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We present a performance enhancement evaluation of n + doped graded InGaN drain/source region-
based HfO,/InAIN/AIN/GaN/AIN on SiC metal-oxide-semiconductor high electron mobility transistor
(MOS-HEMTs) with a T-shaped gate. Impact on the device characteristics with the inclusion of a HfO,
surface passivation layer and an AIN buffer layer in the MOS-HEMT structure as a performance booster
has been analyzed for the HEMT device with 30 nm gate length using Silvaco ATLAS TCAD. The proposed
MOS-HEMT exhibits an outstanding performance, with an enhanced power gain cut-off frequency (fimax)
of 366 GHz, a current gain cut-off frequency (f;) of 426 GHz, and a off-state breakdown voltage (V) of

K ds: i . e . . . .

Jggfg}_jﬂ 81 V. The high-k (high permittivity) HfO, based metal oxide semiconductor HEMT device experiences a
HfO, low off-state gate leakage current (I ~ 107 "'A/mm) and a high Ion/lofr ratio of 10°. The InAIN/GaN/AIN
JFoM heterostructures demonstrate improved two-dimensional electron gas (2DEG ~ 5.3 x 1013 cm’z), carrier

mobility (p) of 1256 Cm?/V-s and drain current density of (Igs) 2.7 A/mm. A large signal analysis per-

formed at 30 GHz yielded a maximum of 28% power-added efficiency. The high JFoM of 34.506 THz V

(Johnson Figure of Merit = f; x Vp;) and (fofimax)!/? of 394.86 GHz indicate the potential applicability of

the HfO,/InAIN/GaN MOS-HEMTs in high-frequency and high-power applications.

© 2020 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

IlI-Nitride based power transistors are attractive devices for
millimetre-wave high-power and high-frequency applications.
AlGaN/GaN-based high electron mobility transistors have demon-
strated an outstanding power performance of 30 W/mm at 4 GHz
[1]. Recent challenges in IlI-Nitride based HEMT are their poor
operating frequencies in sub-millimeter wave frequencies for sat-
ellite, advanced radars, and broadband wireless communications.
The realization of ultrathin-barrier based AlGaN/GaN hetero-
structures has remained a challenging task because of surface
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depletion effects [2] and physical damage in the recessed gate [3].
To achieve high frequency and high voltage operation of GaN-based
HEMTS, a trade-off between current gain cut-off frequency (f;) and
maximum oscillation frequency (fiax) for breakdown voltage must
be considered. Ingi7Algg3N/GaN-based lattice-matched hetero-
structures have demonstrated a stronger polarization, good ther-
mal stability, and a high drain current density [4—6]. InAIN barrier
based IlI-Nitride HEMT possessed cut-off frequencies (fy and fiax)
of more than 300 GHz [7]. Ultra scaled InAIN barrier layer (3 nm)
based HEMTs have shown an excellent thermal stability [8] and
InAIN/GaN-based HEMTs reported in the last decade, reached a
5 W/mm output power at 35 GHz [9] and 40 GHz [10].

In spite of the remarkable improvement in the operating fre-
quency, InAIN based HEMTs suffer from leakage currents and low
breakdown voltage [11], severe short channel effects, and contact

2468-2179/© 2020 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an open access article under the CC BY license
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resistances [12]. In particular, InAIN based HEMTs have shown high
buffer leakage currents at high temperatures. InAIN/GaN HEMT on
SiC substrate has shown the higher performance compared to
HEMTs on other substrates. Despite the high-frequency perfor-
mance of GaN-based HEMT demonstrated in refs [13,14], the de-
vices experienced severe short channel effects and gate leakage
current for the sub-50 nm gate length. Several research groups have
investigated metal oxide semiconductors high electron mobility
transistors (MOS-HEMTSs) using various oxide layers such as SiO2,
Al;03, HfO,, MgCaO and La,0s3 for improving the device perfor-
mance by suppressing gate leakage currents [15—22].

At high drain bias, the device performance gets degraded from
its dynamic on-resistance, also known as current collapse and
surface traps, which act as a “virtual gate” in the gate to drain access
region. This prevents a proper operation of the device and reduces
the available current swing as well as degrades the knee voltage
[23]. For the nano-scale device dimension, the device experiences
more current collapse due to the reduced gate-drain distance,
which magnifies the surface traps effects. It is also very difficult to
maintain uniform electric field distribution between the drain and
gate space for obtaining a proper breakdown voltage as the device
dimension scaled-down. A field plate gate structure effectively re-
duces the dispersion phenomena [24]. The field plate structure
reduces the current collapse and enhances the breakdown voltage
of the device by maintaining a low electric field at the gate to drain
edge [25]. However, the field plate increasing the parasitic capaci-
tance (Cgq), indicates the high-frequency performance (the current
gain cut-off frequency f; and the power gain cut-off frequency fnax)
of the device are limited due to (Rs + Rq)Cgq parasitic charging delay
[26—28]. Therefore, the field plate technique limits the design of
power amplifiers and MMICs for high-frequency bands such as V
and W bands.

The objective of this work is to optimize the device structure for
a simultaneous improvement of f;/fh.x and the breakdown voltage
(Vpr). In this article, we propose a T-gate HfO,/InAIN/GaN/AIN on
SiC substrate. The device surface is passivated by a high-k HfO,
layer for improving the breakdown voltage of the device by
reducing the parasitic capacitance (Cgq). The graded InGaN
n + source/drain region reduces the contact resistances. Introduc-
tion of high-k (high permittivity) passivation layer smoothens the
electric field between the drain and the gate access region. The
introduction of the AIN back-barrier suppresses the off-state sub-
threshold gate and drain leakage currents, thereby enhancing the
breakdown voltage of the device.

2. HfO,/InAIN/GaN/AIN MOS-HEMT device description and
band diagram

The cross-section view of the proposed HfO,/InAIN/AIN/GaN
MOSHEMT is shown in Fig. 1(a). The MOSHEMT consists of 350 nm
AIN buffer, 30 nm GaN channel, 6 nm Ing13Alp g3N barrier and 3 nm
high dielectric constant HfO, as an oxide layer (k~20—25). The HfO,
oxide layer is used in this MOS-HEMT for controlling the gate
leakage current and for the high breakdown voltage [29]. The near
lattice-matched Ing13Algg3N/GaN heterostructures offer a high
two-dimensional electron gas density with high mobility [30]. An
1 nm AIN wide-bandgap (6.02 eV) spacer layer is sandwiched be-
tween the barrier and channel layer for improving the electron
concentration in the two-dimensional electron gas (2DEG). The
alloy scattering is lowered because of the AIN binary compound and
also the quantum well depth is increased. As a result, the electron
mobility in the channel is increased, thus improving the current
[31]. The large bandgap AIN binary compound used as a buffer in
this work, which provides larger polarization fields and an effective
band offset, allowing for the aggressive scaling of the device

dimensions and maximum 2DEG confinement, as compared to a
conventional GaN or an AlGaN buffer. The high thermal conduc-
tivity (~340 W/mK) of AIN provides a good thermal management
[32]. A50 nm graded n + InGaN (Si ~ 2 x 10! em~3) source and the
drain region are formed for low contact resistances. A distance
between the source and the drain is 270 nm, and a Ti/Au (50/50 nm)
metal stack is used as ohmic contacts. A T-shaped gate with 30 nm
foot length (Lg) and 2 x 20 um gate width (w), 140 nm stem height
and 400 nm head size is designed, which lift-off a wide cross-
sectional gate area with small gate lengths for alleviating the gate
access resistance [33], and Schottky contact is made for the gate
using a Ni/Au (50/50 nm) stack. A 40 nm HfO, passivation layer is
deposited over the device surface for low parasitic capacitances. A
high ~ k passivation layer unfastens the dispersion effects which
provides a root to achieve the good transport property in the 2DEG.

A TCAD simulation-based energy band diagram is shown in
Fig. 1(b). As shown in the band diagram, the InAIN/AIN/GaN/AIN
quantum well creates a high conduction band-offset and increases
the quantum well depth for formation at the top of AIN/GaN het-
erojunction. The high-k HfO, insulating layer creates a 2.3 eV
conduction band-offset (CBO) with InAIN, which helps in sup-
pressing the gate leakage current more effectively as compared to
other low-k insulator based MOS-HEMTs. AIN back-barrier miti-
gates the buffer leakage currents by offering large barrier height. At
room temperature the simulation results have shown 2DEG (ns) of
5.3 x 10" cm~2 and carrier mobility (1) of 1256 cm?V~'s~! for the
proposed HEMT structure.

3. Results and discussion

The drain current (DC) characteristics of the 30 nm gate length
HfO,/InAIN/GaN/AIN based heterostructure are shown in Fig. 2(a).
The simulated device delivers a peak current density of 2.7 A/mm
for Vgs = 0 V. The output conductance (gqs) of 35 mS/mm extracted
from the saturation region of the output characteristics. The ob-
tained result is superior to that of a rectangular gate SiO,/InAIN/
GaN HEMT without back-barrier structure [34], as shown in
Fig. 2(b). The simulation results for the transfer characteristics of
the proposed HfO,/InAIN/GaN/AIN HEMT and the experimentally
fabricated SiO,/InAIN/GaN MOS-HEMT [34] are shown in Fig. 3(a)
and Fig. 3 (b), respectively. The extracted threshold voltage (V) of
the proposed HEMT device is —5.8 V from the linear scale plot. At
Vgs = 3V, the proposed T-gate HfO,/InAIN/GaN/AIN HEMT yielded
2.5 A/mm at a zero gate bias, whereas the 1.7 A/mm drain current
density was demonstrated by a rectangular gate SiO,/InAIN/GaN
MOS-HEMT without back-barrier [34].

High power operation of the nano-scale IlI-Nitride at
millimetre-wave spectrum can be ensured by suppressing the
leakage currents in the device. This prevents the device from sub-
optimal breakdown and helps the device achieve a higher break-
down voltage. Buffer leakage current is reduced by the AIN blocking
layer (buffer) and HfO, high-k gate dielectric minimizes the gate
leakage current. The proposed HfO,/InAIN/GaN/AIN MOS-HEMT
breakdown analysis is shown in Fig. 4. The device exhibited an
off-state breakdown voltage of 81 V for Lg ~30 nm. Rectangular gate
SiO/InAIN/GaN MOS-HEMT without back-barrier exhibited a 61 V
breakdown voltage for Ly ~30 nm.

The off-state leakage current for the proposed ultra scaled HfO,/
InAIN/GaN/AIN MOS-HEMT is reduced to ~10~!! A/mm using a
high-k dielectric HfO, insulator, as shown in Fig. 5(a) and a sub-
threshold slope (SS) of 35 mV/decade is extracted from the log-
scale plot at Vq = 3 V and Vg swept from —6 V to 0 V. A good Iopn/
Ioff ratio of 10°, which is superior to that of a conventional GaN
channel based MOS-HEMT [34] shown in Fig. 5(b), resulting from
the ultra-thin InAIN barrier (6 nm) with AIN superlative back-
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Fig. 1. (a). A HEMT structure; (b) Bandgap diagram.
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Fig. 2. (a) Drain current characteristics of the proposed HfO,/InAIN/GaN/AIN MOS-HEMT. (b) Drain current characteristics of the experimentally reported SiO,/InAIN/GaN MOS-

HEMT [34].

barriers. Whereas, the rectangular gate structure SiO,/InAIN/GaN
MOS-HEMT without back-barrier [34] experienced an off-state gate
leakage current of ~10~7 and Iop/lof ratio of 107 [34].

Despite tremendous research progresses that have been made
during recent years, further increasing the frequency of the GaN-
based HEMT for next-generation high speed and high power sub-
millimeter wave device applications is still needed. The current
gain frequency (f;) and the power gain (fhax) cut-off frequency of
the FET are expressed as follows [35]:

gim
fi= (2m) (1)
[Cgs + Cga- {1 + Rs,;;fd} + Cyq-8m-(Rs + Rd)]
1 Cg+Cy Ces \ Za
T=s—r=—" L Cy.(Rs+Ry). |1+ [14+2 | 25 2
o, od-(Rs +Ry) Cot) gm (2)

fe
2 \/ (Rs + Re)8as + 27fiRgCyq

For high power gain with high-frequency operation, f,x is a
primary source. For enhancing fihax, the parasitic resistances such as
gate resistance (Rg), drain resistance (Rq), source resistance (Rs),
gate to drain capacitance (Cgq), and gate-source capacitance (Cg;s)
need to be reduced.

An ultra-scaled device with the T-gate HfO,/InAIN/GaN/AIN
heterostructure with HfO, passivation is beneficial for enhancing
transconductance and high-frequency operation of GaN-based
HEMTs by minimizing the parasitic resistances (Rg) and capaci-
tances (Cgs + Cgq). The simulation result of the transconductance
variation with gate bias is displayed in Fig. 6 (a) and the maximum
0f 0.92 S/mm reached at Vg = —1.8 V, whereas, the rectangular gate
structure SiO,/InAIN/GaN MOS-HEMT without back-barrier recor-
ded 0.653 S/mm [34] is depicted in Fig. 6 (b).

The extracted parameters from the small-signal equivalent cir-
cuits of HEMT, transconductance (gm), drain conductance (ggs),

Jmax= (3)
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Fig. 3. (a) Transfer characteristics of the proposed HfO,/InAIN/GaN/AIN MOS-HEMT; (b) Transfer characteristics of the experimentally reported SiO,/InAIN/GaN MOS-HEMT [34].
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gate-source capacitance (Cgs), gate-drain capacitance (Cgq), source
resistance (Rg), drain resistance (Rq), Sheet resistance (Rgy) and on
resistance (Rop) of the 30 nm T-gate HfO,/InAIN/GaN/AIN MOS-
HEMT with n + source and drain regions are 0.92 S/mm, 35 mS/
mm, 572 fF/mm, 84 fF/mm, 0.12 Q-mm, 0.15 Q-mm, 421 Q/sqr and
0.32 Q-mm, respectively.

The small-signal gain characteristics of the T-gate HfO,/InAIN/
GaN/AIN MOS-HEMT is displayed in Fig. 7(a) at a peak g, gate bias.
A maximum cut-off frequency fi/fnax of 426/366 GHz obtained by
extrapolating current gain and power gain. The rectangular gate
structure  SiO2/InAIN/GaN MOS-HEMT without back-barrier
demonstrated fi/fihax of 400/33 GHz [34], as shown in Fig. 7(b).

The large-signal analysis of the T-gate HfO,/InAIN/GaN/AIN
MOS-HEMT is performed for 30 GHz, and the corresponding input
power (dBm), output power (dBm), and power gain (dB) relation-
ship are displayed in Fig. 8(a). The rectangular gate structure SiO»/
InAIN/GaN MOS-HEMT large-signal characteristics are also dis-
played in Fig. 8(b) for comparison.

The power-added efficiency (PAE) (%) variation with input po-
wer is displayed in Fig. 9 for the T-gate HfO,/InAIN/GaN/AIN MOS-
HEMT. Simulation results show that the maximum power-added
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Fig. 5. (a) Gate leakage and drain leakage current characteristics of the proposed HfO,/InAIN/GaN/AIN MOS-HEMT. (b) Gate leakage and drain leakage current characteristics of the

experimentally studied SiO,/InAIN/GaN MOS-HEMT [34].
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Fig. 6. (a) Transconductance variation with gate bias for the proposed HfO,/InAIN/GaN/AIN MOS-HEMT. (b) Transconductance variation with gate bias for the previously reported

Si0,/InAIN/GaN MOS-HEMT [34].
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Fig. 8. (a) Large-signal performance of the proposed HfO,/InAIN/GaN/AIN MOS-HEMT. (b) Large-signal performance of the SiO,/InAIN/GaN MOS-HEMT [34].

efficiency of 28% demonstrated by the proposed MOS-HEMT. 21% of
power added efficiency (PAE) was obtained from the SiO./InAIN/

GaN MOS-HEMT [34].

The proposed T-gate HfO,/InAIN/GaN/AIN MOS-HEMT enables
very low output conductance (gqs), suppressed short channel effect
(SS), good Ign/lofr ratio, improved breakdown voltage (Vp;), low



P. Murugapandiyan et al. / Journal of Science: Advanced Materials and Devices 5 (2020) 192—198 197

30
g ]
? -
8 25
2 1
E ]
1 .—l"r.'.-'
T 20 e
3 ] -~
< ]
o | —=— This work
2 15
c 1 = Exp[34]
10 T T T T T T T T T T T T T T T T T T T
5 10 15 20 25
P
in BM

Fig. 9. Power added efficiency of the proposed HfO,/InAIN/GaN/AIN MOS-HEMT in
comparison with that of SiO,/InAIN/GaN MOS-HEMT [34].

leakage current (Ig), and a significant improvement in small signal
and large signal characteristics. Moreover, the current collapse and
kink effects are not found in the DC characteristics of the proposed
MOS-HEMT. The cut-off frequencies are enhanced by T-shape with
a tall stem gate structure, which offered additional gate structure
and reduced gate resistance and capacitance.

4. Conclusion

The HfO,/InAIN/AIN/GaN MOS-HEMT for high power
millimetre-wave applications has been proposed, and its DC, RF and
high power characteristics have been analyzed using the physics-
based Silvaco ATLAS TCAD. The T-gated InAIN/GaN HEMT with
AIN back-barrier improves the device performance as a result of the
enhanced breakdown, small-signal and large-signal characteristics.
The optimized device structure achieved the high current density,
low leakage current and high I,/Iosf ratio. The power and frequency
characterization of the device proved its exemplary performance
through the achievement of the excellent off-state breakdown
voltage of 81V, and fi/fiax 0f 426/366 GHz. The large signal analysis
of the HEMT stack performed at 30 GHz yielded a maximum power-
added efficiency of 24%. The high-performance simulation results
(JFoM = 34.506 THz V and (fi.fmax)!/?> = 394.86 GHz) indicate that
the proposed HfO,/InAIN/GaN/AIN based IlI-Nitride HEMT is a
suitable device for modern high power millimeter-wave
electronics.
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