03 30
]]]]]
]
. (7)

Evaluation matrix for Case 2 is as follows:

[[[[[
[

024
202

420
222

23422 23 24 03 20
]]]]]
]
. (8)

3.3.3. Initial Population. The initial population of the eggs
is randomly generated with a range of (−1, 1). Of course,

any randomization can be applied here. But we use random
numbers drawn from the standard normal distribution and
limit to (−1, 1) by taking only the sign and the decimal part
of the numbers.

3.3.4. Fitness Evaluation. As mentioned earlier, the encoded
solution will be sorted in an ascending order to represent
the sequence of holes to be drilled. However, for evaluating
the fitness, the first hole will be repeated again at the end
of the sequence. The distances between each of the holes
are calculated and added together, and the longest distance
among all the distances will be subtracted to represent
the distance travelled. This is done because the drill bit
does not need to travel back to its starting position. The
corresponding hole to the subtracted distance becomes the
starting position. The pseudocode for fitness evaluation is
given in Pseudocode 3.

3.3.5. Best Cuckoo Lays Eggs in All Nests. Lévy flight is
performed to generate new solution stochastically:

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝛼 ⊕ Lévy (𝛽) , (9)

where 𝛼 > 0 is the step size which should be related to the
scale of the problem of interest. In order to accommodate the
difference between solution qualities, in this paper we adopt
the same value used by Yang and Deb [33]:

𝛼 = 𝛼0 [𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)] , (10)

where 𝛼0 is a constant, while the term in the bracket
corresponds to the difference of two selected solutions. This
mimics the fact that similar eggs are less likely to be discov-
ered and newly generated solutions are proportional to their
differences. The product ⊕ means entrywise multiplication.
Lévy flight is essentially aMarkov chain in which the random
steps are drawn from the Lévy distribution [27].

The generation of the Lévy distribution can be achieved
by Mantegna’s algorithm. Mantegna’s algorithm produces
random noise according to a symmetric Lévy stable distri-
bution [33]. A symmetric Lévy stable distribution is ideal for
Lévy flights as the direction of the flight should be random
[27].

InMantegna’s algorithm, the step length can be calculated
by

Lévy (𝛽) ∼ 𝑢|V|1/𝛽 , (11)

where 𝑢 and V are drawn from normal distributions. That is,

𝑢 ∼ 𝑁(0, 𝜎2𝑢) , V ∼ 𝑁(0, 𝜎2
V
) ,

𝜎𝑢 = { Γ (1 + 𝛽) sin (𝜋𝛽/2)Γ [(1 + 𝛽) /2] 𝛽2(𝛽−1)/2}
1/𝛽, 𝜎

V
= 1, (12)

where the distribution parameter 𝛽 ∈ [0.3, 1.99] [34].
For the best cuckoo laying eggs, the step size, 𝛼, used is

𝛼 = 𝛼𝑐 [bestnest (𝑡) − 𝑥𝑖 (𝑡)] , (13)

where 𝛼𝑐 is a constant.
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Input: 𝑥[∼, sol] = sort(𝑥);
sol = [sol, sol(1)];
fitness = 0;
longest = 0;
For 𝑖 = 1: number of holes

fitness = fitness + distance between holes 𝑖 and 𝑖 + 1;
if longest < distance between holes 𝑖 and 𝑖 + 1

longest = distance between holes 𝑖 and 𝑖 + 1;
position = 𝑖;

end if
end for
if position ∼= number of holes

sequence = [sol(position + 𝑖: end − 1), sol(1: position)];
else

sequence = sol (1: end − 1);
end if

Pseudocode 3: Pseudocode for fitness evaluation.

Input: 𝑥, bestnest[𝑥 sort] = sort(𝑥);[∼, temp] = sort(bestnest);[∼, bestnest sequence] = sort(temp);
bestnest = 𝑥 sort(best sequence);

Pseudocode 4: Pseudocode for inducing Lamarckian property.

T
o

ta
l 

ti
m

e 
re

q
u

ir
ed

Generations

390

380

370

360

350

340

330

320

0 20 40 60 80 100

Figure 4: The convergence curve for workpiece 1.

To induce the Lamarckian property, the value of the
best nest is altered to match the values in each nest. The
implementation of this is in Pseudocode 4.

3.3.6. Host Birds Lay Eggs. New eggs laid by host birds are
generated using the Lévy flights:

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝐾 ⊕ 𝛼 ⊕ Lévy (𝛽) , (14)
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Figure 5: The convergence curve for workpiece 2.

where𝐾 is a vector of 0 and 1.The value of each𝐾 is obtained
with

𝐾 = {1 if rand < 𝑝𝑎0 else,
(15)
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Figure 6: The convergence curve for workpiece 3.

where rand is the random number obtained from a uniform
distribution in the range of [0, 1]. The step size, 𝛼, used is

𝛼 = 𝛼ℎ [𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)] , (16)

where 𝛼ℎ is a constant, and both 𝑥𝑖 and 𝑥𝑗 are randomly
selected nests from the population. The same method that is
in Pseudocode 4 is used to induce Lamarckian property for
both of the randomly chosen nests.

4. Implementation and Verification

The proposed CS algorithm is implemented in MATLAB
R2011b on Intel Core 2 CPU 6600@2.40GHz with 2.00GB
RAMand 32-bit processor.The performance of the algorithm
is verified by solving three case study problems taken from
the literature, namely, workpieces 1 and 2 [9] and workpiece
3 [8]. The algorithm parameters, 𝑝𝑎, 𝛼𝑐, and 𝛼ℎ, are varied
with a range of [0, 1], [0, 2], and [0, 2], respectively, with𝐺 = 4000 and 𝑛 = 50, and fine-tuned using the original
CS. From test phase simulations, we found that the optimal
values for the parameters are 𝑝𝑎 = 2/(number of holes − 2)
and 𝛼𝑐 = 3/number of holes, respectively. Generally, 𝛼ℎ is
best to be in the range of [1, 2] but does not affect the quality
of the solutions drastically.

In solving the case study problems, (3) and (4) are used as

the evaluation function of the algorithmwhen𝑉 = 1mms−1;
parameters were fixed as 𝑝𝑎 = 2/(number of holes − 2), 𝛼𝑐 =3/number of holes, and 𝛼ℎ = 1; set the generation number
to 10 000 for workpiece 1 and workpiece 2 and 20 000 for
workpiece 3; set the population number to 50 for workpiece
1 and workpiece 2 and 100 for workpiece 3. The algorithm
was run for 1000 times and the results were taken. The data
verification results of workpiece 1 (10 holes problem) and
workpiece 2 (15 holes problem) used by Zhu and Zhang [9]
and workpiece 3 (50 holes problem) taken from [8] for both
cases are shown in Tables 1, 2, and 3, respectively.

From Tables 1, 2, and 3, it is worthwhile to mention that
there is an enormous saving in time of 87.3 seconds, 60.0

Table 1: Verification results for workpiece 1.

Parameters
Worktable movements

Case 1 Case 2

The least iteration number during global
convergence

1 1

The average iteration number during global
convergence

18 13

The most iteration number during global
convergence

57 40

The optimal time required 322.5 235.2

Table 2: Verification results for workpiece 2.

Parameters
Worktable movements

Case 1 Case 2

The least iteration number during global
convergence

23 30

The average iteration number during global
convergence

429 375

The most iteration number during global
convergence

2349 2092

The optimal time required 280.0 220.0

Table 3: Verification results for workpiece 3.

Parameters
Worktable movements

Case 1 Case 2

The least time required 1489.742 1119.706

The average time required 1805.262 1338.650

The most time required 2037.243 1487.126

Percentage error for the least time required 2.02% 1.06%

Percentage error for average time required 23.63% 20.82%

Percentage error for most time required 39.52% 34.23%

The optimal time required 1460.216 1107.927

seconds, and 370.0 seconds in workpieces 1–3, respectively.
Previous researchers mostly followed Case 1 in drilling path
optimization. The optimal sequence obtained by CS for the
threeworkpieces in both cases is shown inTable 4.The results
obtained using CS are compared with PSO [9] and ACS [10]
for workpiece 1 andworkpiece 2 and presented in Tables 5 and
6.

For the CS algorithm, population number of 50 searches
100 solutions in one iteration. Hence, for a more meaningful
comparison, the search ratio is used rather than the number
of iterations.

The search ratio equation is described as

Total searched solutions

Solution space
= Search ratio. (17)

According to (17), the least search ratio is simply the ratio
between the least iteration number during global conver-
gence and the solution space, while the average search ratio is
the ratio between the average iteration number during global
convergence and the solution space. It is well known from
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Table 4: Optimal sequence obtained by CS for the three workpieces.

Case study problem Optimal sequence

Workpiece 1 (10-hole problem)

Case 1 3 2 1 6 7 8 5 4 9

Case 2 3 2 1 6 7 8 5 4 9

Workpiece 2 (15-hole problem)

Case 1 10 11 12 9 6 5 1 2 3 4 7 8 13 14

Case 2 1 5 6 4 2 3 7 9 11 10 12 8 13 14

Workpiece 3 (50-hole problem)

Case 1
2 39 40 41 37 38 32 31 34 33 35 36 30 29 27 28 25 26 48 47 45 44 43
46 24 21 22 23 19 20 14 15 16 17 18 13 8 7 10 9 11 12 2 1 4 3 5 6 49

Case 2
6 45 44 43 48 47 26 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
42 1 2 3 4 5 6 49 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Table 5: Performance comparison of CS with variants of PSO on workpiece 1.

Basic PSO GC PSO CS𝜔 = 1.0 𝜔 = 0.0 𝜔 = 0.5 𝜔 = 1.0 —

Population number 100 100 100 100 50

The least iteration number during global convergence 9 1 5 4 1

The average iteration number during global convergence 20 1251 646 1620 18

The least number of solutions searched 900 100 500 400 100

The average number of solutions searched 2000 125100 64600 162000 1800

The least search ratio 4.96𝐸 − 1% 5.51𝐸 − 2% 2.76𝐸 − 1% 2.20𝐸 − 1% 5.51𝐸 − 2%
The average search ratio 1.10% 68.9% 35.6% 89.3% 9.92𝐸 − 1%
Length of optimal path (mm) 322.5 322.5 322.5 322.5 322.5

Table 6: Performance comparison of CS with variants of PSO and ACS on workpiece 2.

Basic PSO GC PSO ACS CS𝜔 = 1.0 𝜔 = 0.0 𝜔 = 0.5 𝜔 = 1.0 — —

Population number 100 100 100 100 25 50

The least iteration number during global convergence 93 815 10 110 193 23

The average iteration number during global convergence 847 3806 1620 1764 1037 429

The least number of solutions searched 9300 81500 1000 11000 4825 2300

The average number of solutions searched 84700 380600 162000 176400 25925 42900

The least search ratio 2.13𝐸 − 5% 1.87𝐸 − 4% 2.29𝐸 − 6% 2.52𝐸 − 5% 1.11𝐸 − 5% 5.28𝐸 − 6%
The average search ratio 1.94𝐸 − 4% 8.73𝐸 − 4% 3.72𝐸 − 4% 4.05𝐸 − 4% 5.95𝐸 − 5% 9.84𝐸 − 5%
Length of optimal path (mm) 280.0 280.0 280.0 280.0 280.0 280.0

Tables 5 and 6 that the CS has an average search ratio of
0.248% and 0.000 001 32% for workpiece 1 and workpiece
2, respectively. For workpiece 1, the CS performs well in all
aspects. For workpiece 2, CS has the least average iteration
during global convergence. The rate of convergence of CS
algorithm for workpieces 1–3 can be seen in Figures 4, 5, and
6, respectively.

5. Conclusion

In this paper, combinatorial cuckoo search algorithm was
proposed and implemented for PCB holes drilling route
optimization problems with objective to minimize the time
taken of the route chosen by the CNCmachine.The proposed

CS is quite straightforward and easy to implement. A number
of experiments were carried out to fine-tune the CS algorithm
parameters. The performance of the proposed algorithm is
tested and verified with three case studies from the literature.
The computational experience conducted in this research
indicates that the proposed algorithm is capable of efficiently
finding the optimal path for PCB holes drilling process.
The results obtained indicate that the CS algorithm has the
characteristics of easy realization, fast convergence speed,
low search ratio, and better global converging capability.
Despite already obtaining promising results, further works
might include hybridizing with other algorithms like genetic
algorithm to improve global exploration to handle larger size
problems.
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