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ABSTRACT In order to cater to the energy requirement in the form of steam at a reasonable cost, the

process industries are relying on the waste incineration plants by engaging themselves through industry

symbiosis. However, before the establishment of industrial symbiosis, it is very crucial to monitor and predict

the operational performance of the boiler used in the waste incineration plants. The existing works focus on

using Artificial Neural Networks (ANNs) for prediction of the performance of the boiler in terms of pressure,

temperature, and mass flow rate of steam using the input parameters viz. feed water temperature, feed water

pressure, incinerator exit temperature and conveyor speed. However, the problem with this approach is that

shallow ANNs cannot model the complex mathematical non-linear relationships so precisely. In addition,

ANNs are not interpretable which makes stakeholders apprehensive to use these networks in production. In

this paper, we address these drawbacks of ANNs by modeling the complex relationship governing the boiler

performance by using a set ofmachine learning and deep learningmodels. Also, the research paper introduces

multiple techniques like feature importance, Partial Dependence Plots(PDP) plots etc. which interpret the

reason behind the model’s output to make it more reliable for the stakeholders. It has been empirically shown

that the newMachine Learning andDeep Learningmodels performed better than the ANNs for predicting the

boiler performance. The Random Forest model made aMean Absolute Percentage Error (MAPE) of 1.12 and

LSTMs had a MAPE of 1.14 in the prediction of steam temperature Co which is a significant improvement

in comparison to the original ANN model which had a MAPE of 6.93. In the case of the predictions for

steam pressure kgf /cm2 the MAPE for the Random Forest model and LSTMwas 5.54 and 4.21 respectively

as compared to ANNs MAPE of 1.49. Similarly for steam mass flow rate(t/h), the MAPE was improved to

15.6 and 9.63 by Random Forest Model and LSTM respectively, which was originally 18.77 for ANN based

model. These results clearly show that LSTM based models outperformed ANNs and Random Forests in

terms of prediction accuracy.

INDEX TERMS Long short-term memory, neural networks, random forest, predictors, LIME, refuse plastic

fuel, boiler, green energy.

I. INTRODUCTION

The unprecedented increase in the demand for energy has

forced mankind to look for alternative sources of energy.

This has led to an increase in research in the field of gen-

erating renewable energy especially using biomass waste [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Xia .

Industrial symbiosis systems use waste material to generate

energy which is then utilized by different processes in an

industrial area which has shown to decrease significantly the

consumption of new raw material for energy generation and

has thus in turn reduced the generation of waste and harmful

emissions. The usage of heat energy recovered from waste

incinerators in the form of steam is one plausible option. In

order to meet the steam requirement for several processes in
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processing industries, boilers are extensively used. Thus it

is crucial to monitor and predict the efficiency of the boiler

which is determined by steam production rates, measuring the

gas consumption rates, and performing combustion analysis.

However, the prediction of boiler performance is a complex

function to model because of the constantly changing char-

acteristics of boilers over prolonged periods of its operation

[2], [3]. In recent years, several researchers have worked

on applying Machine Learning (ML) algorithms successfully

in several applications such as weather prediction, indus-

trial automation, vehicular area networks, Internet of Things

(IoT), healthcare, and many others [4], [5].

There has been some success in modeling prediction func-

tions of fresh steam properties from a newly installed boiler

using Artificial Neural Networks (ANN) [6]. In [6], for pre-

diction of pressure, mass flow rate of steam of a refuse plastic

fuel (RPF)-Boiler, and temperature, Behera et al. used a feed-

forward neural network. The neural network used the feed

water pressure, feed water temperature, conveyor speed and

incinerator exit temperature as input parameters to evaluate

and predict the operational performance of a boiler. There

have been many papers successfully modeling the prediction

of fresh steam properties from the boilers. [7], [8]. ANN is

used to model complex non-linear relationships when trained

with a large number of operational data points and have

high accuracy on predictions [9]. However, as these neural

networks are shallow they do a poor job in extracting better

features from the data than their deep counterparts [10].

Recurrent Neural Networks (RNN) are a category of

ANN where connections between the network nodes form

a directed graph that captures the dynamics of temporally

related sequences [11].In [11], Lipton et al. provided a com-

prehensive overview of RNNs for sequence learning primar-

ily focusing on modern applications. In [12], More et al.

used a feed-forward as well as a recurrent neural network to

forecast the wind speed at the coastal locations. The model

was trained in an auto-regressive manner and used backprop-

agation and cascade correlation algorithms. In [13] Yona et al.

used Feed Forward Neural Networks (FFNN), Radial Basis

Function Neural Network (RBFNN), and recurrent neural

network (RNN) for power output forecasting of photovoltaic

systems based on insolation prediction. Their work showed

that RNN performed better for time-series data forecasting

than FFNN. In [14] Sainlez et al. used a dynamic Elman’s

recurrent neural network and a static multilayer perceptron

to model the high pressure (HP) steam flow rate from a

Kraft recovery boiler. The model took raw data for one day

and predicted the next 12-hours of HP steam flow produc-

tion from the boiler to the steam turbine. In [15] Hochre-

iter showed that RNN faced the problem of vanishing and

exploding gradients based on the temporal evolution of the

backpropagated error exponentially which depended on the

size of the weights. In [16] Hochreiter et al. proposed an

LSTM which solved the problem of vanishing gradients thus

enabling networks to solve complex, artificial long time lag

tasks. In [17] Gers F. et. al. identified that LSTMs faced a

problem in cases where the input streams were not apriori

segmented into subsequences with explicitly marked end at

which the network can reset its internal state. They solved

this problem by using an adaptive ‘‘forget gate’’ using which

the LSTM cell can learn to reset itself without explicit super-

vision and can free its internal resources. In [18] Cho et al.

used a Gated hidden unit as activation function of an RNN

which was an alternative to the conventional simple unit

like element-wise tanh. This hidden gated unit was used

to mitigate the RNN problem of vanishing gradients. In

[19] Zhang, T. et. al. studied LSTM, GRUs and Bidirection-

RNN to predict the gas concentration in coal mines. Their

study showed that LSTMs outperformed the performance

of BidirectionRNN and GRUs. In [20] Abdel-Nasser et. al.

used a long-short term memory recurrent neural network

(LSTM-RNN) to accurately forecast the output power of

PV systems on datasets that were captured hourly from dif-

ferent sites for a year. The LSTM Networks successfully

modeled the temporal changes in PV(Photovoltaic) output

power which the authors attributed to recurrent architecture

andmemory units of LSTMs. In [21] Pathak, N et. al. used the

LSTMs and Generalized Additive Models (GAM) to model

the highly irregular, non-stationary, and volatile nature of

gas consumption by big buildings. They empirically showed

that LSTMs outperformed (GAM) but failed in case of inter-

pretability.

Ensemble Learning in ML uses multiple learning algo-

rithms instead of a single learning algorithm to obtain a better

predictive performance on the underlying problem. Random

Forests is an ensemble learning technique that uses the mode

(in case of classification) and mean (in case of regression)

of multiple trees trained on the same training data. Random

Forest model has a few appealing characteristics which make

it useful in modeling complex underlying distribution that

generates the data. These properties include

1) ability to learn simple as well as complex functions

2) ability to incorporate interactions between predictors

3) ability to perform exceptionally well over default

parameters and no requirement of fine tuning a lot of

parameters unlike ANN

4) comparatively easy methods for defining feature selec-

tions [22]

In [22] Ahmad M. et. al. studied the artificial neural

networks (ANN) with random forest (RF), an ensemble-

based method that has been successfully applied in fore-

casting problems, for predicting the hourly HVAC(Heating

Ventilation and Air Conditioning) energy consumption. The

paper showed that ANNs performed marginally better than

RFs. However, the random forests were shown to be more

interpretable than ANNs which helped energy managers take

more informed decisions based on the model predictions.

In [23] Lahouar A. et al. used random forests method to

build an hour-ahead wind power predictor based on the

input parameters which were selected based on correlation

and importance measures. It was empirically shown that

117468 VOLUME 8, 2020



A. P. Shaha et al.: Performance Prediction and Interpretation of a RPF Fired Boiler

Random Forests performed better than neural networks. In

[24] Lahouar A. et al. modeled the load prediction problem

using random forests. The model used the season, tempera-

ture, type of the day and hourly load as input parameters to

predict the power load for one hour.

Most ML models, even though accurate during the testing

phase, are not used in most of the critical real-world appli-

cations. This is because a real-world task cannot be judged

using a single metric [25]. To facilitate learning and make

these models more trustworthy, it is necessary for machines

to accompany their predictions with an explanation. ML and

DLmodels are intrinsically black box models i.e. they are not

easily interpretable. However, recently there has been ample

research in this domain to make ML models interpretable.

Models like Random Forests can be interpreted using per-

mutation feature importance and tree interpreter algorithms

which are specific to these models. However, there are model

agnostic interpretable models like Partial Dependence Plots

(PDP) [26] and Local Interpretable Model-agnostic Explana-

tions (LIME) [27] which can be used to interpret the learning

and the decision basis of these models. In [27] Ribeiro et al.

introduced a local interpretable modeling technique Local

Interpretable Model-Agnostic Explanations (LIME) which

can be used to interpret the decisions made by black-box

models for a particular instance. The interpretability can be

used by data scientists to understand any unknown biases

learned by the model or by domain experts to understand the

parameters that are leading to aberrations in output.

In recent years there has been an increase in the research to

predict the energy generation from boilers, furnaces, turbines

etc [28]–[30]. However, most of this research has not been

focused on RPF-Boilers. The objective of this study was to

test the new deep learning and machine learning models to

assess and optimize the performance of the RPF-Boiler as

compared to the existingwork done by [6]. The previouswork

done in this domain did not focus on making the predictive

model interpretable. Our work focuses on making the intrin-

sically blackboxmodels interpretable so that their predictions

can be made more reliable.

Rest of the paper is organized as follows: Section 2

discusses about the methods and methodology followed in

this work, section 3 presents the results and discussion, and

the paper is concluded in section 4.

II. METHODOLOGY

In this section, the methods used in the proposed work along

with the methodology followed are presented.

A. DATA ACQUISITION AND DATA FILTERING

We had to deal with the processed data used in [6] and the

acquisition process has been explained in that paper. This

data was collected at every one minute during the period of

February 2010 - June 2010. The data contained transient-data

as well as steady-data and captured the following parameters:

feed water temperature, steam pressure, feed water pressure,

steam mass flow rate, steam temperature, incinerator exit

temperature, and conveyor speed. The transient-state data was

removed from the available plant and data was filtered during

initial data screening. Plant operators were consulted and

data points showing huge aberrations from reality were omit-

ted because of their unreliability and non-representativeness.

After the screening stage, the data was averaged for every 12

hours resulting in 215 data points with all the parameters used

in the study.

B. SELECTION OF TRAINING AND TESTING DATA

In this study, 215 data points (non-randomized) were divided

into training(NTr ) and testing(NTe)sets. 70% (NTr : 150) of the

initial data points for each month were used for training the

network whereas the remaining 30% (NTe: 65) were used for

testing the developedmodels. The testing data set of the boiler

was kept aside during the training process and was used only

to check the final accuracy of the models.The (70-30) split

was chosen so as to make sure that the performance on the

models in this study and the base research paper are evaluated

under the same conditions [6].

C. MACHINE LEARNING METHODOLOGY

1) RANDOM FOREST MODELS

Decision Trees are simple machine learning models that

are highly interpretable. However, decision trees have some

shortcomings like suboptimal solutions and lack of robust-

ness. There have been different studies in the field of machine

learning conducted to overcome these limitations. One of the

popular and empirically successful techniques is an ensemble

of trees followed by the vote of the most popular class,

labeled forests. Random Forests are a class of ensemble

learning techniques in which the performance of a lot of

weak learners is boosted via a voting scheme [31]. In [32]

Jiang et al. suggested that major distinctive features of Ran-

dom Forests are (1) bootstrap resampling (2) Randomized

Feature selection techniques (3) Out-Of-Bag (OOB) error

estimations and the ability to grow full length decision trees.

A random forest is an ensemble of N trees (also called

the estimators) T1(X ), T2(X ), T3(X ) . . . TN (X ), where X =

(x1, x1, x1 . . . xp) is a p-dimensional vector of inputs. Each

of these trees produces an output resulting in N outputs

Ŷ1 = T1(X ), Ŷ2 = T2(X ) . . . , ŶN = TN (X ), where ŶN
is the output produced by TN (X ). These N outputs are then

aggregated using averaging, voting etc. to output the final

prediction of the random forest Ŷ . In the case of each tree in

the random forest, the input space is randomly sampled with

replacement from the training set to create a training set for

the estimator. Some of the data points which are not sampled

i.e. data points in the training data but not in the training data

for the estimator from the Out- Of-Bag (OOB) samples. The

newly sampled training set is used to grow an estimator using

the CART(Classification And Regression Tree) algorithm.

Gini index is an information theoretic measure used by the

CART algorithm as a criterion for splitting the data into

different nodes. The Gini index can be calculated as given
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by Equation 1

Gini = 1 −

C
∑

i=1

(pi)
2 (1)

For every split of an estimator q random features are

selected to split from a total of m features called random

feature selection. This process is then repeated for all the N

estimators in the random forest.

Random Forest Training procedure can be summarised as

1) Bootstrapping: Randomly sampling the training set

with replacement

2) Build the estimator using the bootstrapped sample

wherein at each split, of the m attributes q attributes

are randomly selected and the best split among these

attributes is selected using information gain. The esti-

mator is built until there are no further splits possible.

3) Repeating steps 1 and 2 for N estimators.

2) PERMUTATION FEATURE IMPORTANCE METHOD

RandomForests are widely used inmodelingmany real world

processes because of their ability to calculate feature impor-

tance. The importance of a variable is calculated by observing

how much the prediction error changes when the value of the

variable of concern in the OOB sample is permuted while

keeping the value of other features unchanged. [31], [33].

There is also a problem ofmulticollinearity(independent vari-

ables in a regression model are correlated) while analyzing

feature importance in which highly correlated features not

only make interpreting the variable importance difficult but

also reduce the model performance. [34], [35]. Although

Lasso regression is used to do feature selection, it assigns

zero weight to the highly correlated features. But, it has

been shown that sometimes these features also can improve

the model performance [34], [36]. Variable sampling in RF

algorithm, along with bagging and bootstrapping, reduces the

selection possibility of the highly correlated features [31],

[37]. RF does not solve the multicollinearity problem com-

pletely. It retains the contributions of the highly correlated

features without affecting much the rank of top influential

features [33].

3) PARTIAL DEPENDENCE PLOTS

The Partial Dependence Plots(PDPs) are used to visualize

the marginal effects of features on the dependent variable

in a machine learning model [26]. A PDP can be used to

draw insights about the relationship between the dependent

and independent variables. Equation 2 defines the partial

dependence function for regression

f̂xS (xS ) = ExC

[

f̂ (xS , xC )
]

=

∫

f̂ (xS , xC )dP(xC ) (2)

The set xs defines the independent variables of concern

for which the PDP is to be plotted and xc is the remaining

independent variables used in the machine learning model f̂ .

Because of the limitations on the number of features that can

be visualized, xs usually contains one or two features. The

dependent variable is marginalized over the variables inxc
thus only showing the relationship between the dependent

variable and the variables in xs.

Equation 3 is the partial function estimated byMonte Carlo

Method i.e. calculating averages of N instances in the training

data

f̂xS (xS ) =
1

N

N
∑

i=1

f̂ (xS , x
(i)
C ) (3)

The partial function outputs the average marginal effect on

prediction for the given value(s) of features in Xs. PDP

assumes that variables in Xc are not correlated with the vari-

ables in Xs [38].

4) TREE INTERPRETER

Since prediction can be defined as a sum of features contri-

butions added with the bias which is the mean of the entire

training set, tree interpreter defines the predictions as the

additions or subtractions the feature used for splitting makes

to the value at the parent node.

Equation 4 defines the feature contribution for a decision

tree.

Ŷ = Ymean +
∑

f

FC f (4)

In Equation 4, Ŷ is the prediction and Ymean is the mean of

the training sample of the tree, f is the number of features and

FC is the Feature Contribution.

This equation for feature contribution looks similar to the

Linear Regression equation. However, in the case of linear

regression, coefficients of the variables are independent but

in the case of decision trees, the contribution by each feature

depends on the rest of the feature vectors which are respon-

sible for defining the decision path. This in-turn defines the

contributions passed by each feature along the way. An RF

is a collection of estimators. Their prediction is the average

of the predictions by all the estimators. So, in the case of a

forest, the contribution of each feature is the average of bias

of all the estimators added to the contribution of each feature.

Equation 5 defines the feature contribution for random

forest.

Ŷ =
1

T

t=T
∑

t=1

Ymeant +

f=F
∑

f=1

(
1

T

t=T
∑

t=1

FC
f
t ) (5)

In Equation 5, Ŷ is the prediction and Ymeant is the mean of

the training sample of the tree t , f is the number of features

and FC
f
t is the feature contribution of feature f in tree t and

T is the total number of estimators in the random forest.

D. DEEP LEARNING METHODOLOGY

1) DEEP LEARNING MODEL AND PARAMETER

OPTIMIZATION ALGORITHM

The traditional feed forward neural network model has con-

nections between the input layers, hidden layer and output
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layer. These connections do not form a cycle. Every node in a

layer is connected to every other node in the next layer while

there exiss no connections within layers. This architecture

has some limitations in modeling data wherein there exists

some relation within the data points like the time series data

wherein the previous data point can be highly useful in pre-

dicting the output of the current datapoint. This shortcoming

of feed forward neural networks is solved by using recurrent

neural networks in which the connections between nodes

form a directed graph along the direction in which the time

series progresses. Thus RNNs are able to use the internal

state which is the context from the previous set of inputs

to predict the output of the current state. In Equation 6 X

indicates the value of the input layer responsible for ingesting

and processing the input data, S represents the value of the

hidden layer, U is the weight matrix of the input layer to the

hidden layer, O represents the value of the output layer, V is

the weight matrix of the hidden layer to the output layer, and

W is the last value of the hidden layer as the input of this time.

The subscript t states the time-step in the sequence.
{

O = g(VSt )

St = f (UXt +WSt−1)
(6)

The architecture of RNNs enables them to model nonlinear

time series data but they face the limitation of not being able

to model data with excessive delays because of the gradient

vanishing and gradient explosion problems. LSTMNetworks

solved the shortcomings faced by RNNs using the input gate,

a forget gate, and an output gate. The LSTM architecture is

shown in Figure 1 where ft is the forget gate, it is the input

gate, Ct is the output gate andOt are the timings of the output

gates. The forget gate is responsible for deciding the amount

of the unit state Ct−1 at the previous moment which can be

retained in the current state Ct . The input gate is responsible

to determine the amount input at time t Xt of the network

is saved to the unit state Ct at the current time step and the

amount the output gate control unit state Ct is output to the

LSTM. The value of the current output ht is calculated by

the Equations 9. The Equations (7,8,9) are of the forget gate,

input gate and output gate respectively.

ft = δ(wf · [ht−1, xt ] + bf ) (7)










it = δ(wi · [ht−1, xt ] + bi)

C ′ = tanh(Wc · [ht−1, xt ] + bc)

Ct = ft · Ct−1 + it · C ′
t

(8)

{

Ot = δ(wo · [ht−1, xt ] + bo)

ht = Ot · tanh(Ct )
(9)

A variation of LSTM is a Gated Recurrent Unit which has

an update gate and a reset gate. The update gate is used to

update the contextual information and reset gate determines

the output information.

AdaptiveMoment estimation (Adam) is a simple andmem-

ory efficient optimization algorithm based on gradients which

is suitable for nonstationary objective functions. It has a

FIGURE 1. LSTM Cell.

benefit of intuitive hyperparameter interpretations and com-

plex tuning procedures are not necessary. Its update mech-

anism can be explained by the following equations where

Equations 10,11 handle deviation correction and Equation 12

defines parameter changes
{

mt = β1 · mt−1 + (1 − β1) · gt

vt = β2 · vt−1 + (1 − β2) · g2t
(10)











m′
t =

mt

(1 − β t1)

v′t =
vt

(1 − β t2)

(11)

θt = θt−1 − α ·
m′
t

√

v′t + ǫ
(12)

E. INTERPRETABILITY USING LIME

Local surrogate models interpret the machine learning

model’s predictions based on a small neighbourhood of the

data point. This data point is the one for which the decision

basis of the machine learning model needs to be inferred.

In [27] the authors introduced LIME, an implementation of

the local surrogate models which focus on training local

surrogate models which are used to explain individual pre-

dictions from the underlying black-box model.

LIME perturbs the dataset and gets predictions from the

black-box models for the new training dataset. The new-

training dataset is then used to train an interpretable model

for which the instances in the vicinity of point of interest are

given more weightage than the instances that are far away.

The newly learned model is a good local approximation but

is not necessarily a good global approximation.

explanation(x) = argmin
g∈G

L(f , g, π(x)) + �(g) (13)

In Equation 13, g is the interpretable model which explains

the decision by the black box model for instance x. g min-

imizes loss L which is a metric to measure how close the

original model(f )’s prediction is while the complexity of the

model �(g) is kept low. G is a set of all possible inter-

pretable models. π(x) is the proximity measure that defines
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FIGURE 2. Random Forest Model Framework.

the permissible neighborhood around instance x. In the imple-

mentation, LIME only optimizes the loss and the complexity

is determined by the user by selecting the maximum number

of features.

F. CONSTRUCTION OF PREDICTION MODEL

1) RANDOM FOREST BASED PREDICTION MODEL

Three different random forest models were built to pre-

dict the mass flow rate of steam, pressure, and tempera-

ture respectively. These models used feed water pressure,

feed water temperature, conveyor speed, and incinerator

exit temperature as the input parameters. Mean Squared

Error (MSE) criterion used to measure the quality of the

split.

During the prediction time, the readings of feed water pres-

sure, feed water temperature, conveyor speed, and incinerator

exit temperature from the boiler are fed to the three models

simultaneously and the output is predicted for each input data

point.

2) DEEP LEARNING BASED PREDICTION MODEL

The architecture of a basic LSTM model can be divided into

3 major parts viz. the input layer, the hidden layer, and the

output layer. The input layer has the dimension of the number

of features of the input and is responsible for processing the

input. The weights to the hidden layer are learned from the

training data using the learning algorithm like Back Propa-

gation Through Time (BPTT). Learning algorithms can use

different optimizers like Adam, Adagrad etc. which is used

for model parameter optimization to achieve minimum loss

value for the objective function like Mean Squared Error

(MSE) or Mean Absolute Percentage Error (MAPE). The

output layer models the values received from the hidden layer

to the output dimension and rescale the data. Figure 3 shows

the architecture of the LSTM model framework.

In the forecast model the hidden layer is the LSTM cell.

The model is empirically shown to perform the best when a

lookback of one data point is available as an input to predict

for the next time step. The MinMaxScaler normalizer is used

to scale the training and testing data into 0 and 1. Equation 14

FIGURE 3. LSTM Model Framework.

represents the formula for MinMaxScalar







xstd =
x − min(X )

max(X ) − min(X )

xnew = xstd × (max − min) + min

(14)

In Equation 14, min(X ) represents the minimum value of

the feature to which x belongs and max(X ) represents the

maximum value of the feature. min and max are the range

of the training dataset.

Once the inputs are scaled by the input layer the LSTM

cells in the hidden layer operate on them as represented in

Equations 7 -9. The processed information is then passed to

the output layer where it is re-scaled to the original magnitude

using inverse scalar.

III. EXPERIMENTS AND RESULTS

The experiments carried out verifies the performance of Ran-

dom Forest Model, LSTM, and GRU Networks in compar-

ison to MLP (Multi-Layer Perceptron) Model used in [6] to

model the boiler performance. The experiment built 3 models

that used 4 input variables each viz. conveyor speed, feed

water temperature, feed water pressure, and incinerator exit

temperature. These three models were used to predict the

steam pressure, steam temperature, and the steam flow rate

respectively.

For experimentation, the following computer configura-

tions are used: Windows 10 Operating System with 64-bit,

Intel Core i5-4210U CPU processor with 1.7GHz, mem-

ory of 8 GB and the development language used is Python

3.6. The LSTM and GRU models used in the experi-

ment were built using Keras 2.2.4 package with tensor-

flow backend version 1.9.0. The Random Forest model was

built using scikit-learn version 0.19.1 library. The plots and

graph used to visualize the output of the network used

matplotlib 2.2.3 library and numpy 1.14.3 was used for
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FIGURE 4. Random Forest Model Predictions.

numerical computation on high dimensional tensors. The

interpretability of networks was enabled by lime version

0.1.1.34 library and tree interpreter was used to interpret tree

output.
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FIGURE 5. Feature Importance for predicting Steam Temperature.

FIGURE 6. Feature Importance for predicting Steam Pressure.

A. RESULTS OF RANDOM FOREST MODEL

Table 1 shows the performance of the Random Forest Model

for different hyper parameters. The table compares the perfor-

mance of these models in terms of different statistical metrics

viz. Mean Absolute Percentage Error ( MAPE), Mean Abso-

lute Error (MAE), and Root Mean Squared Error (RMSE) on

the testing data of Steam Temperature, Steam Pressure, and

Steam Flow Rate. Random Forest model is able to capture the

sudden minor aberrations in the steam flow rate.

The observations show that the random forest model with

10 estimators performs best for predicting the steam temper-

ature, steam pressure and steam flow rate. Figure 4 shows the

prediction of steam temperature, steam pressure and steam

flow rate of the random forest model with different numbers

of estimators. The random forest model showed compara-

tively better results to model for sudden aberrations in the

output values within a range. For example, during testing,

when the steam flow rate fluctuated from 7.09 to 6.08 the

random forest model made an MAE of 0.9. Similarly in the

next instance, the value changed from 6.08 to 4.95 the MAE

was 1.44.

B. INTERPRETABILITY OF RANDOM FOREST MODEL

The experimental results are augmented with the inter-

pretability of the model which lets the stakeholders and

domain experts get insights on the basis on which a model

makes it’s predictions. This is especially useful when a model

forecasts anomalous outputs and the domain experts want to

know what is the cause for this output or the data scientist

wants to get insights into what caused the model to make

this error so that it can be fixed for future forecasts. The

interpretability of the model used in this experiment was

validated by domain experts.

1) PEARSON CORRELATION

A Pearson correlation Matrix indicates the extent to which

variables are linearly related. For any two variables in the

FIGURE 7. Feature Importance for predicting Steam Flow Rate.

FIGURE 8. Pearson Correlation Matrix.

matrix, the value lies between -1 to 1 which shows the

extent to which these variables are positively or negatively

correlated.

Figure 8 shows that Incinerator exit temperature is neg-

atively correlated with feed water pressure and positively

correlated to feed water temperature. Conveyor speed is

highly negatively correlated to feed water temperature. Feed

water temperature is highly negatively correlated feed water

pressure.

2) FEATURE IMPORTANCE OF RANDOM FOREST MODEL

Figure 5 shows that the model trained to predict the Steam

Temperature gave highest importance to the feed water tem-

perature following incineration exit temperature, Conveyor

speed and feed water pressure in that order. Figure 6 exhibits

that feed water temperature and feed water pressure were

equally important in determining Steam Pressure followed by

the incineration exit temperature, Conveyor speed. Figure 7

shows that feed water temperature was given the highest

importance for predicting Steam Flow rate followed by feed

water temperature following Conveyor speed, feed water

pressure and incineration exit temperature in that order.

3) PARTIAL DEPENDENCE PLOTS

Figures [17]–[25] shows the Partial Dependence Plots(PDP)

for the Random Forest model. Figure 17 shows that to

achieve a steam pressure of more 10.0 kgf /cm2 the feed

water temperature has to be between 45 and 60 ◦C and
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TABLE 1. Comparison of RF Models to predict Steam Temperature, Steam Flow Rate and Steam Pressure on Different Models with different number of
estimators.

the Conveyor speed has to be between 12 to 19 rpm.

As the feed water temperature decreases from 45 and

increases from 60, the steam pressure decreases monotoni-

cally. Figure 18 shows that to achieve a steam pressure of

more 10.0 kgf /cm2 the feed water pressure has to be between

14 and 16 kgf /cm2 and feed water temperature the has to be

between 40 to 60 ◦C . As the feed water pressure decreases

from 14, the steam pressure decreases monotonically. It can

be interpreted from Figure 19 that to achieve a steam pres-

sure of more than 9.75 kgf /cm2, the conveyor speed should

be more than 17 rpm when the incineration temperature is

more than 900 ◦C . Figure 20 shows the interaction between

conveyor speed and feed water temperature and how it affects

the steam temperature collectively. It can be seen that to

achieve a steam temperature between 182 - 183 ◦C , the feed

water temperature should be more than 20 ◦C when the

conveyor speed is between 12 and 25 rpm. Steam tem-

perature decreases monotonically with feed water temper-

ature when it is less than 20 ◦C . Figure 21 shows that to

achieve a steam temperature between 182 - 184 ◦C the feed

water pressure should be between 14 and 17 kgf /cm2 and the

feed water temperature should be between 40 and 65 ◦C

or between 20 and 30 ◦C . The steam temperature increases

monotonically with the feed water temperature when it is

between 0 - 40 ◦C . Figure 22 shows that to achieve a steam

temperature between 182 - 183 ◦C the incineration tempera-

ture should be more than 900 ◦C when the conveyor speed

is less than 32 rpm. Figure 23 shows the interaction between

conveyor speed and feed water temperature and how it affects

the steam flow rate collectively. To achieve the steam flow

rate between 7.2 - 8 t/h, the feed water temperature should be

more than 25 ◦C and the conveyor speed should be less than

25 rpm. Figure 24 shows that to achieve a steam flow rate

between 8 - 9 t/h the feed water pressure should be between

16 - 18 kgf /cm2 and feed water temperature should be more

than 25 ◦C . Figure 25 shows that achieve a steam flow rate

between 8 - 8.8 t/h the incineration temperature should be

more than 1000 ◦C and the conveyor speed should be between

15 and 22.5 rpm.

4) TREE INTERPRETER OUTPUT

Tree Interpreter was used to interpret the output for the

instance in Table 2 in the test dataset. The instance was

randomly chosen from the testing data to analyze which

attributes were given higher weightages by the model during

the prediction phase.

Table 3 shows the weightages assigned by model

to the independent variables for interpreting the Steam

Temperature, Steam Pressure, and Steam Flow Rate. It can be

inferred from the data that the highest weightage was given to

Conveyor Speed to predict the Steam Temperature and Steam

Pressure and Feed water pressure to predict Steam Flow Rate

C. RESULTS OF DEEP LEARNING MODELS

The number of cascaded LSTM cells not only has an impact

on the model’s learning ability, training, and testing time but

also adds up to the complexity of the model. Although empir-

ically and theoretically deeper models have more learning

ability but it also increases the training and the testing time

of the model. In the paper, it was empirically shown that

networks with 2 and 3 LSTM Cells performed better in terms

of accuracy but poor when it came to the execution time.

The screened data refined the unscreened data and com-

pressed it to a few observations representative of a sequence

of data points in the unscreened data. So empirically, batch

size of 1 performed better with respect to training speed and

accuracy.LSTM and GRU based models did not perform well

with minor aberrations in comparison to the Random Forest

Model. For example, during testing when the steam flow rate

fluctuated from 7.09 to 6.08 the LSTMmodel made a MAPE

of 1.5 and the GRUmodel had aMAPE of 1.4 Similarly in the

next instance the value changed from 6.08 to 4.95 the LSTM

MAPE was 2.78 whereas the GRU model had a MAPE of

2.8. So, from the observations that we made in section 3.A, it

can be inferred that in cases where the inputs to the boiler are

going to fluctuate frequently, a random forest model would

work comparatively better.

Figure 9 shows the predictions made by LSTM models

with 1,2 and 3 number of LSTM layers. It can be inferred

from Table 4 and these figures that the model with 2 and 3

LSTM Cells performed better in terms of accuracy except

for Steam Temperature where the model with 1 LSTM cell

outperformed the others.

Similar experiments were performed on tuning the number

of layers for GRU Networks and even in the case of GRU, it

was experimentally observed that GRUs with 2 GRU Layers

performed empirically better with a batch size of 1.

Comparative analysis in Table 4 shows that LSTMs per-

form marginally better than GRUs and both the deep learning

models perform better than Random Forest Models. Simi-

larly, Table 4 also shows that LSTMs are empirically bet-

ter performers in the case of 3 LSTM Cells as compared

to 3 GRU Cells.

D. INTERPRETABILITY OF MODELS USING LIME

LIME was used on LSTM and GRU models to interpret

the local decision making basis of these black box models.
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FIGURE 9. LSTM Model Predictions.

Figure 11 - Figure 16 shows the relative importance given by

the models to predict the Steam Flow Rate, Steam Tempera-

ture and, Steam Pressure for the test instance in Table 5.

It can be inferred from the Figures 11 14, that both

LSTM and GRU models give highest weightage to Feed

Water Temperature followed by Feed water pressure. The
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FIGURE 10. GRU Model Predictions.

decision boundary is scaled value because the model is

fed the scaled input data. Similarly Figures 16, 13 show

that LSTM and GRU models give the highest weightage to

feed water pressure and negative weightage to feed water

temperature above a scaled threshold. Figure 15 and Fig-

ure 12 both show that the GRU model and LSTM model
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TABLE 2. Sample from test the data.

TABLE 3. Tree Interpreter Outputs for sample instance.

TABLE 4. Performance on Steam Pressure, Steam Temperature and Steam Flow Rate for different number of LSTM and GRU Cells.

FIGURE 11. LSTM Model LIME Feature Importance for predicting Steam
Pressure.

FIGURE 12. LSTM Model LIME Feature Importance for predicting Steam
Temperature.

FIGURE 13. LSTM’s Model LIME Feature Importance for predicting Steam
Flow Rate.

give the highest weightage to incinerator exit temperature

to predict the Steam Pressure for the test instance. These

values are different from actual feature importance values

FIGURE 14. GRU Model LIME Feature Importance for predicting Steam
Pressure.

FIGURE 15. GRU Model LIME Feature Importance for predicting Steam
Temperature.

FIGURE 16. GRU Model LIME Feature Importance for predicting Steam
Flow Rate.

because these values are used by these models to make

decisions for a particular instance and not for the entire

dataset.
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TABLE 5. Instance of Test Data for LIME Interpretation.

FIGURE 17. Interaction plot between Feed Water Temperature and
Conveyor Speed showing effects on Steam Pressure.

FIGURE 18. Interaction plot between Feed Water Temperature and Feed
Water Pressure showing effects on Steam Pressure.

IV. CONCLUSION

A machine learning model viz. Random Forest and two deep

learning models LSTM network and GRU network were used

to model the steam temperature, steam pressure, and steam

flow rate of the rpf-boiler. Random forest model compara-

tively performed better in capturing the sudden variations in

data but performed poorly in comparison to the cyclic neural

network variants viz. LSTM networks and GRU networks.

The hypothesis that having knowledge of the previous state

of the boiler would be useful in predicting the next state

FIGURE 19. Interaction plot between Conveyor Speed and Incinerator exit
temperature showing effects on Steam Pressure.

FIGURE 20. Interaction plot between Feed Water Temperature and
Conveyor Speed showing effects on Steam Temperature.

FIGURE 21. Interaction plot between Feed Water Temperature and Feed
Water Pressure showing effects on Steam Temperature.

was empirically proven to be valid. The drawbacks of the

black box models like neural networks and random forests
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FIGURE 22. Interaction plot between Conveyor Speed and Incinerator exit
temperature showing effects on Steam Temperature.

FIGURE 23. Interaction plot between Feed Water Temperature and
Conveyor Speed showing effects on Steam Flow Rate.

are their lack of interpretability which makes the stakehold-

ers without domain knowledge apprehensive to use these

models in production systems. This drawback was tackled

by using multiple interpreting tools like permutation fea-

ture importance, Tree Interpreter, and Partial Dependence

Plots in random forests and LIME for Deep learning models.

The interpretability of a model was used to understand the

decision making basis of the model and get visibility into

the learnings of the model. For example, if the predictive

model suggested that the steam pressure is showing a sudden

increase by two times, the operator can infer from the PDP

plots that this increase is because of increase in feed water

temperature from original 30◦C to 40◦C . This can help the

operator manage the steam pressure outputs by moderating

the feed water temperature. Not only was this able to increase

the confidence of the operator on the model predictions, but

FIGURE 24. Interaction plot between Feed Water Temperature and Feed
Water Pressure showing effects on Steam Flow Rate.

FIGURE 25. Interaction plot between Conveyor Speed and Incinerator exit
temperature showing effects on Steam Flow Rate.

also it helped researchers understand that the model predic-

tions are not based on some spurious correlations. In future,

we plan on building a real time control system which can use

these forecasts to manage the boiler to achieve the planned

energy output.

APPENDIX

PARTIAL DEPENDENCE PLOTS

See Fig. 17–25.
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