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ABSTRACT

The pandemic of Coronavirus Disease-19 (COVID-19) has spread around the

world, causing an existential health crisis. Automated detection of COVID-19

infections in the lungs from Computed Tomography (CT) images offers huge

potential in tackling the problem of slow detection and augments the conventional

diagnostic procedures. However, segmenting COVID-19 from CT Scans is

problematic, due to high variations in the types of infections and low contrast

between healthy and infected tissues. While segmenting Lung CT Scans for

COVID-19, fast and accurate results are required and furthermore, due to the

pandemic, most of the research community has opted for various cloud based

servers such as Google Colab, etc. to develop their algorithms. High accuracy can

be achieved using Deep Networks but the prediction time would vary as the resources

are shared amongst many thus requiring the need to compare different lightweight

segmentation model. To address this issue, we aim to analyze the segmentation

of COVID-19 using four Convolutional Neural Networks (CNN). The images in

our dataset are preprocessed where the motion artifacts are removed. The four

networks are UNet, Segmentation Network (Seg Net), High-Resolution Network

(HR Net) and VGGUNet. Trained on our dataset of more than 3,000 images, HR Net

was found to be the best performing network achieving an accuracy of 96.24% and a

Dice score of 0.9127. The analysis shows that lightweight CNN models perform

better than other neural net models when to segment infectious tissue due to

COVID-19 from CT slices.
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INTRODUCTION
During the winter months December 2019, a highly contagious disease out broke in

Wuhan, China (Zhu et al., 2020; Liu et al., 2020). High grade fever and other flu like

symptoms were noticed, and most of the patients developed pneumonia. The pathogen

causing the disease was identified as corona virus, and named as Severe Acute Respiratory

How to cite this article Iyer TJ, Joseph Raj AN, Ghildiyal S, Nersisson R. 2021. Performance analysis of lightweight CNN models to

segment infectious lung tissues of COVID-19 cases from tomographic images. PeerJ Comput. Sci. 7:e368 DOI 10.7717/peerj-cs.368

Submitted 3 November 2020

Accepted 3 January 2021

Published 22 February 2021

Corresponding author

Ruban Nersisson, nruban@vit.ac.in

Academic editor

Marcin Woźniak

Additional Information and

Declarations can be found on

page 18

DOI 10.7717/peerj-cs.368

Copyright

2021 Iyer et al.

Distributed under

Creative Commons CC-BY 4.0



Syndrome Corona Virus-2 (SARS-CoV-2) (World Health Organization, 2020). The disease

caused by the virus is named by World health Organization (WHO) as Corona Virus

Disease (COVID-19). WHO also declared COVID 19 spread as Global public health

emergency (World Health Organization, 2020). As of 9th May 2020, more than 200

countries around the world are affected by COVID-19. There are around 4 million

people affected by the disease worldwide with a mortality rate of 6% (around 2.75 million

people lost their lives). Developed countries like US, Europe and most of the developing

countries are suffering a lot from the outbreak. The scientific community is largely

involved in devising an antidrug and vaccines for the device. But unfortunately there

are no positive results till date and more over it is reported that, due to mutations,

characteristics are changing which makes the vaccine development even more challenging.

Taking the situation into account, there are very few ways we can control the virus;

like staying isolated from the world and breaking the spreading chain of the virus,

maintaining the personal hygiene, early detection of the symptoms and taking necessary

precautions are few of them.

The successful control of the outbreak depends on the rapid and accurate detection and

identification of the symptoms isolating the patient from the community, so that the

spread of the disease can be stopped. Currently, the method used for the detection is

Real-time reverse transcriptase polymerase chain reaction (RT-PCR) (Li & Xia, 2020). It is

the standard procedure used by many hospitals and clinics for testing COVID-19 cases.

Even though this method remains the reference standard, there are many reported false

negative cases using this RT-PCR (Chan et al., 2020), which is an alarming fact on the

situation. It is also time consuming and the limited supply of RT-PCR kits for the rural

areas make the testing more difficult (Chen, Yao & Zhang, 2020). Since the COVID-19

patients develop breathe related discomfort and Pneumonia as the outcome of the

disease progress, Radiological studies can play a vital role in diagnosing the lung infections

caused by this episode (Zu et al., 2020). The CT chest scan can be used to identify the

early stages of lung infections and related problems. The chest CT reveals the initial

pulmonary abnormalities for COVID-19 patients for whom RT-PCR gave negative results

(Ai et al., 2020).

Also, to accurately and efficiently control the virus, studies have been conducted to

implement forecasting models to predict the spread of COVID-19 (Wieczorek, Siłka &

Woźniak, 2020). Due to the nature of the problem being a regression problem to forecast

the spread and predict how the virus may spread, Artificial Neural Networks (ANNs)

and Recurrent Neural Networks (RNNs) were used to model the data. Data was collected

from the center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

To further improve the accuracy of prediction and decrease the error rate, Deep

Learning was widely used as a predictor and forecasting model. Generative Adversarial

Networks (GANs), Extreme Learning Machine (ELM), and Long/Short Term Memory

(LSTM) were some models used to predict the spread of the virus (Jamshidi et al., 2020).

The performance of the Deep Learning differed significantly from the use of RNNs

and ANNs. Therefore, we decided to use Deep Learning methods in our study to explore

the performance of models on our data. To approach the solution of using Deep Learning
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methods to segment lung CT scans, we looked at studies conducted on detecting

small nodules or lung tissue using complex neural networks. Capizzi et al. (2019) used

probabilistic neural networks and a Bio-Inspired Reinforcement Learning network based

on fuzzy logic to accurately segment lung nodules. The network worked at 92.55%

accuracy and considerably lowered the computational demands of the detection and

segmentation system. Ke et al. (2019) proposed a neuro-heuristic algorithm to segment

lung diseases from X-ray Images. The algorithm achieved an average accuracy of 79.06% to

segment and classifies three diseases in the X-ray Images. But for our study, CT Scans were

chosen as the primary source of data due to the easy availability and higher number of

slices per scan. Therefore, we would have more data than X-ray Images.

The common manifestations of SARS-CoV-2 in chest CT scan are ground glass

opacities, consolidation, crazy paving, dilation of vessel width in some cases and round

shape lesions in few cases (Hamer et al., 2020; Zu et al., 2020). The effectiveness of the chest

CT scan based COVID-19 management depends on the efficient automatic detection and

segmentation of regions in the scan. So in that context, the recent developments in the

imaging technologies come handy. There are plenty of imaging tools which give very high

and accurate quantification of abnormal conditions. This procedure of image based

diagnosis system involves capturing the image, analyzing the image by a trained,

experienced radiologist and annotation is made for the ground truth segments.

The current scenario slows down the annotation of the images, labeling and getting the

ground truth processes due to the increasing number of patients day by day, lack of

radiologist and the over duty burden of existing radiologists. Therefore, automatically

detecting the infected regions from the chest CT scan using computer based algorithms are

the current trends in research that gives wonderful results and aids in medical diagnostics.

The main objective of the research work is, comparing the segmentation performance of

computationally non-intensive models deep learning model when subjected to Lung CT

Scans for that are affected by COVID-19. The models utilized for the research belong to

the U-Net variants models which are the most popular models of choice for segmentation

of Medical Images. Here we compare the traditional U-Net model as proposed by

Ronneberger with other variants such as Seg Net, U-Net based on VGG16 and High

Resolution Net (HR-Net) and present both qualitative and quantitative results.

MATERIALS AND METHODS
The block diagram describing the entire methodology is shown below in Fig. 2.

The description of each method is described below.

Dataset considered

The used dataset consists of 3,770 images and their corresponding ground truths. A total

of 3,020 training images are used and 750 testing images are used. The CT scans of

50 patients were taken from mosmed.ai (Morozov et al., 2020) were openly accessible

Neuroimaging Informatics Technology Initiative (NIFTI) images were provided. The data

was collected from the Research and Practical Clinical Center for Diagnostics and
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Telemedicine Technologies of the Moscow Health Care Department. The CT Scans were

obtained between 1st March 2020 and 25th April 2020. Each NIFTI file was decompressed

to PNG images and used for the study. The CT scans of another 20 patients were taken

from zenodo.org (Jun et al., 2020) where the NIFTI files of 20 patients were provided.

The images were annotated by two radiologists and verified by an experienced radiologist.

For both datasets, MATLAB was used to extract the PNG images.

Pre-processing

The images in the dataset are riddled with motion artifacts and noise. Motion artifacts

are caused due to improper imaging techniques and are a specific kind of noise relevant

to CT Scans. Therefore, removing this noise is important or else it will cause the algorithms

to learn improperly. MATLAB is used to remove the noise and motion artifacts.

The original image is converted to grayscale from RGB and then, the image properties

are extracted. Area and Solidity are used and then, the image is thresholded after selecting

the max area and highest solidity. Once a mask is ready, the mask is multiplied with

the original image to get the pre-processed image. A comparison is given below in Fig. 1.

As can be seen, motion artifacts are removed and the image has more clarity. Other

pre-processing methods to remove the noise and motion artifacts from Lung CT Images

are using a mean filter (Khan, 2019) and a series of region growing and morphological

applications (Devarapalli, Kalluri & Dondeti, 2019). These methods were mainly used to

remove the sharp edges in the CT scans and to smoothen the image so that the network

could learn better. But, on comparison of the different methods, our pre-processing

method provided a better performance in all metrics

HR Net

HRNet is developed at Microsoft and has signified state of art presentation in the areas

of semantic segmentation, image classification, facial detection, object detection and

Figure 1 Comparison between original image (A) and pre-processed image (B).

Full-size DOI: 10.7717/peerj-cs.368/fig-1
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pose estimation (Sun et al., 2019). Its attention is on training High Resolution (HR)

representation. The existing techniques recuperate representation of high resolution from

representation of low resolution formed by high to low resolution network. In HRNet,

from first stage commencement high-resolution network, progressively augment high to

low resolution networks successively to arrange more steps and associate the multi-

resolution network in parallel.

HRNet is able of uphold high-resolution representation throughout the process as

repeated multi-scale combinations are conducted by switching the information through

the multi-resolution parallel subnetworks repeatedly throughout the process (Sun et al.,

2019). The architecture of resulting network is displayed in Fig. 3. This network has

advantages in contrast to existing networks like Segnet, UNET, Hourglass etc. These

existing networks lose a lot of essential information in the progression of recovering

high-resolution from low-resolution representation. HRNet links high to low resolution

networks in parallel instead of series and this gives high-resolution representation

throughout the process, correspondingly the estimated heatmap is much accurate, spatially

much precise.

Figure 2 Block diagram of proposed method. Full-size DOI: 10.7717/peerj-cs.368/fig-2
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Multi-resolution sequential subnetwork

Existing models works by linking high to low resolution convolutions subnetwork in series,

where each individual subnetwork form a platform, collection of an arrangement of

convolutions furthermore, there is a down sample layer through end-to-end subnetworks

to split the resolution into halves.

Let N sr be the subnet in the stage sth and resolution index r. First subnet resolution is

given by 1
2r�1

. The high-to-low system with S phases/stages (i.e., 4) can be indicated as:

N 11 ! N 22 ! N 33 ! N 44 (1)

Multi-resolution parallel subnetwork

Starting from first phase/stage begin with high resolution subnet, slowly enhance high to

low resolution subnet, generating new phases/stages, and associate multi-resolution subnet

in parallel. Eventually, the parallel subnet resolution of a later phase/stage comprises of

the resolution from an earlier stage and below one stage. The network shown below

contains 4 parallel subnets.

(2)

Figure 3 Architecture of HRNet. Full-size DOI: 10.7717/peerj-cs.368/fig-3
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Multi-scale repeated fusion

In this network exchange units were introduced throughout parallel subnet in such a way

that an individual subnet continuously collects information from parallel subnets. How

information is exchanged lets understand this process through an example here third stage

is subdivided into multiple exchange blocks and every block consists of three parallel

convolution modules, having exchange units followed by parallel units which is shown

below:

(3)

where:

Cb
sr – Convolution module,

e
b
s – Exchange Unit,

and s is the stage, r is the resolution and b is the block

Explanation of exchange units is show in Fig. 4. The input mapping is given by:

{X1;X2;X3; . . . ;Xsg and the output mapping was given by: fY1;Y2;Y3; . . . ;Ysg. The width

and resolution of the output is same as input. Every output is a sum of input mapping

that is, YK ¼
Ps

i¼1 aðXi;KÞ. Assume of 3� 3 stride was done for down sampling and for

up sampling 1� 1 convolution (nearest neighbor).

HRNet experimental results (when tested with different datasets) show remarkable

results for the applications like facial detection, semantic segmentation, and object

detection.

Seg Net

At the university of Cambridge, UK, team of the robotics group researched and

developed that SegNet is a deep encoder decoder architecture for multiclass pixel-wise

segmentation (Badrinarayanan, Kendall & Cipolla, 2017). The framework comprises order

of non-linear processing layers which is called encoders and a similar set of decoders

afterward a pixel wise classifier. Generally, encoder have made up of a ReLU non-linearity

and one or more convolutional layers with batch normalization, subsequently non-

overlapping maxpooling and subsampling. Using Max-pooling indices in encoding

sequence, for up sampling the sparse encoding in consequence the pooling process to

the decoder. Use of max-pooling indices in the decoders is the one important feature of

the SegNet to execute the sampling of low resolution maps. For segmented images the

tendency to retain high frequency details and capable enough to decrease the number of
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parameters in the decoder needed for training are some advantages of SegNet. Using

stochastic gradient descent this framework can be trained end-to-end.

SegNet is composed of encoder and decoder after a last pixel-wise classification layer.

The architecture is shown in Fig. 5. The encoder in SegNet is composed of convolution

layers which are 13 in number, and these layer matches with the 13 starting layers of

VGG16, considered for classifying the objects (Mannem, Ca & Ghosh, 2019).

Figure 6 illustrates the decoding method utilized by SegNet in which there is no learning

engaged with the up-sampling stage. The upsampling of decoder network’s feature map

(input) is done by learned maxpooling indices from the equivalent encoder feature

map. Dense feature maps are generated by combining feature maps and trainable decoder

channel.

SegNet a deep network was used for semantic segmentation. Basically, It was designed

because the motivation behindhand was to propose an architecture for roads, outdoor and

indoor sites which is proficient together in terms of computational time and memory.

Feature map’s maxpooling indices are only stored in SegNet and to attain better

performance it uses them in its decoder network.

UNet

The UNet design is based upon the fully convolution network and adjusted such that it

produces better segmentation results in medical imaging. UNet consists of two paths

named as contracting and and expansive. In the contracting path it captures the context

whereas in expansive path it enables exact localization. While contracting path is a classical

Figure 4 Layers of exchange unit of convolutions with various resolutions: (A) low, (B) medium and

(C) high resolution. Full-size DOI: 10.7717/peerj-cs.368/fig-4
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architecture of UNet. It includes two 3 × 3 convolutions, max pooling operation with

repeating application. The Fig. 7 illustrates the architecture of UNet, which is U in shape

that itself gives the name “UNet”. The main philosophy behind this network is, it replace

pooling operation by using upsampling operators (Ronneberger, Fischer & Brox, 2015).

So, ultimately the resolution will increase layer by layer. The main feature of UNet is the

Figure 5 SegNet architecture. Photograph source credit: Google Earth image, ©2015 Google.

Full-size DOI: 10.7717/peerj-cs.368/fig-5

Figure 6 Decoding techniques used by SegNet. Full-size DOI: 10.7717/peerj-cs.368/fig-6
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large number of channels which lead to higher resolution. Moreover, in every

downsampling it doubles the feature channels.

Each stage in the expansive path involves upsampling of the feature channel

followed by (2 × 2) convolution that splits the number of feature channels into halves.

In contracting path, it crops the feature map because of loss in border pixel in each

convolution. Final layer is mapped by 1 × 1 convolutions which is used to map all 64 units

feature vector. The network contains total 23 convolutional layers. UNet performs well on

image segmentation (Livne et al., 2019).

While training the UNet model, the cross-entropy loss function united with the last

feature map and by applying a pixel-wise softmax over it, the softmax is denoted as:

pk ¼
e ak xð Þð Þ

PK
k0¼1 e

ak0xð Þ
(4)

In addition, the energy function is calculated by:

E ¼
X

x2�

w xð Þ log pl xð Þ xð Þ
� �

(5)

where:

ak: Represents the activation in feature map k

pk: Represents estimated maximum function

K: No. of class

x 2 �: Pixel position

pl xð Þ: Deviation

Figure 7 Illustrating the architecture of U-Net. Full-size DOI: 10.7717/peerj-cs.368/fig-7
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In the training data set, to counterbalance the diverse frequency of pixels from a specific

class the weight map is pre calculated for ground-truth segmentation, and enforcing the

network to study the minor separation borders amid touching cells introduce by us.

The morphological operation used to calculate separation borders, the weight map

calculated using:

w xð Þ ¼ wc xð Þ þ w0:e
�

ðd1 xð Þþd2 xð ÞÞ2

2s2

� �

(6)

where:

w: denotes the weight map

d1: distance upto border of nearest first cell

d2: distance upto border of nearest second cell

VGG UNet

Image segmentation, which is performed pixel wise is most preferable task in the field of

computer vision. Encoders-decoders when combined they form UNET architectures,

which are very famous for image segmentation in medical imaging and satellite images

etc. The weights of the pre-trained models (like ImageNet) are used to initialize the weights

of the neural network (i.e., trained on large dataset) as it gives better performance

major than those models, which are trained on small dataset from scratch. Models

accuracy is very important in some applications like traffic safety and medicine pre-trained

encoder can enhance the architecture and performance of UNET. Applications like

Object detection, image classification and scene understanding have improved their

performance after the introduction of convolutional neural network (CNN). Nowadays,

CNN has outperformed in several fields over human experts.

Image segmentation plays vital role in the field of medical imaging to enhance the

diagnostic capabilities. Fully connected network (FCN) is amongst the most popular

state-of-the-art machine learning technique (Long, Shelhamer & Darrell, 2015).

Segmentation accuracy attained by some advancement in FCN as compared to

PASCAL VOC (Everingham et al., 2015) common approach on standard datasets

UNet consists of two paths named as contracting and and expansive. In the contracting

path it captures the context whereas in expansive path it enables exact localization.

The contracting path sticks with the design of a convolutional network with pooling

operations, alternating convolution, gradually down sample feature channels and

expanding many feature maps layer simultaneously, each stage in the expansive path

composed of an up-sampling of the feature channel along with a convolution. The

VGGUnet architecture is illustrated in Fig. 8. The encoder for UNET model is composed

of 11 successive (series) layers VGG family and denoted by VGG-11 (Ai et al., 2020).

VGG-11 consist of 7 convolution layers each using rectified linear unit (ReLu) activation

function, 5 maxpooling operations each reduces feature channel by 2 and the kernels size

3 × 3 is used for every convolutional layer (Iglovikov & Shvets, 2018).
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Common loss function that is, binary cross entropy can be used for classification

problem where ŷi denotes the prediction, yi denotes the true value andm denotes the no. of

samples

H ¼ �
1

m

X

m

i¼1

ðyi log ŷi þ 1� yið Þ log 1� ŷi
� �

Þ (7)

Performance validation

To validate the performance of the models presented above, Sensitivity, Specificity, Jaccard

Index, Dice Coefficient, Accuracy and Precision are used. To measure the accuracy of

the segmented image, accuracy and precision are used and to measure the quality of

segmentation, sensitivity and specificity are used. The various performance measures are

described below:

Accuracy and Precision are used to calculate the accuracy of the segmentation model

itself. Accuracy is as the ratio of correct predictions to the total number of predictions and

Precision is defined as the ratio of correctly predicted positive observations to the total

number of correctly predicted observations.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
(8)

Precision ¼
TP

TPþ FP
(9)

Figure 8 Illustrating encoder decoder architecture also known as VGGUNet.

Full-size DOI: 10.7717/peerj-cs.368/fig-8
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In the case of segmentation, accuracy and precision are used to measure the binary

segmentation of each pixel of the image by the model. Although precision and accuracy

may seem to be enough to describe the performance of the model, other factors are also

important to describe the quality of segmentation.

Sensitivity and Specificity are used to measure the quality of segmentation between the

classes. In this case, the models are performing binary segmentation. So, Sensitivity, or

the True Positive Rate, measures the quality of segmentation of one class and Specificity, or

the True Negative Rate, measures the quality of segmentation of the other class. Sensitivity

and Specificity can be defined as:

Sensitivity ¼
TP

ðTPþ FNÞ
(10)

Specificity ¼
TN

ðTNþ FPÞ
(11)

With Sensitivity and Specificity, having a high value for each is good as it shows that the

model is able to segment the pixels correctly without any errors.

The Jaccard Index and Dice Coefficient are used to quantify the similarity between

the original image and the segmented image. Jaccard Index and Dice Coefficient are similar

to the Intersection over Union (IoU) used to evaluate Object detection models. Jaccard

Index and Dice Coefficient ranges from 0 to 1 where 0 means no overlap and 1 mean full

similarity. Jaccard Index and Dice Coefficient can be defined as:

Dice Coefficient ¼
2TP

2TPþ FPþ FN
(12)

Jaccard Index ¼
TP

TPþ FPþ FN
(13)

While the Dice coefficient and the Jaccard Index are quite similar, ideally, the two

measures have to be equal. So, to measure the quality of similarity of the model, a similarity

between the Dice Coefficient and Jaccard Index can be viewed to measure the quality of

segmentation.

RESULTS AND DISCUSSION
The experiments were conducted in the Google Colab platform. As shown in Table 1,

HR Net is shown to have the highest performance as compared to the other models.

The second best model is the classical UNet, the third best model is the VGGUNet and the

model with the worst performance is the Seg Net. The reason for the high performance

of the HR Net is the fact that the HR Net extracts high resolution information and

retains in throughout the segmentation process. This is due to the parallel networks

that are able to maintain essential information. HR Net indicates a high accuracy of

segmentation with an Accuracy of 0.9624 and a Specificity of 0.9930. The performance is

also compared against heavy weight models that have more parameters and layers than the
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lightweight models. The weight size is also considerably larger. As per our study,

lightweight models offer better performance as compared to heavy weight models in all

evaluation metrics. Especially in Dice Coefficient, Accuracy and Precision, the lightweight

models like HR Net and UNet offer better performance than Inception ResNetV2 and

ResNet 101. SegNet and VGG UNet are comparable to the performance of the heavy

weight models.

Figures 9 and 10 shows the various outputs obtained from the models which segmented

the positive tested and negative tested image respectively. HR Net shows the best

segmentation performance while UNet shows good performance too. UNet is able to

obtain a proper boundary similar to the test image. Seg Net has performed poorly to

segment the image. Neither has it obtained a boundary nor has it segmented the finer

details properly. The VGGUNet has segmented the image properly but not to the extent of

HR Net or UNet. We can see that HR Net has the best performance. With decreased area,

the performance decreases which means that UNet is the second best performance,

VGG UNet is the third best and Seg Net has the worst performance amongst the

models. When we compare Figs. 9 and 10 with Tables 1 and 2, we can review the

performance of the models on COVID positive and negative slices. On comparing HR Net

with ResNet 101 and InceptionResNetV2, we can see that HR Net shows comparable

performance to the heavy weight models but still performs better in terms of performance

metrics like Jaccard Index and Dice Coefficient. This disparity is especially seen in

terms of Accuracy. The Specificity of HR Net is also much higher than the heavy weight

models. This can be attributed to the method in which HR Net extracts the features.

Even though the numbers of layers are more, it still retains a smaller size than the

heavy weight models without sacrificing on performance. The next best performer is

UNet as can be seen from the images. UNet is able to segment the boundaries and

consistencies of the slices but cannot maintain the shape in all the predictions. VGG UNet

and Seg Net perform the worst each with having their own disadvantages. VGG UNet

might be better at detecting finer details in the lungs but cannot maintain the basic

predictive ability to detect boundaries and textures. Seg Net performs the worst as it cannot

segment even the most basic boundary or details. Since it is used more as a segmentation

algorithm for land masses, this makes sense for Seg Net to perform badly in the case of

Lung CT slices.

Table 1 Performance measures of segmentation performed on four light weight and two heavy weight models mentioned.

Method FPrate FNrate TPrate =

Sensitivity

TNrate =

Specificity

Jaccard Dice Accuracy Precision

HR_Net 0.0142 0.1085 0.8862 0.9930 0.8428 0.9147 0.9624 0.9593

Seg_Net 0.2148 0.2141 0.7859 0.7952 0.7962 0.8014 0.8816 0.8416

UNet 0.1260 0.1785 0.8215 0.9195 0.8143 0.8836 0.9105 0.9281

VGG_UNet 0.2259 0.2082 0.7918 0.7964 0.8224 0.8418 0.8794 0.8416

Inception ResNet V2 0.1879 0.1762 0.8064 0.8267 0.8069 0.8154 0.9268 0.9154

ResNet 101 0.2567 0.2481 0.8341 0.8249 0.8395 0.8254 0.9087 0.9354
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Figure 11 is the glyph plot which is a visual representation of the performance metrics

for each model. The glyph plot is a good way to directly compare the performance of

various models through the use of polygons. We can see that HR Net has the best

performance. The six points are the performance measures namely Sensitivity, Specificity,

Precision, Accuracy, Jaccard Index and Dice Coefficient. With decreased area, the

performance decreases which means that UNet is the second best performance, VGG

UNet is the third best and Seg Net has the worst performance amongst the models.

As can be seen from Table 2, HR-Net has the highest number of layers at 1,043 with

other models having less than 100 layers. But, HR-Net has similar parameters to VGG

UNet and an even lesser number of parameters than SegNet. This is due to the architecture

of the HR-Net. It is able to extract deeper features than the other models while maintaining

the overall file size and number of parameters. The reason for HR-Net having the

Figure 9 COVID positive tested with all the four lightweight and two heavy weight models.

(A) Original image and predictions from (B) UNet (C) Seg Net (D) VGG UNet (E) HR Net

(F) ResNet 101 and (G) Inception ResNetV2. Full-size DOI: 10.7717/peerj-cs.368/fig-9
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Figure 10 COVID negative tested with all the four lightweight and two heavy weight models.

(A) Original image and predictions from (B) UNet (C) Seg Net (D) VGG UNet (E) HR Net

(F) ResNet 101 and (G) Inception ResNetV2. Full-size DOI: 10.7717/peerj-cs.368/fig-10

Table 2 Inference speed of the four light weight and two heavy weight models along with other

parameters which affects the inference speed.

Name of model Inference

time (ms)

Number of layers Number of params Model size

(MB)

UNet 42 32 7,759,521 30

SegNet 84 64 31,819,649 122

VGG UNet 65 85 25,882,433 99

HR Net 140 1043 28,607,456 112

Inception ResNet V2 123 572 55,873,736 215

ResNet 101 115 101 44,675,560 171
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highest performance is its architecture which makes it the best model to be used for

fast inference. Comparing the SegNet, VGG UNet and UNet, SegNet has the poorest

inference speed at 84 ms with the largest model size. It is therefore inferred that SegNet is

the worst model to use for the Segmentation of COVID-19 based on our study. VGG

UNet and UNet have different metrics due to the fact that VGG UNet is trained on

the VGG-16 weights. It, therefore, takes far higher time to load on and produce an

inference than UNet. If HR-Net cannot be used, VGG UNet is the next best network for

segmenting COVID-19. To check whether the performance of lightweight models is better

than previous literature, we have checked the performance with “heavy-weight” models.

Heavy weight models can be classified as those models with more number of layers;

parameters and weight file size in Mega Bytes (MB). The Heavy weight models do not offer

better performance than the lightweight models in terms of inference time. The heavy

weight models are slower than the lightweight models in segmenting COVID-19 from

CT images and also, take up more memory space. While the inference time is faster than

HR Net, the number of parameters and model size does not allow the models to perform as

well as the light weight models.

CONCLUSION
In this article, we analyzed four models for segmenting COVID-19 from Lung CT Images.

With the growing number of cases worldwide, quick and accurate testing is needed.

To solve this problem, we approached the problem by reviewing four lightweight models

that do not take a long time for training or testing. First, we remove motion artifacts from

Figure 11 Glyph plot representing the performance of the models over the performance measures.

(A) HR Net; (B) Seg Net; (C) UNet; (D) VGG UNet (The 6 points are the performance measures

namely Sensitivity, Specificity, Precision, Accuracy, Jaccard Index and Dice Coe).

Full-size DOI: 10.7717/peerj-cs.368/fig-11
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the tomographic images through Thresholding and use the pre-processed images for

training the models. The four models trained are Seg Net, UNet, VGG UNet and HR-Net.

We evaluate the models on their performance using accuracy, dice, Jaccard index and

precision. We also used Specificity and Sensitivity as secondary evaluation characteristics.

The results obtained demonstrate that lightweight convolutional networks have high

latent ability to segment COVID-19 from CT images with HRNet being the best network

out of the four models analyzed. Our work can be used in real-time environments to

deploy on low-power devices. Low-Power devices require less computation time and

have many constraints. When we consider these constraints, then using our lightweight

models is very efficient as the user can accurately segment COVID-19 from CT

Images. This system can be used in the field where electricity is constrained and fast

and accurate predictions are required. The proposed light weight model can be

implemented a simpler hardware that requires less area and power requirements. Due to

the lower power usage, the prototype can be used as standalone systems in power

constrained conditions but require accurate predictions. The results in this study can

be improved by collecting more data from hospitals and clinics to improve the accuracy of

the segmentation. We can also improve the work by changing the architecture of the

proposed models to extract more features without increasing the inference time

significantly.
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