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Abstract In this paper, a brief overview of real time implementation of next generation Robust,

Tracking, Disturbance rejecting, Aggressive (RTDA) controller and Model Predictive Control

(MPC) is provided. The control algorithm is implemented through MATLAB. The plant model

used in controller design is obtained using system identification tool and integral response method.

The controller model is developed in Simulink using jMPC tool, which will be executed in real time.

The outputs obtained are tested for various constraint values to obtain the desirable results. The

implementation of Hardware in Loop is done by interfacing it with MATLAB using Arduino as

data acquisition unit. The performance of RTDA is compared with those of MPC and Proportional

Integral controller.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Model Predictive Control (MPC) is a control algorithm that
uses a model of the process to predict the future response of

a plant. Model Predictive Control is a method that emphasizes
on making controllers that can adjust the control action before
a change in the output set point actually occurs [1]. MPC algo-

rithm requires the knowledge of input/output constraints and
weights along with Prediction Horizon and Control Horizons
to be provided by the user for the control action. To work

effectively and provide a good response, the model estimated
should be an accurate fit for the plant. MPC can be digitally
implemented through jMPC tool which is provided as a free-
ware add-on for MATLAB and is an initiative of Industrial

Information and Control Centre (I2C2), a joint venture
between AUT University and The University of Auckland,
New Zealand [3].

It is a well-known fact that PID controller is the most
widely used controller in industrial applications [4]. Tunable
parameters in PID controllers are not directly related to set
point tracking, disturbance rejection and robustness. So

designing a PID controller to achieve desired performance is
a tedious task. It is difficult to tune a PID controller which
satisfies set point tracking and disturbance rejection simultane-

ously [7]. According to a study conducted by Ender on control
loops in industries, 30% of the control loops operate in
manual mode while more than 60% are not tuned properly
with low
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Figure 1 Pressure control system.
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[5]. The classical linear proportional-derivative (PD) controller
and the proportional-integral-derivative (PID) controller can-
not provide good enough performance in controlling highly

complex, nonlinear, and uncertain processes [11]. The perfor-
mance of PID controller is poor for dead time dominant and
nonlinear processes. In these scenarios we have to use addi-

tional components such as Smith predictor for which imple-
mentation is complex [6]. Fuzzy controller can be an
alternative with better performance, but implementation is

more complex. So we need to design a controller that is as sim-
ple as a PID controller with better performance [4].

RTDA controller possesses the characteristics of MPC and
PID controller. Its structure is as simple as that of a PID con-

troller. The tuning parameters hR, hT, hD and hA are directly
related to performance parameters-set point tracking, distur-
bance rejection, robustness and an additional parameter

aggressiveness respectively. The values of these parameters
are fixed to lie between 0 and 1 [4]. A block diagram represen-
tation for a RTDA controller and alternate tuning rule for a

Ogunnaike’s tuning rule was proposed by Kariwala. He
demonstrated the efficiency of the modified tuning rules using
numerical examples of FOPTD processes [14]. The RTDA

control law for second order process with dead time (SOPTD)
was developed by Anbarasan and it is tested on process with
minimum or non-minimum industrial nonlinear CSTR process
[12]. The RTDA controller tuning parameters can be tuned

using fuzzy scheduling for a standard nonlinear process. The
performance of the fuzzy scheduled RTDA compared with
the other established controllers such as MPC, PID in

MATLAB simulation. The proposed idea possesses adaptive
capability [15].

The main purpose of this paper was to design RTDA con-

troller, MPC and PID controller for a linear SISO pressure
process and implement it in real time using low cost DAQ unit.
Finally the performance of the next generation controller is

compared with other controllers.
Section 2 describes the process modeling using system iden-

tification tool and integral response method. Design of RTDA
controller and MPC is discussed in Section 3. In Section 4

hardware setup of the process is described and design of data
acquisition unit is presented. The real time implementation of
controllers on a linear single input single output pressure pro-

cess is presented in Section 5. The performance of the con-
troller is analyzed and compared in Section 6 and followed
by conclusion in final section.

2. System identification

The schematic diagram of the pressure process to be controlled

is shown in Fig. 1.
where

PT – Pressure Transmitter

PC – Pressure Controller
E/P – Electro Pneumatic Converter
SP – Set point
2.1. Process model in FOPDT form

The first step is finding the First order process with dead time
(FOPDT) model of the pressure process. Integral equation
Please cite this article in press as: V. Bagyaveereswaran et al., Performance compariso
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method was used which requires the open loop step response
of the system [9]. Step input was applied to the system and it

was allowed to settle. The input and pressure variable values
were recorded. Using these values FOPDT model was devel-
oped and is given by

yðsÞ ¼ e�as K

ssþ 1
uðsÞ ¼ e�0:5s 1:01

18:42sþ 1
uðsÞ ð1Þ

where K, a and s are Process gain, dead time and time constant

respectively. The above model is used in RTDA controller
design. The accuracy of the FOPTD model is shown in
Fig. 2.

2.2. Process model in state space form

The process to be controlled is presented in state space model

form in MPC design. System Identification (SI) Toolbox is
provided by MATLAB as add-on to estimate the models in
state-space form, transfer functions, polynomial models. The
data are imported to the tool in either time domain or fre-

quency domain. The black box modeling is used to identify
the system model. An open loop test was carried out to gather
data from the system, which was then used in SI Tool in

MATLAB [2]. Then the model is estimated in state space form
of order 4 using N4SID (subspace) estimation. To check for
the best fit of the model, we use the Model Output function

which compares the estimated state space model with the open
loop test model. The usual best fit for the model should be
above 90 as shown in Fig. 3. The model is then imported to

the workspace using the To Workspace function in the toolbox
where it is converted to discrete time model with sampling per-
iod of 0.1 s.

Identified model is defined by the following matrices in

state space Eqs. (2) and (3):

xkþ1 ¼ Axk þ Buk; ð2Þ

yk ¼ Cxk þDuk ð3Þ
n of next generation controller and MPC in real time for a SISO process with low
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Figure 2 Open Loop Response of Process and FOPTD model.
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Figure 3 Open Loop Response of Process and SS model.
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A ¼

�0:04048 0:05959 0:02174 0:01957

0:08651 �0:1663 �0:1547 �0:1428

�0:08021 0:1214 �0:06931 �2:35

0:04702 �0:1408 1:994 �0:2926

2
6664

3
7775

B ¼

0:0006206

�0:001383

0:003693

�0:00213

2
6664

3
7775

C ¼ 147:3 �1:206 �1:43 0:1961½ � D ¼ ½0�
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3. Controller design

3.1. RTDA controller design for FOPTD model

The tuning parameters of RTDA controller are directly linked
to desired performance parameters. The following are the steps
in controller design [8];

1. Process model: develop a First Order Plus Delay Time
model for the process to be controlled. The continuous time

model is given by
of next generation controller and MPC in real time for a SISO process with low
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yðsÞ ¼ Ke�as

ssþ 1
uðsÞ ð4Þ

where K, a and s represent gain, dead time and time con-
stant respectively.

2. Discrete model: convert the developed continuous model to
discrete form and is given by

ŷðkþ 1Þ ¼ aŷðkÞ þ buðk�mÞ ð5Þ
where m denotes dead time in discrete domain.

3. Uncorrected model prediction: a future prediction for the
process output m time steps can be obtained from the fol-
lowing equation

ŷðkþmþ 1Þ ¼ amþ1ŷðkÞ þ blðk;mÞ þ bgiuðkÞ ð6Þ
where lðk;mÞ ¼ Pm

i¼1a
iuðk� iÞ and gi ¼ 1�ai

1�a
for 1 < i < N

4. Model prediction update: there will be a mismatch between
a FOPDT model and true process. The modeling error is
given by

eðkÞ ¼ yðkÞ � ŷðkÞ ð7Þ
Error e(k) can be decomposed into two parts: first one due
to model process mismatch and the other due to unmea-
sured disturbances.

eðkÞ ¼ emðkÞ þ eDðkÞ ð8Þ

eDðkÞ ¼ hReDðk� 1Þ þ ð1� hRÞeðkÞ ð9Þ
5. Future disturbance prediction and updated model predic-

tion: future disturbance effect is given by the equation

ceDðkþ jÞ ¼ eDðkÞ þ ð1� hDÞ
hD

½1� ð1� hDÞ j�DeDðkÞ ð10Þ

where

DeDðkÞ ¼ eDðkÞ � eDðk� 1Þ ð11Þ
with this prediction updated model prediction is given by

~yðkþmþ iÞ ¼ ŷðkþmþ iÞ þ ceDðkþmþ iÞ ð12Þ
6. Control action formulation: at each point of time the con-

trol input is calculated such that the difference between pre-

dicted process output and desired trajectory is minimum.
The desired trajectory is given by

y�ðkþ jÞ ¼ h j
Ty

�ðkÞ þ 1� h j
T

� �
ydðkÞ ð13Þ

We will get the control input by solving the least square
optimization problem.

uðkÞ ¼
PN

i¼1giwiðkÞ
b
PN

i¼1w
2
i

ð14Þ

where

wiðkÞ ¼ y�ðkþ iÞ � amþiŷðkÞ � ceDðkþmþ iÞ ð15Þ
7. Tuning Parameters: generally we give hR ¼ 0:5. Other

parameters depend on process.

hD ¼ 1� hR ð16Þ

hT ¼ 10
�Dt
s ð17Þ
Please cite this article in press as: V. Bagyaveereswaran et al., Performance compariso
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hA ¼ 1� e�
ðN�1ÞDt

s ð18Þ
The closed loop block diagram of RTDA controller is

shown in Fig. 4 [14].

3.2. MPC controller design

The Model Predictive Control is a type of control algorithm
that uses the process model and takes into consideration the

constraints on inputs/outputs unlike the conventional con-
trollers such as P, PI (Proportional, Proportional + Integral).
This type of control consists of the following:

� Model of the process
� Constraints
� Cost Function

The optimization problem of MPC involves the minimiza-

tion of the Cost Function which is outside the scope of this
paper to discuss. The block diagram of MPC is shown in
Fig. 5.

The major requirement of MPC is that a model for the pro-
cess, a model which describes the input to output behavior of
the process, is needed. Mechanistic models derived from con-

servation laws can be used. Usually, in practice simply data-
driven linear models are used. In MPC it is assumed that the
model is a discrete state-space model of the form as shown
in Eqs. (2) and (3).

All physical systems have constraints. There are physical
constraints such as actuator limits and safety constraints such
as temperature and pressure limits. Finally, there are perfor-

mance constraints such as overshoot. Eqs. (3) and (4) define
the constraints on output and input respectively:

ymin 6 y 6 ymax ð19Þ

Umin 6 u 6 umax ð20Þ
The main idea with MPC is that the MPC controller calcu-

lates a sequence of future control actions such that a cost func-
tion Eq. (5) is minimized [1].

J ¼
XNp

k¼0

ðŷ� rÞTQðŷ� rÞ þ
XNp

k¼0

DuTRDu ð21Þ

where

Np – Prediction Horizon

r – Set point
ŷ – Predicted Process Output
Du – Predicted Change in control value, Duk ¼ uk � uk�1

Q – Output error weight Matrix
R – Control Weight Matrix

4. Data acquisition unit and hardware setup

4.1. Process hardware setup

Hardware setup consists of pressure process station, Arduino
Uno and PC. The pressure system in Fig. 6 is available in Pro-

cess control laboratory in VIT University. The pressure station
specifications are given in Table 1.
n of next generation controller and MPC in real time for a SISO process with low
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Figure 4 Block diagram of RTDA controller.

Figure 5 Block diagram of MPC scheme.

Table 1 Pressure process station specifications.

Part name Function details

Process tank

(range)

MS, 0–100 psi

Pressure

gauge

0–35 psi

I/P converter 4–20 mA input 3–15 psi output

Air regulator Size 1/400 BSP range 0–2 kg/cm2

Control valve Size 1/4 pneumatic actuated, input 3–15 psig

Pressure

transmitter

Type two wire, input 0–75 psi, output 4–20 mA

DC, operating voltage 24 V DC

Performance comparison of next generation controller and MPC in real time 5
The main component is a metallic tank with inlet and outlet

ports. We set inlet hand valve at a fixed position. There is a
pneumatic actuated control valve at outlet side. Here the tank
pressure is the controlled variable and outlet flow rate is the
manipulated variable. The pressure inside the tank is measured

using a pressure transmitter. It converts the pressure in 0–
75 psi range to 4–20 mA current signals. It consists of a pri-
mary sensing element that converts pressure to displacement

and a secondary element that uses this displacement change
for changing resistance. A 12–24 V fixed DC power supply is
needed for transmitter to work properly. The 4–20 mA current

signals generated by transmitter act as an input for the con-
troller. The controller output would be 4–20 mA current sig-
nal. The current to pressure (E/P (or) I/P) converter gives
pneumatic signal in 3–15 psi range corresponding to controller

generated current signal. The pneumatic signal from I/P con-
verter operates the control valve depending on the control sig-
nal. Hence the pressure is controlled inside the tank.
Figure 6 Pressure process station.

Please cite this article in press as: V. Bagyaveereswaran et al., Performance comparison
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4.2. Building a DAQ unit

The platform used for data acquisition unit is an Arduino
Mega 2560 board. It is a microcontroller board based on the
ATmega2560. It has 54 digital input/output pins (of which

15 can be used as PWM outputs), 16 analog inputs, 4 UARTs
(hardware serial ports), a 16 MHz crystal oscillator, a USB
connection, a power jack and a reset button. It can be con-

nected to a computer with a USB cable or can be powered with
an AC-to-DC adapter or a 5 V battery. Simulink can be used
as a platform to code Arduino for acquiring and transmitting

data. Support package for Arduino is available as freeware on
MATLAB Web site, hence making Arduino as a low cost
DAQ. The Simulink block diagram for data acquisition and

calibration is shown in Fig. 7.
The pressure transmitter works on 4–20 mA current loop.

To acquire the signal, it should be converted to a voltage range
to 1–5 V using a simple current to voltage converter circuit,

consisting of a 250 O resistance. Arduino then reads the signal
in the form of 10 bit samples; the voltage in range of 1–5 V is
mapped to numerical values 0–1023. These values should be

calibrated to the pressure range. A low pass filter is added to
smooth the response.

The transmitter takes current in the range of 4–20 mA.

Arduino boards can transmit the output only in the digital
form or Pulse Width Modulation (PWM) form. Hence we
use PWM. The duty cycle of PWM will depend on the output

which ranges from 0 to 255 (8 bit samples) for Arduino PWM
output pin. In order to get better sensitivity a multiplication
factor with a bias can be added before it. The voltage from
the pin will be average of the duty cycle of PWM. This voltage

is then converted to 4–20 mA, by using an ideal voltage to
of next generation controller and MPC in real time for a SISO process with low
28
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Figure 7 Data acquisition and calibration.

Figure 8 Complete setup of the pressure control station.
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current converter and then transmitted back to the E/P for
control action.

5. Real time implementation

5.1. RTDA controller implementation

By using MATLAB-Arduino Support package Arduino can

communicate with MATLAB program [13]. MATLAB Pro-
gram can access both input and output ports of Arduino
Uno using interface commands. The whole setup for the exper-

imental validation is shown in Fig. 8. The RTDA controller
was developed for the pressure process using the model given
in Eq. (1). The tuning parameters are given by hR = 0.5,

hD = 0.5, hT = 0.955, hA = 0.00006.

5.2. MPC implementation

The jMPC toolbox is used for the real-time implementation of
MPC controller, which utilizes the discrete model of the plant.
The main problem with MPC toolbox provided in MATLAB
is that, it doesn’t support real time implementations due to

lack of proper solvers required to solve the Quadratic Problem
of the MPC controller. The advantage of this tool is that, var-
ious solvers can be used to solve the MPC problem (control

algorithm) and also, it supports real time implementation.
The jMPC Simulink block also requires an object to be loaded
into the discrete MPC controller which defines all the param-

eters and constraints. The object can be simply created from
the command window of MATLAB. It is shown in Appendix
A. The MPC controller is created as a jMPC object while the
plant can be a jSS object for linear simulations.

The model given in Eqs. (1) and (2) is used in object cre-
ation. The prediction horizon (Np) and control horizon (Nc)
are determined by a hit and trial method. The input constraints

are defined in accordance with the technical specifications of
the pressure station.

The block diagram of jMPC for real-time control of the sys-

tem is shown in Fig. 9. The model is designed in Simulink. A
real time pacer is used to match the time of running of the sys-
tem with real time. This allows us to visualize the performance
Please cite this article in press as: V. Bagyaveereswaran et al., Performance compariso
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of the controller with actual time and not the sample instances,
which can be beneficial with the existing real time performance
results of different controllers.

The MPC algorithm used within the jMPC Toolbox is a lin-
ear implementation, where a linear state space model is used
for the system prediction. This enables the controller to formu-

late the control problem as a Quadratic Program (QP), which
when set up correctly results in a convex QP, ensuring an opti-
mal input (global minimum).

The Simulink model shown in Fig. 9 was connected to the
real time system using Arduino as DAQ is shown in Fig. 7. A
scaling factor has been used in the model to increase the sensi-
tivity of the controller output.

The following factors must be taken into account while
choosing the prediction horizon and control horizon for
MPC [1].

Prediction horizon (NP):

� A short prediction horizon reduces the length of time dur-

ing which the MPC controller predicts the plant outputs.
When the prediction horizon is short the MPC controller
works more like a traditional feedback controller.
n of next generation controller and MPC in real time for a SISO process with low
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Figure 9 Simulink model for real time implementation of MPC.

Figure 10 Simulink model for real time implementation of PI controller.
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� A long prediction horizon increases the predictive ability of
the MPC controller, but the controller performances poorer
due to extra calculations.

Control horizon (NC):

� A short control horizon means more careful changes in the
control action.

� A long control horizon means more aggressive changes in
the control action.
Please cite this article in press as: V. Bagyaveereswaran et al., Performance comparison
cost DAQ unit, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.07.0
5.3. PID controller implementation

The tuning parameters for the PI controller i.e. KP (Propor-
tional gain) and KI (Integral gain) were calculated using
Ziegler-Nichols tuning method. The Voltage to Pressure

(V/P) block is used to convert the input Arduino voltage to
pressure. This is done by use of a calibration equation as
shown in Fig. 7. The same block has been used for jMPC
of next generation controller and MPC in real time for a SISO process with low
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model implementation also. The Simulink model for implemen-
tation of PI controller on the real time system is shown in Fig. 10.
6. Results and discussions

6.1. Servo performance with controllers

The initial pressure inside the tank is set as 25 psi. A set point of
40 psi was given to the control algorithms. The set point tracking

(or) servo response of pressure process with three controllers is
shown in Figs. 11 and 12. The pressure settled at 40 psi without
any overshoot for RTDA than other two controllers.

The above figure shows the pressure output with MPC for a
set point of 40 psi and with the given parameters and
Please cite this article in press as: V. Bagyaveereswaran et al., Performance compariso
cost DAQ unit, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.07.0
constraints. The object for jMPC was created with the same
parameters as shown in Fig. 7. The Servo Performance with

MPC is obtained when Np = 26; Nc = 2; Input weight = 100;
Output weight = 2; Input constraints – [0100]; Output con-
straints – [�inf, inf]. The input and output weights defined

are a measure of importance MPC gives to the plant inputs
and outputs. When input weight increased it smoothen the
response of the system. Output weights carry more importance

in multiple output systems where one of the outputs has a
higher priority. For example, when controlling direction and
speed of a helicopter, either speed or direction can be given

more weight so as to give more preference.
The most commonly used PID controller was considered

for pressure process [10]. A SIMULINK model was developed
for controlling pressure process as shown in Fig. 9. Using the
n of next generation controller and MPC in real time for a SISO process with low
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identified model given in Eq. (1) controller parameters were

tuned. The tuning values are given by KP = 0.473191,
KI = 0.02216, KD = 0.

6.2. Regulatory performance with controllers

Similar to the first step pressure was set at 25 psi initially and
40 psi set point was given. The pressure inside the tank settled
at 40 psi. Then a disturbance of 10% of current pressure value

was introduced at around 120 s for RTDA, at 150 s for MPC
and at 140 s for PI controller on the vent side of the process
Please cite this article in press as: V. Bagyaveereswaran et al., Performance comparison
cost DAQ unit, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.aej.2016.07.0
tank which caused pressure to deviate from the steady value.

But the RTDA controller eliminated its aftereffects and pres-
sure regained and settled at set point value in short time than
MPC and PI controlled response. The regulatory response of

process with three controllers is shown in Fig. 13.

6.3. Robustness analysis of controllers

An ideal controller should nullify any effects of model-process

mismatch which shows its robustness property. In order to
check the robustness property of controllers, instead of taking
of next generation controller and MPC in real time for a SISO process with low
28
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Table 2 Performance comparison of RTDA with other

controllers.

Specifications RTDA MPC PI

Settling time (s) 50 150 210

Overshoot (%) 0 6.9 9.1

Rise time (s) 30 38 60

ISE 0.0878 0.098 0.213

Figure A1 Object creation for jMPC tool.

10 V. Bagyaveereswaran et al.
18 as time constant, its value was modified to be 20 (10% pro-
cess model mismatch) in a model given in Eq. (1). In state
space model shown in Eqs. (2) and (3), the 10% parameter

change is introduced and observed that the MPC is able to
provide stable response irrespective of model mismatch. The
process response with RTDA controller didn’t change drasti-

cally but there is a huge variation in response to PI. The PI
response takes longer time to settle. The robust characteristic
of the controllers is shown in Fig. 14.

In Table 2, the performance of the implemented controllers
is compared in terms of time domain specifications. It is com-
prehend that new next generation control strategy exhibits a
better performance like other most popular controllers.
7. Conclusions

A new method of RTDA control strategy was used for control-
ling the pressure process with simple interface unit. Its perfor-
mance was tested for different characteristics such as servo
performance, disturbance rejection ability and robustness in

real time. The jMPC tool along with MATLAB provides a
simple interface to implement model predictive controller in
real time. The performance of the MPC controller was desir-

able. The data acquisition system and signal conditioning cir-
cuit were implemented on a low cost basis on the real time
system and proved to work efficiently. Finally the RTDA con-

troller also gives the better performance like MPC scheme. But
one advantage that MPC has over RTDA and PID is that pro-
cess variables can be constrained in MPC but not in other two
controllers.

The major contribution in this work is the successful imple-
mentation of next generation controller and MPC in real time
using a low cost DAQ unit for controlling the pressure process

and the success of the attempt to show the better performance
in terms of robustness, servo and regulatory characteristics of
RTDA controller.
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Appendix A

The jMPC object for MPC controller design while the process
in jSS (state space) object for linear simulations can be created

as shown in Fig. A1.
Please cite this article in press as: V. Bagyaveereswaran et al., Performance compariso
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