
ISSN: 2229-6956(ONLINE)

DOI: 10.21917/ijsc.2012.0051
 ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2012, VOLUME: 02, ISSUE: 03

331

PERFORMANCE EVALUATION OF OR1200 PROCESSOR WITH EVOLUTIONARY

PARALLEL HPRC USING GEP

R. Maheswari
1

and V. Pattabiraman
2

School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, India

E-mail:
1
maheswari.r@vit.ac.in and

2
pattabiraman.v@vit.ac.in

Abstract

In this fast computing era, most of the embedded system requires

more computing power to complete the complex function/ task at the

lesser amount of time. One way to achieve this is by boosting up the

processor performance which allows processor core to run faster.

This paper presents a novel technique of increasing the performance

by parallel HPRC (High Performance Reconfigurable Computing) in

the CPU/DSP (Digital Signal Processor) unit of OR1200 (Open

Reduced Instruction Set Computer (RISC) 1200) using Gene

Expression Programming (GEP) an evolutionary programming

model. OR1200 is a soft-core RISC processor of the Intellectual

Property cores that can efficiently run any modern operating system.

In the manufacturing process of OR1200 a parallel HPRC is placed

internally in the Integer Execution Pipeline unit of the CPU/DSP core

to increase the performance. The GEP Parallel HPRC is activated

/deactivated by triggering the signals i) HPRC_Gene_Start ii)

HPRC_Gene_End. A Verilog HDL(Hardware Description language)

functional code for Gene Expression Programming parallel HPRC is

developed and synthesised using XILINX ISE in the former part of

the work and a CoreMark processor core benchmark is used to test

the performance of the OR1200 soft core in the later part of the work.

The result of the implementation ensures the overall speed-up

increased to 20.59% by GEP based parallel HPRC in the execution

unit of OR1200.

Keywords:

GEP, Gene, Crossover, Mutation, CoreMark

1. INTRODUCTION

A soft- core processor is a reconfigurable component which

can be synthesized into programmable FPGA (Field

Programmable Gate Array) or ASIC (Application Specific

Integrated Circuit) using HDL. This soft core processor comes

under licensed and open source [1]. OR1200 is an open source

soft core 32-bit RISC Harvard micro-architecture with 5 stage

pipeline.OR1200 finds its application in most of the embedded

area like embedded networking, automobile, internet,

telecommunication and wireless application. This OR1200 RISC

processor can efficiently run on any modern operating system. In

any system, the processor performance can be increased by code

optimization, parallel processing, high throughput, short

response time, low utilization of resource, fast encoding

/decoding data, high bandwidth etc. To build high performance

computing system, it may require better understanding of the

overall behaviour of the system in target. Huge number of

researches focussed on the performance issues targeting

understanding, evaluating, measuring and improving system

performance. This paper focussed on improving the core

performance by internally placing an evolutionary GEP parallel

HPRC in the Integer Execution Pipeline unit of the CPU/DSP

OR1200 core processor. GEP is an evolutionary devised system

for encoding expression for applications which need

fast/complex system using mutation and cross-breeding

techniques which runs very faster than traditional genetic

algorithm [2]. This proposed work has segregated into two part:

in the former part, a Verilog HDL functional code for GEP

parallel HPRC is developed and synthesised using XILINX ISE

and in the later part, a CoreMark processor core benchmark is

used to test the performance of the OR1200 soft core.

2. MATERIAL AND METHODS

In this paper a parallelized HPRC is implemented as "Full

Generational Reconfigure" GEP as an evolutionary strategy.

Parallel HPRC is activated/deactivated by two signals

HPRC_Gene_Start and HPRC_Gene_end, controlled by a FDC

(D flip-flop with Clock signal). Parallel processing, wherein

each gene or a group of gene is hosted by a separate Processing

Element (PE), is a feasible method to speed up the runs. In the

parallel programming the selection is done at the global

population. Then the selected string will subjected to undergo

crossover or mutation in parallel. At the beginning of the

process, the population of string is initialized with random

chromosomes. When a fitness value is assigned to every set of

parameters in the generation, the subroutine returns to the main

program to perform the genetic operations to reproduce

offspring. The process continues for a fixed number of

generations, chosen to maximize the success rate of the core

processor OR1200.

2.1 OR1200

The block diagram for an embedded parallel HPRC using

evolutionary GEP in OR1200 RISC processor Integer Execution

pipeline unit is shown in Fig.1. The performance of HRPC unit

inside the OR1200 soft core is achieved by

dynamic/reconfigurable hardware unit [1].

Fig.1. Block diagram with parallel HPRC in Execution unit

HPRC in OR1200 is a collection of interconnected

programmable PE. The active PE’s are identified from the

mailto:maheswari.r@vit.ac.in

R MAHESWARI AND V PATTABIRAMAN: PERFORMANCE EVALUATION OF OR1200 PROCESSOR WITH EVOLUTIONARY PARALLEL HPRC USING GEP

332

HPRC unit and GEP is executed in each active PE. The sample

active PE is shown in the Fig.2.

Fig.2. Active Processing Elements (PE) in HPRC (GEP)

2.2 GENE EXPRESSION PROGRAMMING

GEP is an evolution technique of genetic family proposed by

C. Ferreira in 2001 [3, 4]. This evolutionary model based GEP

adopts the merits of both the traditional genetic concepts of

Genetic Algorithm (GA) and Genetic Programming (GP). GEP

due to its large-space search capability, it performs well in

global optimization of the system [5]. Parallelism in GEP

classified into two ways i) Genetic operation parallelism

(Mutation, selection , transposition, Inversion etc) ii) Fitness

Evaluation parallelism[6].

2.2.1 Fundamentals of GEP:

The two basic blocks of GEP are chromosome (single or

multi-genic) and expression tree [7]. Based on this, the language

of GEP is classified into two ways i) language of the genes ii)

language of the expression tree. The gene of the GEP contains

two sections a head and a tail. The head (H) of the gene contains

functions and terminals (variables and constants) and the tail (T)

contains only terminals. In GEP the gene symbols of the

chromosomes are encoded into mutate valid expression using

Karva language called K-Expression. K-Expression is an

efficient way of representing the complex program as simple,

extremely compact, symbolic strings in any language [5].

2.3 PROPOSED ALGORITHM

In this implementation at first initial population of

chromosome is created for the active PE and heuristic function

h(n) for the node (gene) is calculated with the H(n) and T(n), the

number of symbols in head and tail respectively. Using this

heuristic function, the fitness score (fs) of the individual is

identified.

Based on this fitness score the entire population is segregated

into three types:

i. ideal gene (fs=1)

ii. viable gene (0< fs <1)

iii. unviable (fs<0)

According to this fitness value, the individuals are selected

by Binary Roulette wheel sampling which return Boolean value

0 or 1 (1 for ideal and viable gene and 0 for unviable gene).

After selection, new generation of gene is created by any one of

the reproduction genetic operator functions like cross over and

mutation. These offspring are put into an intermediate

population or also called as gene pool. To avoid the disruption of

genetic information when performing genetic operators on the

parents it is necessary to copy them into an intermediate

population [9].

2.3.1 Reproduction in GEP:

Crossover is a genetic operator in which reproduction is

achieved by swapping the chromosome between the individuals.

In mutation offspring is produced by randomly changing the part

of the string chromosome [8][9]. In GEP the mutation may be

performed in one of the following various ways like i) Simple

Mutation, ii) Mutation by inversion, iii) Mutation by transposing

symbol in gene, iv) Mutation by transposing gene in

chromosome, v) Mutation by recombine chromosomes.

Mutation by chance produces an extra ordinary gene called

intellectual gene or simply genius.

2.3.2 Pseudo Code for GEP Parallel HPRC:

Begin

 Identify the active PE

 HPRC_Gene_Start

 While (PE)

1. Initialize initial population

a. Encode K-expression

b. Calculate H(n)= 




1

0

ni

i

iP

(where, Pi is the chromosomes parameter for

analysis)

c. Calculate T(n) = H(n) + (MaxA(n) – 1) + 1

where, MaxA(n) is the maximum number of the

argument

2. Convert the K-Expression into expression tree and

calculate the heuristic function h(n) as,

h(n) = δt(p) + H(n) T(n)

where, δ is the rate of change of PE, p is active PE

p{1, 2, . ., n},

n is the number of PE.

3. Calculate the fitness function to produce fitness score,

 nhimEf
T

i
is 

0
2)/1000(log**

where, fs is the Fitness Score, E is the K-Expression of

the PE, m is the scaling factor, T total number of K-

Expression.

4. Identify the workable fitness node using the fs

 














fitness ideal

fitness unviable

fitness viable

1

0

10

s

s

s

f

f

f

nf

5. Transfer the best fit chromosome into next generation

using Binary Roulette-wheel sampling Rwb. Depending

upon the f(n) it returns binary value for selection.









0 if

1 && 10if

0

1

s

ss
wb

f

ff
R

6. Create new population by reproduction within the PE

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2012, VOLUME: 02, ISSUE: 03

333

a. If fs <0 exist further perform crossover to produce

offspring

C = Gen(k)  Gen(k + 1)

b. Depending upon the K-Expression and requirement,

execute any one of the mutation function to produce

offspring.

7. Place the generated offspring in the gene pool

8. Repeat step 2 to 8 for next evolution cycle

 End While

 HPRC_Gene_End

End

3. THEORY/CALCULATION

The gate level net-list is generated by synthesizing the

Verilog HDL code for parallel HPRC with an evolutionary GEP

in OR1200.The Fig.3 below shows the RTL (Register-Transfer

Level) schematic for parallel HPRC using GEP generated in

XILINX ISE for SPARTAN3 family, XC3S200 device

configuration. The efficiency of the core (OR1200) in the

parallel computation using GEP is calculated using the formula,

 tt

t

PPES

S
S


 (1)

In Eq.(1) S is the speed-up of the system, St is the serial

execution time, PESt is serial execution time of total active PE’s,
PESt {1, 2, . . . , n}, n is the number of active PE and Pt is the

parallel execution time. To increase the performance, various

genetic operators will be applied to the initial/intermediate

population of behaviours. One cycle of testing all of the

competing behaviour is defined as a generation and is repeated

until a good behaviour is evolved. The good behaviour is then

applied to the real problem.

The efficiency of the core OR1200 is evaluated by running the

Matrix manipulation of CoreMark processor core bench mark.

Speed-up is thus calculated by using the above formula by

considering four active PE. It has observed that the values for the

variables are St = 189.24 ns, PESt = 756.96 ns and Pt = 82.36 ns.

Thus the result of the implementation ensures the overall

increase in speed-up achieved is 20.59% by GEP based parallel

HPRC in the execution unit of OR1200.

Fig.3. View RTL Schematic for parallel HPRC using GEP in Integer Execution unit

Fig.4. Behavioral Model Simulation in ISim

R MAHESWARI AND V PATTABIRAMAN: PERFORMANCE EVALUATION OF OR1200 PROCESSOR WITH EVOLUTIONARY PARALLEL HPRC USING GEP

334

4. RESULTS

In the later part of the proposed work the developed

functional code in HDL for parallel HPRC using GEP is

simulated in XILINX ISE to analyse its OR1200 processor core

performance.

4.1 BENCHMARK

 To test the performance of the parallel HPRC using GEP in

OR1200 processor core CoreMark bench mark is used rather

than classical Dhrystone benchmark. CoreMark is a embedded

generic benchmark developed by EEMBC (Embedded

Microprocessor Benchmark Consortium) specially for

processor’s core features [11].

4.1.1 Output Simulations:

Fig.4 shows the behavioural model simulation of parallel

HPRC with GEP tested for Matrix manipulation test bench [10]

using CoreMark benchmark in XILINX ISE Simulator (ISim).

Matrix manipulation forms the basis of many more complex

algorithms used as test vector in many processor testing.

The test bench is executed for the specified time interval

(Start Time = 0 ns and End Time = 3000 ns) measured between

the marker properties between 697128.1 ps to 2850000.0 ps.

Fig.5. Statistical Fitness Score

The Fig.5 shows the statistical fitness score generated while

running the test bench.

4.2 SAMPLE RESULT DATA

The Table.1 shows the sample result data generated while

running the GEP based parallel HPRC with Population size of

150 with 1510 runs.

Table.1. Sample Result Data Set

No of Runs : 1510

No of Generations : 545

Population size : 150

Absolute error : 0.02

Maximum fitness : 15100

Fitness cases:

terminal a f(a)

 2.81 95.2425

 6 1554

 7.043 2866.55

 8 4680

 10 11110

 11.38 18386

 12 22620

 14 41370

 15 54240

 20 168420

Function and terminal set of Gene:

Head * + - / a b c

Tail a b c

Solution with maximum fitness 15100:

Expression Tree:

+

++

*---

//*--

+-b+a*-

+c//ba/**bbaa

accb//c/**bca

+aa//aa/**aa

aaaabbaaaaaaaccaaaa

bbbbbbbabbaaaccccccc

aaacccccbbbbaaaaaabbbbbbbbaaaaa

Success rate: 0.987

5. DISCUSSION

The OR1200 core processor performance was increased by

placing parallel HPRC using multigrain parallelism in the

Integer Pipeline Unit of CPU/DSP [1]. In this paper the

performance of the core processor will be increased with the

help of proposed evolutionary parallel HPRC using GEP model

by 20.59% and this performance analysis is justified in the

below section.

5.1 PERFORMANCE ANALYSIS

The CoreMark Benchmark for Matrix multiplication is

executed in the OR1200 core processor. Performance analysis is

done with the comparison study of OR1200 by running the

processor in three different scenarios such as traditional OR1200

processor, OR1200 with parallel HPRC using multigrain and

OR1200 with parallel HPRC using evolutionary GEP. The

simulated model for the test bench program is analyzed for the

-0.80

-0.40

0.00

0.40

0.80

1.20

1.60

0 2 4 6

F
it

n
es

s
sc

o
re

No. of Processing Element (PE)

Fitness Score Vs PE

Viable Gene

Ideal Gene

Unviable Gene

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2012, VOLUME: 02, ISSUE: 03

335

performance of the core OR1200. The sample matrix functional

code in verilog (HDL) is:

or1200_gep matrix (

//Matrix Dimension

 .hprc_gene dm,

//Resultant Matrix

 .res_gene *rg,

//Input Matrix

 .in_gene *in,

//Matrix operator

 .in_gene *op);

The time required to execute (time complexity) the NXN

matrix multiplication in OR1200 without HPRC is O(N
3
), when

N=10, the processor requires 1.4x10
-6

 seconds to complete the

execution. While running the matrix code in the processor

OR1200 with parallel HPRC using GEP, it requires 1.13x10
-7

seconds to complete the execution. Therefore the overall time

complexity for the core OR1200 with HPRC using GEP is

reduced to O(N
2
).

To review on the processor performance on the analyzer, the

two event ratios CPI (Cycle per Instruction) and Parallelization

Ratio are focused here. CPI value indicates the number of clock

cycles required by the instruction and Parallelization ratio

signifies the amount of parallelization used. In a multi-threaded

application this Parallelization ratio value should close to

numeric one.

Table.2. Event Ratios of OR1200

Clocks per

Instructions

Parallelization

Ratio

OR1200 6.920 0.89

OR1200 with

HPRC using

GEP

3.178 1.00

The optimization analysis graph (Fig.6) for the processor

OR1200 with HPRC using GEP is drawn for the event ratio

tabulated in Table.2.

Fig.6. Optimization Analysis of OR1200

The Fig.7 shows the performance analysis graph drawn for

the below configuration table Table.3 of OR1200.

Table.3. Configuration details of OR1200

OR1200

(Secs)

Existing

(Traditional

OR1200)

Existing

(with

Multigrain)

Proposed

(with

GEP)

Total ticks 25875 25875 20766

Total time

(secs)
25.875 12.875 8.37628

Iterations/Sec 3864.7343 1468.6003 1209.08

Iterations 100000 70990 50345

Fig.7. Performance Analysis of OR1200 using CoreMark

Benchmark

6. CONCLUSION

A novel technique of parallel HPRC using GEP an

evolutionary model is proposed in this paper to increase the

performance of OR1200 RISC processor in the embedded

system. Using the evolutionary reproduction genetic operator of

0

2

4

6

8

Clocks per Instructions Parallelization Ratio

M
ea

su
ri

n
g

 P
a

ra
m

et
er

 i
n

 S
ec

s

Event Ratios

Optimization Analysis

OR1200

OR1200 with HPRC

using GEP

0

30000

60000

90000

120000

Total ticks Total time

(secs)

Iterations/Sec Iterations

M
ea

su
ri

n
g

 P
a

ra
m

et
er

(I
n

st
ru

ct
io

n
s)

Units in sec

Performance Analysis

Exisiting OR1200

With Multigrain

With GEP

R MAHESWARI AND V PATTABIRAMAN: PERFORMANCE EVALUATION OF OR1200 PROCESSOR WITH EVOLUTIONARY PARALLEL HPRC USING GEP

336

the chromosome such as crossover and mutation the offspring

are produced in the PE and resulted in the optimized code with

parallel thread with increased speed-up.

A Verilog HDL code is developed and implemented using

XILINX ISE to synthesize HPRC in Integer execution unit of

OR1200 in the former part of the working model. A behavioral

model simulation is generated for CoreMark benchmark matrix

manipulation and the performance of the reconfigured

architecture is identified using ISim in the later part of the

working model. Thus the result of the implementation for matrix

manipulation ensures the overall speed-up increased to 20.59%

by optimizing the execution unit of OR1200.

Using the FPGA gate logic the proposed working model

based on the evolutionary GEP algorithm can be synthesized.

This derived GEP technique can be incorporated in the various

open source soft core IP cores such as Microblaze, PacoBlaze,

LatticeMico32 etc to increase the speed-up of the core with very

less overhead in hardware.

REFERENCES

[1] Maheswari. R and Pattabiraman. V, “A New Technique Of

Embedding Multigrain Parallel HPRC In OR1200 A Soft-

Core Processor”, Proceedings of the 11
th

 WSEAS

International Conference on Software Engineering,

Parallel and Distributed Systems, Vol. 25, pp. 92-97, 2012.

[2] Candida Ferreira, “Gene Expression Programming, A New

Adaptive Algorithm for Solving Problems”, Transactions

on Complex Systems, Vol. 13, No 2, pp. 87-129, 2001.

[3] Candida Ferreira, “Gene Expression Programming:

Mathematical Modelling by an Artificial Intelligence”,

Springer, 2004.

[4] Yu Chen, Chang Jie Tang, Rui Li, Ming Fang Zhu, Chuan

Li and Jie Zuo, “Reduced-GEP: Improving Gene

Expression Programming by Gene Reduction”,
Proceedings of Second International Conference on

Intelligent Human-Machine Systems and Cybernetics, Vol.

2, pp. 176-179, 2010.

[5] Jiang Wu, Taiyong Li Bing Fang, Yue Jiang , Zili Li, and

Yangyang Liu, “Parallel Niche Gene Expression
Programming Based On General Multi-CoreProcessor”,
Proceedings on Artificial Intelligence and Computing

Intelligence, Vol. 3, pp. 75-79, 2010.

[6] Heitor S. Lopes and Wagner R. Weinert, “Egipsys: An
Enhanced Gene Expression Programming Approach For

Symbolic Regression Problems”, International Journal of

Applied Mathematics and Computer Science, Vol. 14, No.

3, pp. 375–384, 2004.

[7] Irina Ciornei and Elias Kyriakides, “Hybrid Ant Colony-

Genetic Algorithm (GAAPI) for Global Continuous

Optimization”, IEEE Transactions on Systems, Man and

Cybernetics-Cybernetics, Vol. 42, No. 1, pp. 234-245,

2012.

[8] Laurens Jan Pit, “Parallel Genetic Algorithms”, Master’s
Thesis, Dept. Computer Science, Leiden University pp.19-

22, 1995.

[9] L. Zhuo, and V. K. Prasanna, “Scalable and Modular
Algorithms for Floating-Point Matrix Multiplication of

Reconfigurable Computing Systems”, IEEE Transactions

on Parallel and Distributed Systems, Vol. 18, No. 4, pp.

433-448, 2007.

[10] CoreMark http://www.coremark.org.

[11] http://www.dtreg.com/gep.htm.

http://www.gene-expression-programming.com/Author.asp
http://www.coremark.org/

