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Error correction coding is extensively used to achieve reliability in digital communication especially in Physical Layer. In this

paper, construction of concatenated kernel code defined over algebraic structure group is discussed. Minimal trellis representation

is given for constructed concatenated kernel codeword. Constructed code is tested in cognitive radio network environment subjected

to continuous interference due to the behavior of primary users. Proposed code is tested through simulations and its performance is

analyzed in terms of Bit Error Rate (BER) in mitigating the effect of continuous interference. Maximum likelihood graph Viterbi

decoding technique is used to decode the concatenated kernel code.
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1. Introduction

Reliability in information transmission is achieved through adding redundancy during transmission. Error correc-

tion coding deals with such well defined techniques of adding redundancy to information so that errors in transmission,

if any, can be corrected with the help of added redundancy. Study and research of such techniques is broadly called

as Channel coding. The process of adding redundancy to information by a specified technique is called encoding and

thus formed encoded message is called codeword. Similarly, certain techniques are used to reconstruct the actual mes-

sage from the codeword and the process is called Decoding. Redundancy bits added to information are also termed as

parity bits.

Mathematically, a message m of length k from a message space defined over alphabet Σ is encoded into a codeword

of length n such that k < n. Encoding E can be equivalently given as an injective map from message space Σk to the

∗ Corresponding author. Tel.: +91-416-2243091 ; fax: +91-416-2243092.

E-mail address: rselvakumar@vit.ac.in

1877-0509 c� 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 7th International Conference on Advances in Computing & Communications.

2 Pavan Kumar et al. / Procedia Computer Science 00 (2017) 000–000

codeword space Σn[19]. Message space M includes all messages of length k to be encoded. Similarly, codeword space

C includes all the codewords of length n to be transmitted over channel. Encoding E is given as a map as follows:

E : Σk → Σn (1)

where, Σk denotes message m of length k and Σn denotes codeword C of length n.

Similarly, decoding function D is given as a map as follows:

D : Σn → Σk (2)

Encoded message or codeword from codeword space Σn is transmitted over channel that can introduce errors η and

η ∈ Σn.

In presence of channel noise η ∈ Σn, decoding function D is given as a mapping as follows:

D : Σ(n+η) → Σk (3)

Majority of error correcting codes used in present day digital communication are defined over algebraic structure

vector space with underlying field [14]. Error correcting codes defined over algebraic structure group has received less

attention by researchers [2].

1.1. Concatenated Codes

Concatenated codes were extensively used in space missions lead by NASA in the late 60s and early 70s to achieve

better reliability over traditional error correcting codes [4]. Forney introduced concatenated codes with inner code

and outer code [7]. Concatenated codes doesnt belong to any specific family of codes [19] and careful selection of

inner and outer code results in significant improvement in performance. Concatenated codes achieved goals of both

communicating with rate (R) less than the channel capacity (C), i.e., R < C (Shannon Model) [17] and correcting

errors that occur during transmission over noisy channel (Hamming model) [8].

1.2. Trellis of a code

Graphs were used to represent codewords and trellis graphs are extensively used to represent codewords of a code

C. A trellis T representing a code C is given as C(T ) [20].

Kschischang and Sorokine defined [11], Trellis for a block code C of length n is an edge labeled directed graph

with a distinguished ”root” vertex having in-degree zero and a distinguished ”goal” vertex having out-degree zero,

and with the following properties:

1. all vertices can be reached from the root;

2. the goal can be reached from all vertices;

3. the number of edges traversed in passing from the root to the goal along any path is n; and

4. the set of n-tuples obtained by ’reading off’ the edge labels encountered in traversing all paths from the root to

the goal is C.

Many popular graph decoding algorithms such as Viterbi graph decoder [21] and Bahl, Cocke, Jelinek and Raviv

(also called as BCJR algorithm) [1] are employed to decode the codewords represented as trellis.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.09.142&domain=pdf
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1.3. Cognitive Radio Network

Cognitive Radio Network has emerged as a promising solution for the spectrum scarcity and inefficient utilization

of licenced spectrum problems [22, 13]. Cognitive Radio Networks provide opportunity for the secondary users (i.e.,

unlicenced users) to use the spectrum when primary users (i.e., licenced users) are not using it. Since, secondary

users are not the licenced users, priority should be given to the primary user transmission as and when they appear.

Such appearance of primary users’ transmissions create continuous interference for secondary user transmission. In

such scenario, error correcting codes helps secondary users to reliably transmit information mitigating continuous

interference from primary users [10, 5].

1.4. Our Contribution

To address the challenges of reliable communication in cognitive radio network, we propose concatenated kernel

code defined over algebraic structure group with inner and outer code similar to construction of Forney. Its perfor-

mance is analysed in cognitive radio network framework through simulations in terms of BER.

Our contributions are summarised as follows:

1. Concatenated kernel code is constructed over algebraic structure group.

2. Minimum trellis is constructed for the concatenated kernel code. Maximum likelihood graph Viterbi decoder is

employed to decode the codeword from the constructed minimum trellis.

3. Performance of algebraically constructed concatenated kernel code is tested through simulation in cognitive radio

network where secondary users are subjected to continuous interference from primary users.

Present paper is organized as follows: In section 2, algebraic construction of concatenated kernel code is given and

also algorithm to compute concatenated kernel code is given. In section 3, an example construction of concatenated

kernel code is discussed along with the minimum trellis for the constructed code. In section 4 some observations

made from the constructed code is discussed. In section 5, system model to evaluate the concatenated kernel code are

discussed. In section 6, performance evaluation of constructed code is made in terms of Bit Error Rate (BER). BER

is considered as a Quality of Service (QoS) parameter to evaluate the performance [6, 5]. Section 7 deals with the

conclusion.

2. Concatenated Kernel code construction

Concatenated code is constructed by combining two families (separate or same) of error correcting code [7]. Com-

bination of inner Viterbi convolutional code with Reed Solomon outer code was successfully used in Voyager space

mission [4]. Concatenated kernel code is constructed on similar lines with inner code and outer code.

2.1. Kernel code

Let G1, G2, . . ., Gn be finite groups and S be an abelain group with identity element e. The kernel of homomorphism

µ

µ : G1 ×G2 × · · · ×Gn → S

is defined as µ(g1, g2, . . . , gn) = µ1(g1)µ2(g2) . . . µn(gn) is called kernel code, where µi is a homomorphism from Gi →

S where, Gi = G1 × G2 × . . . × Gn. µ is a homomorphism [16] and homomorphism mapped to identity element of

abelian group is called kernel of homomorphism [14].
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2.2. Concatenated Kernel code

Concatenated kernel code is constructed with inner code and outer code.

Inner Code:

Let µi : G → S for i = 1, 2, . . . , k be homomorphisms and S be an abelian group. The kernel of homomorphism µ

(µ : Gk → S ) is defined as µ(g1, g2, . . . , gk) = µ1(g1)µ2(g2) . . . µk(gk). Kernel of homomorphism µ is defined as inner

code.

Outer Code:

Let G be an abelian group and µ′ : Gk → Gn be a homomorphism defined as µ′(g1, g2, . . . , gk) = ((g1, g2, . . . , gk),

h1(g1, g2, . . . , gk), . . . , hn−k(g1, g2, . . . , gk)). hi ’s are chosen as applicable or required to channel. Images of µ′ is

defined as outer code.

Concatenated kernel code is the images of elements of kernel µ ◦ µ′ under µ′. Algorithm 1 computes the concate-

nated kernel code from the given finite groups and homomorphism.

Algorithm 1 Concatenated Kernel Code

Input: Finite Groups and Abelian group

Output: Concatenated Kernel Code

1: for i = 1 to n do

2: µi = select values applicable for channel

3: Compute set K of Cartesian products of Groups G1, G2 ,G3 ,. . . , Gn

4: for i = 1 to n do ⊲ On set K of Cartesian products

5: if µ1(g1)µ2(g2)µ3(g3)...µn(gn) = 0 then

6: add to set P

7: return P ⊲ Set of Kernel codes

8: for i = 1 to n do

9: C = ((g1, g2, . . . , gk), h1(g1, g2, . . . , gk), . . . , hn−k(g1, g2, . . . , gk))

10: add to set C

11: return C ⊲ Set of Concatenated Kernel codeword

2.3. Rate of Kernel code

On similar lines with linear code [2], the rate of kernel code is given by R = 1
n
log|G| where, n is the word length

and |G| is the number of codewords, i.e., the number of elements in the kernel of homomorphism.

3. Example of Concatenated Kernel code

Let < Z2,+ >, < Z3,+ > and < Z5,+ > be finite groups with elements Z2 = {0, 1}, Z3 = {0, 1, 2} and Z5 = {0, 1, 2,

3, 4}. Concatenated kernel code is defined over Z2 × Z3 × Z5 → Z2 with homomorphisms µi is defined as µ1(0) = 0,

µ1(1) = 1, µ2(0) = 0, µ2(1) = 0, µ3(0) = 0, µ3(1) = 1, µ3(2) = 1, µ4(0) = 0.

From the defined homomorphism and using the algorithm 1, we obtain {000, 004, 010, 014, 020, 024, 101, 102,

103, 111, 112, 113, 121, 122, 123, 124} as kernel code.

Homomorphism for outer code is defined as µ4(0) = 0, µ4(1) = 1, µ4(2) = 0, µ4(3) = 1, µ5(0) = 0, µ5(1) = 0,

µ5(2) = 1, µ5(3) = 1, µ5(4) = 0.

From the defined values of µi’s we obtain C = {00000, 00400, 01010, 01410, 02001, 02400, 10110, 10211, 10311,

11101, 11201, 11300, 12111, 12210, 12310, 12410} as concatenated kernel code.

Minimum trellis representation for constructed concatenated kernel code is given in Fig 1. Trellis representation

of code preserve the loss of valuable information that occurs during channel output symbol quantization that usually
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occurs in channel output symbol quantization over field in algebraic decoding [15]. Any standard trellis construction

procedure can be used to construct trellis for a codeword C and the trellis T representing a code C of length n is given

as as C(T ) [20].
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Fig. 1. Trellis for concatenated kernel code in example of section 3

4. Some observations from the Constructed code

Observation 4.1. Construction of kernel code is clearly the mapping of homomorphisms from finite groups to the

identity element of the abelian group.

Observation 4.2. Kernel is the normal sub group of the group mapped onto (i.e., surjective mapping).

Observation 4.3. In a large set of codewords constructed over a finite set of groups, the presence of homomorphism

can be tested by the Blum-Luby-Rubinfeld Linearity Test (also called as BLR test) [3].

Observation 4.4. Low Density Parity Check (LDPC)1like sparse codes can be constructed algebraically from Kernel

codes [12] and concatenated kernel codes by selecting more zero homomorphisms, i.e., the values of µ’s.

Observation 4.5. Concatenated kernel codes are mapping of kernel codes to other groups, such mapping is bijective

in nature. Bijective mapping guarantees the unique decoding of codewords with the decoding failure bound.

Observation 4.6. Outer code in the Concatenated Kernel provides the error correction capability to codeword which

is not present in case of just kernel code.

5. System model to check performace of constructed code in Cognitive Radio Network environment

A simple cognitive radio network with a pair (transmitter and receiver) of primary and secondary users is consid-

ered. Secondary user transmitter and receiver pair exist within the transmission receiver range of primary users [9, 18].

An overview of communication framework is given in Fig 2.

Information bits are encoded using concatenated kernel codes. Further, the concatenated kernel code is BFSK

modulated before transmitting over channel. Appearance of channel noise is assumed to be Additive White Gaussian

1 LDPC codes are not algebraically constructed codes
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Fig. 2. Concatenated Kernel code with BFSK modulated communication system

Noise (AWGN) that is due to the behaviour of primary users’ transmission. Similarly, on the receiver side, BFSK

modulated signal is demodulated and further decoded using graph Viterbi hard decision decoding.

As in any BFSK modulation, symbols are modulated as sinusoidal waves given by

si(t) =

√

2.Es

Ts

cos(2π fit), 0 ≤ t ≤ Ts (4)

fi = f0 +
i − 1

Ts

(5)

where, i = 1, 2 indicate two frequency states and Es is the energy per modulated symbol.

At the receiver side, signal is demodulated and decoded using maximum likelihood graph Viterbi decoder [21].

6. Performance Evaluation

Cognitive Radio Network environment is implemented in MATLAB on Z420 work station with 8GB RAM, 1TB

hard disk and Windows 7 operating system. Twelve bits are transmitted and BER is simulated thirty times per SNR to

plot BER vs Eb/N0 performance. Occurance of noise is simulated as Additive White Gaussian Noise (AWGN) that is

due to the behaviour of primary users’ transmissions. From the Figure 3, we can infer that concatenated kernel codes

provides better performance over kernel codes with a coding gain of 0.25dB both at BER 10−3 and 10−2.
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A simple cognitive radio network with a pair (transmitter and receiver) of primary and secondary users is consid-

ered. Secondary user transmitter and receiver pair exist within the transmission receiver range of primary users [9, 18].

An overview of communication framework is given in Fig 2.

Information bits are encoded using concatenated kernel codes. Further, the concatenated kernel code is BFSK

modulated before transmitting over channel. Appearance of channel noise is assumed to be Additive White Gaussian

1 LDPC codes are not algebraically constructed codes
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Fig. 2. Concatenated Kernel code with BFSK modulated communication system

Noise (AWGN) that is due to the behaviour of primary users’ transmission. Similarly, on the receiver side, BFSK

modulated signal is demodulated and further decoded using graph Viterbi hard decision decoding.

As in any BFSK modulation, symbols are modulated as sinusoidal waves given by

si(t) =

√

2.Es

Ts

cos(2π fit), 0 ≤ t ≤ Ts (4)

fi = f0 +
i − 1

Ts

(5)

where, i = 1, 2 indicate two frequency states and Es is the energy per modulated symbol.

At the receiver side, signal is demodulated and decoded using maximum likelihood graph Viterbi decoder [21].

6. Performance Evaluation

Cognitive Radio Network environment is implemented in MATLAB on Z420 work station with 8GB RAM, 1TB

hard disk and Windows 7 operating system. Twelve bits are transmitted and BER is simulated thirty times per SNR to

plot BER vs Eb/N0 performance. Occurance of noise is simulated as Additive White Gaussian Noise (AWGN) that is

due to the behaviour of primary users’ transmissions. From the Figure 3, we can infer that concatenated kernel codes

provides better performance over kernel codes with a coding gain of 0.25dB both at BER 10−3 and 10−2.
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7. Conclusion

Construction and performance of concatenated kernel code over algebraic structure groups is discussed in the

paper. Constructed concatenated kernel code meets the requirement of linear concatenated code construction. Trellis

representation of constructed code is given to employ the Viterbi graph decoding algorithm. Algebraically constructed

concatenated kernel code is tested for its performance in cognitive radio environment. Performance is measured in

terms of BER indicating clear coding gain. Further, system theoretic properties of constructed concatenated kernel

code and secure communication employing such codes and respective trellis can be studied as a future scope.
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