
Abstract 
Multipliers are the basic building blocks of signal processing and arithmetic based systems. The objective of this paper is to 
design a high speed multiplier that significantly improves the performance of many high performance DSP,  multimedia and 
communications systems. This paper proposes a high speed radix 8 Booth multiplier employing signed digit  representation 
for recoding and radix 8 modified Booth algorithm that reduces the number of partial products to n/3. The design of the 
multiplier is based on Wallace tree architecture with considerable improvement in performance. This paper compares the 
performance of conventional multiplier with radix 4 tree based Booth multiplier and radix 8 tree based Booth multiplier. 
The radix 8 tree based Booth multiplier is synthesized using Quartus II simulation tool. The proposed radix 8 tree based 
multiplier exhibits better performance with respect to area and operating frequency when compared to conventional 
 multiplier.

Performance Evaluation of High Speed Radix 8 Tree 
Based Multiplier 

Sharmila Hemanandh1* and A. Sivasubramanian2

1Department of Electronics and Communication Engineering, Sathyabama University, Chennai – 600119,  
Tamil Nadu, India; sharmilaahemanandh@gmail.com 

2School of Electronics, Vellore Institute of Technology, Chennai - 600127,  
Tamil Nadu, India; shiva_31@yahoo.com

Key Words: Higher Radix Booth Multiplier, Partial Product Reduction, Wallace Tree Multiplier

1. Introduction
Multiplication and Multiply and Accumulate (MAC) are 
the two important arithmetic operations used in most 
of the DSP algorithms. The design of the arithmetic unit 
plays a major role in the performance of any DSP system. 
The time consumed by the multiplier and the amount of 
hardware circuitry are more when compared with any 
other operation in an arithmetic unit. Designing a multi-
plier with high speed, low power and less area is a major 
subject of interest over a decade. Multiplication dominates 
the execution time of most computationally intensive DSP 
algorithms such as convolution, correlation, Fast Fourier 
Transform, Discrete Cosine Transform and Wavelet 
Transform. In general multiplication is carried out by 
repeated addition method. The number to be added is the 
multiplicand and the number of times the multiplicand is 
added is the multiplier resulting in the product of the two 
numbers. This repeated addition method is very slow. 
The two basic operations involved in the  implementation 

of a multiplier are 1. Generation of partial product  
2. Accumulating the shifted partial product. The number 
of partial products generated can be reduced using the 
booth algorithm. Improvement in speed is achieved using 
Wallace tree structure to accumulate the partial products. 
Over the years, many researchers have proposed high 
speed multipliers. Redundant binary adders are used 
in the design of radix 4 booth multiplier that increases 
the speed, whereas reduces the energy consumed by the 
design1. A neighborhood dependent approach is used in 
the design of high speed-low power radix 4 booth mul-
tiplier for video processing applications2. The dynamic 
power consumed by the design is reduced due to reduced 
switching activity. Bit serial interleaved multiplication 
algorithm is used to design radix 4 and radix 8 booth 
multiplier to reduce the number of clock cycles3. A high 
speed radix 4 multiplier for ALU’s is designed in to gener-
ate minimal partial products thereby reducing the critical 
path delay4. The design of hybrid multiplier for mobile 
GPU applications using hybrid booth encoder and hybrid 

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(33), DOI: 10.17485/ijst/2015/v8i33/71204, December 2015
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645



Performance Evaluation of High Speed Radix 8 Tree Based Multiplier 

Indian Journal of Science and Technology2 Vol 8 (33) | December 2015 | www.indjst.org

truncation scheme that exhibits low power and delay is 
proposed5. The power  dissipated by the modified radix 
4 booth multiplier using ripple carry adder is less when 
compared with multiplier using carry-look-ahead adder7. 
High speed Booth multiplier design using reversible 
logic resulting in less logical complexity design is given 
by Amita Nandal8. The design results in less power dis-
sipation and less delay with high speed of operation. An 
efficient radix 8, fixed width booth multiplier design is 
proposed with significant reduction in maximum absolute 
error and mean square error9. Partial products are gen-
erated using radix 10 recoding technique and the use of 
parallel multiplier architecture results in the  optimization 
of area and power10. 

2. Array Multiplier
 Add and shift method of multiplication is comparatively 
faster than repeated addition method. Array multiplier 
uses array of adders to shift and add at the same time. 
Consider two 4 bit numbers A (a0 a1 a2 a3) and B (b0 b1 
b2 b3). Initially b0 is multiplied with a0 a1 a2 a3 to gener-
ate the first partial product a0 b0 a1 b0 a2 b0 a3 b0. Then 
b1 is multiplied to generate the second partial product a0 
b1 a1 b1 a2 b1 a3 b1 and this is shifted one bit towards the 
left. Similarly the third and the fourth partial products are 
also generated by multiplying b2 and b3 respectively with 
A. Finally the partial products are summed up to obtain 
the final product as shown in Figure 1.

The carry generated in each column is passed on to 
the next column. All the product terms such as a3 b0, a2 
b0, a1 b0 in the partial product are generated using AND 
gates. The product bit p0 is obtained using AND gate with 
inputs a0 and b0. The two product terms a1 b0 and a0 b1 
are added using half adder. The sum output of the half 
adder is p1 and the carry output is passed on to the next 
column. In the third column a2 b0 is added with a1 b1 
along with the carry received in the previous stage using 
a full adder. The sum is again added to a0 b2 to obtain the 

product bit p2 and the carry moves vertically to the next 
column. The same procedure is repeated to obtain the 
other product bits. In the next 7th column a3 b3 is added 
with the carry generated in the previous stage and may 
result in a carry which is p7. So for a 4 ∗ 4 array multi-
plier in Figure 2 16 AND gates are required to generate 
the product terms and 12 adders (4 half adders and 8 full 
adders) are required to generate the product. In general 
for an x ∗ y array multiplier xy number of AND gates, x 
number of half adders, (x-2) y number of full adders are 
required. 

The size of the AND array depends upon the operand 
size. The number of rows and the columns of the array 
is given by the number of bits in the multiplier and the 
multiplicand respectively. The size of the array increases 
at a rate proportional to the size of the operand. So when 
the array size increases, the number of gates increases. 
Moreover, the delay depends upon the width of the mul-
tiplier. As the size of the array increases, both area and 
delay increase limiting the speed of operation. Array 
multipliers can be implemented to support high rate of 
pipelining. Owing to its regular structure array multipli-
ers can be implemented as a rectangular shaped array 
without wasting chip area.

3. Wallace Tree Multiplier
A conventional Wallace tree multiplier is a tree based 
parallel multiplier that multiplies two numbers in three 
steps:

Generation of partial products.•	
Reduction of partial products.•	
Addition of partial products to obtain the final product.•	

At first the partial products are generated by multi-
plying each bit of the multiplier with the multiplicand 

            a3 a2 a1 a0  
     b3 b2 b1 b0 
            a3b0   a2b0   a1b0   a0b0 
                     a3b1   a2b1   a1b1   a0b1 
          a3b2   a2b2   a1b2   a0b2 
                     a3b3   a2b3   a1b3   a0b3 
         p7        p6       p5       p4       p3        p2      p1        p0  

Figure 1. Array multiplier.

Figure 2. 4 X 4 array multiplier.



Sharmila Hemanandh and A. Sivasubramanian

Indian Journal of Science and Technology 3Vol 8 (33) | December 2015 | www.indjst.org

as done in the array multiplier. The partial products are 
arranged in a row one below the other with necessary 
shift based on the bit position of the multiplier multiplied 
with the multiplicand. In the next step the partial prod-
ucts are grouped as three rows. Reduction is performed 
in each column of the group using half adders and full 
adders depending upon the number of elements in the 
group. No reduction is done on a group with less than 
three rows. This process is repeated until the number of 
rows is reduced to two. Now the final product is obtained 
by adding the two rows using carry propagate adder. 
Wallace tree architecture exhibits improvement in speed 
because all the partial products in each column are added 
in parallel. The propagation delay is greatly reduced when 
compared with array multiplier. Figure 3 explains the 
algorithm of an 8x8 Wallace tree multiplier.

Waters and Swartzlander11 proposed a reduced 
 complexity Wallace tree multiplier design where the 
partial products are arranged in a reverse pyramid pat-
tern. The number of stages in computing the product is 
the same as for the traditional Wallace tree multiplier. 
The reverse pyramid arrangement reduces the area of the 
reduction process. The reduced complexity Wallace tree 
algorithm is shown in Figure 4.

The Wallace tree multiplier uses a tree of carry save 
adders to reduce the partial products. The use of carry save 
adders avoids carry propagation. Using this algorithm the 
number of adders required and hence the critical path is 
reduced when compared with an array multiplier. The time 
required to calculate the product using the add-shift method 
linearly increases with increase in the size of the operand, 
whereas the Wallace tree multiplier computes the product 
much faster at the expense of additional hardware.

Figure 3. 8X8 Wallace tree algorithm.

Figure 4. Reduced complexity Wallace tree algorithm.

4. Booth Multiplier 
Booth multiplication algorithm is an efficient method to 
multiply two signed numbers using two’s complement 
representation. Booth algorithm reduces the number 
of partial products resulting in better performance of 
the multiplier. This is achieved using Booth encoding 
 technique. 

4.1 Radix 2 Booth Algorithm
Using the Booth encoding technique the multiplier is 
recoded with values 0, +1 and –1 by examining a pair of 
multiplier bits starting from the LSB. Each pair is recoded 
with a value using Table 1.

As an example, consider the two numbers A = 12 and 
B =–13

The product P = –13 X 12 = – 156 (1101100100)
Binary representation of 13: 01101
Binary representation of –13: 10011
Binary representation of 12: 01100
Binary representation of –12:10100
Now operand A is the multiplicand and operand B is 

the multiplier. U and V are the two registers that store the 
product. M holds the value of the multiplier. Initially load 
a 0 in C. 

Step 1:  Initially the last two bits are 10 so subtract the 
multiplicand with U. Instead of subtracting, the 
two’s complement of A is added with U. After 
addition the contents of U and V are shifted using 
right shift arithmetic. The contents of M are circu-
larly shifted right by one position. 



Performance Evaluation of High Speed Radix 8 Tree Based Multiplier 

Indian Journal of Science and Technology4 Vol 8 (33) | December 2015 | www.indjst.org

Step 2:  Now the last two bits are 11, the contents of U and 
V are shifted. 

Step 3:  Now the two bits are 01. So the multiplicand is 
added with Register U and then the contents of U 
and V are shifted.

Step 4:  Since the last two bits are 00 the contents of regis-
ter U and V are shifted.

Step 5:  Now the last two bits are 10. The contents of u are 
subtracted from the multiplicand and the contents 
of U and V are shifted.

Step 6:  The bits are 11. Hence the contents of U and V are 
shifted to get the final product.

The entire procedure is summarized in Table 2.

4.2 Radix 4 Booth Algorithm
In the radix 4 booth algorithm three bits are examined and 
recoded per cycle. Hence the number of cycles to obtain 
the final product is reduced when compared with radix 
2 algorithm. The use of higher radix algorithm improves 
the speed of operation when the width of the operand 
increases. Consider the example: Multiplicand A = 12 and 

multiplier B = –13. At first a zero is added at the end of the 
multiplier. Then three bits are grouped per block starting 
from the LSB. Each block overlaps the previous block by 
one bit. Each block is assigned a scale factor (+1, 0, +2) 
from the recoding table as shown in Figure 5. Each scale 
factor performs a particular operation on the multiplier 
to generate the partial products.

Since the first block is 110 resulting in a recoded value 
of –1, the first partial product PP1 is obtained by tak-
ing the two’s complement of the multiplicand. Next, the 
second block is 001 which is recoded to +1. The second 
partial product PP2 is the multiplicand itself. The third 
block is 110 resulting in –1. Hence PP3 is obtained by 
taking two’s complement of the multiplicand. The final 
product P is obtained by adding the partial products 
using carry save adders. Since the product is negative, it 
is in the two’s complement form. The entire procedure is 
summarized in Figure 6.

 4.3 Radix 8 Booth algorithm
The delay of the multiplier mainly depends upon the 
 number of adders used. Higher radix Booth algorithm 
reduces the number of partial products generated result-
ing in less area and less power consumption12. The number 
of partial products is reduced by n/3 where n denotes the 
number of bits in the multiplier when compared with 
radix 4 which is n/2. The radix 8 algorithm uses less num-
ber of transistors resulting in reduced power dissipation 
and area compared with radix 4 algorithm13.

0 0 1 1 0 0 +12
1 1 0 0 1 1 –13

1 1 1 1 1 1 1 1 0 1 0 0 PP1

0 0 0 0 0 0 1 1 0 0 PP2

1 1 1 1 0 1 0 0 PP3

1 1 1 1 0 1 1 0 0 1 0 0 P

Figure 6. Radix 4 booth algorithm.

Table 1. Radix 2 booth recoding table

Multiplier bits Recoded value Action Performed

00 0 Shift
01 +1 Add
10 –1 Subtract
11 0 Shift

Table 2. Radix 2 booth multiplication algorithm

U V M C Action
00000 00000 10011 0

Sub and shift10100 00000
10100 00000 10011
11010 00000 11001 1 Shift only
11101 00000 11100 1

Add and shift01100 00000
01001 00000 11100
00100 10000 01110 0 Shift only
00010 01000 00111 0

Sub and shift10100 01000
10110 01000 00111
11011 00100 10011 1 Shift only

Figure 5. Radix 4 recodin.



Sharmila Hemanandh and A. Sivasubramanian

Indian Journal of Science and Technology 5Vol 8 (33) | December 2015 | www.indjst.org

In radix 8 algorithm 4 bits are grouped per block 
instead of 3 as in radix 4 algorithm. Each block is assigned 
a recoded value from Table 4. Each recoded value performs 
a particular operation on the multiplicand to generate the 
partial product. +1 – retains the multiplicand as such. –1 
– computes the two’s complement of the multiplicand, +2 
– left shifts the multiplicand by one bit, –2 – left shifts the 
two’s complement of the multiplicand by one bit, (if y is 
the multiplicand) +3 – calculates (y +3y), =3 – gives the 
complement of (y +3y), =4 – left shifts the  multiplicand 

Figure 7. Simulation results of radix 8 tree based Booth 
multiplier.

Table 3. Radix 4 booth recoding table

Multiplier bits Recoded value Action Performed

000 0 0∗Multiplicand

001 +1 +1∗Multiplicand

010 +1 +1∗Multiplicand

011 +2 +2∗Multiplicand

100 –2 –2∗Multiplicand

101 –1 –1∗Multiplicand

110 –1 –1∗Multiplicand

111 0 0∗Multiplicand

Table 4. Radix 8 booth recoding table

Multiplier bits Recoded value Action Performed

0000 0 0∗Multiplicand

0001 +1 +1∗Multiplicand

0010 +1 +1∗Multiplicand

0011 +2 +2∗Multiplicand

0100 +2 +2∗Multiplicand

0101 +3 +3∗Multiplicand

0110 +3 +3∗Multiplicand

0111 +4 +4∗Multiplicand

1000 –4 –4∗Multiplicand

1001 –3 –3∗Multiplicand

1010 –3 –3∗Multiplicand

1011 –2 –2∗Multiplicand

1100 –2 –2∗Multiplicand

1101 –1 –1∗Multiplicand

1110 –1 –1∗Multiplicand

1111 0 0∗Multiplicand

by two bit position, –4 – left shifts the complement of 
 multiplicand by two bit position.

This paper compares the performance of four  different 
types of multipliers, namely array multiplier, radix 4 booth 
multiplier, radix 4 tree based booth multiplier and radix 8 
tree based booth multiplier.

5. Results and Discussions
Booth multiplier is faster than array multiplier. As the 
number of bits increases, gate delay and area increase 
slowly when compared with other multipliers. The greatest 
advantage of Booth multiplier when compared with other 
multipliers is the regularity of its structure. Hence it can 
be easily realized on silicon to work at high speed with-
out increasing the clock frequency. The proposed radix 8 
Booth multiplier is based on Wallace tree architecture in 
which carry select adders are used for intermediate par-
tial product accumulation and carry-look-ahead adder is 
used for final accumulation. 

Figure 7 shows the simulation results of radix 8 tree 
based Booth multiplier for both signed and unsigned 
numbers.

The design of the proposed architecture is targeted 
on to EP3C16F484C6 belonging to Cyclone III fam-
ily. The multipliers are compiled and synthesized using 
Quartus II simulation tool. The compilation report and 
the timing analyzer report are shown in Figures 8 and 9. 
Figure 10 is the RTL schematic diagram of the proposed 
design.

Table 5 summarises the area and the operating 
 frequency of the four multipliers. From the results it is 



Performance Evaluation of High Speed Radix 8 Tree Based Multiplier 

Indian Journal of Science and Technology6 Vol 8 (33) | December 2015 | www.indjst.org

Table 5. Comparison of different multipliers

Multiplier Type Area F-max

Array Multiplier 327 129MHz

Radix 4 Booth multiplier 285 239.35MHz
Radix 4 tree based Booth multiplier 264 265.89MHz
Radix 8 tree based Booth multiplier 325 458.09MHz

observed that radix 8 tree based Booth multiplier is more 
efficient in the total number of logic elements used and 
the operating frequency when compared with array 
 multiplier.

6. Conclusion
A unique high speed booth multiplier was proposed 
to improve throughput rate and to minimize the area 
complexity. The proposed multiplier is based on Wallace 
tree based architecture with reduced number of partial 
products and this played a major role in increasing the 
operating frequency. Hence the proposed multiplier 
achieves a maximum operating frequency and opti-
mized synthesis results. The frequency with which the 
device can work is 458.09MHz, which is greater than 
the value with which the conventional array multiplier 
operates.

7. References
1. Surendran EKL, Antony PR. Implementation of fast 

 multiplier using modified radix-4 Booth algorithm with 
redundant binary adder for low energy applications. 
Computational Systems and Communications (ICCSC). 
IEEE: Trivandrum; 2014 Dec 17-18. p. 266–71.

2. Ngo HT, Asari VK. Design of a radix-4 booth multiplier 
with neighbourhood dependent approach for video pro-
cessing applications. Circuits and Systems, IEEE: Montreal 
QU; 2007 Aug 5-8. p. 53–6.

3. Javeed K, Wang X. Radix-4 and radix-8 booth encoded 
interleaved modular multipliers over general Fp. Field 
Programmable Logic and Applications. IEEE: Munich; 
2014 Sep 2-4. p. 1–6.

4. Basha SS, Jahangir BS. Design and implementation of 
radix-4 based high speed multiplier for alu’s using mini-
mal partial products. International Journal of Advances in 
Engineering and Technology. 2012 Jul; 4(1):314–25. 

5. Choi S, Gyeonghoon K, Yoo HJ, Nam BG. Hybrid  radix-4/-8 
truncated multiplier for mobile GPU applications. IEEE. 
2014 Jun; 50(23):1680–2.

6. Ramteke SK, Dubey A, Khandagare Y. VLSI designing of 
low power radix4 booths multiplier. International Journal 
of Electrical, Electronics and Computer Systems. 2014; 
2(2):48–52.

7. Kumre L, Somkuwar A. Agnihotri G. Implementation 
of radix 4 booth multiplier using MGDI technique. 
International Conference on Microelectronics, 
Communication and Renewable Energy. IEEE: 
Kanjirapally; 2013. p. 1–5.Figure 10. RTL schematic diagram.

Figure 8. Compilation report of radix 8 tree based Booth 
multiplier.

Figure 9. F-max summary report of radix 8 tree based 
Booth multiplier.



Sharmila Hemanandh and A. Sivasubramanian

Indian Journal of Science and Technology 7Vol 8 (33) | December 2015 | www.indjst.org

11. Waters RS. Swartzlander EE. A reduced complexity wallace 
multiplier reduction. IEEE Transactions on Computers. 
2010 Aug; 59(8):1134–7. 

12. Raghavendra J, Vigneswaran T. Design of fused add-multiply 
operator using modified booth recorder for fast arithmetic 
circuits. Indian Journal of Science and Technology. 2015; 
8(19): IPL0149. 

13. Rubinfield LP. A proof of the modified booth’s algorithm 
for multiplication. IEEE Transaction on computers. 2006: 
39(10):1014–5. 

 8. Nandal A, Vigneswaran T, Rana AK. Booth multiplier 
using reversible logic with low power and reduced logical 
complexity. Indian Journal of Science and Technology, 2014 
Apr; 7(4):525–9. 

 9. Bhusare SS, Bhaskaran VSK. Design of a low-error 
fixed-width radix-8 booth multiplier. Fifth International 
Conference on Signal and Image Processing: IEEE; 2014. p. 
2069.  

10. Kumar HAA, Umadevi S. Implementation of fast radix-10 
BCD multiplier in FPGA. Indian Journal of Science and 
Technology. 2015 Aug; 8(19):IPL0147. 


