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Abstract 

This paper deals with a theoretical investigation of blood flow in an arterial fragment with the 

existence of stenosis. The stream-wise blood is treated as steady and it is composed of two layers 

(the central core and plasma). The blood is taken to be non-Newtonian liquid described with help 

of Herschel-Bulkley fluid model. The artery is simulated as a cylindrical tube.  Flow of blood is 

considered as steady. An extensive quantitative exploration has been performed through 

numerical computations of the flow physical parameters (the velocity, mass flux and shear 

stress).  It is found that the mass-flux reduced as the consistency of peripheral layer fluid 

decreases, this happens due to the enhancement of pseudo plastic nature of the blood. 

Keywords:  Stenosis, Herschel-Bulkley fluid model, Peripheral layer, Pseudo plastic 

 
1.  Introduction  

 To our knowledge in the literature, it has been observed that, in some experimental 

studies done by Whitemore [1], Forrestor and Young [2], Shukla et al. [3], Jain et al. [4] and 

Neeraja et al. [5, 6] on blood flows in tubes of smaller diameters indicates that under certain flow 

conditions mainly at low shear rate blood behaves like a non-Newtonian fluid. The non-

Newtonian behavior of blood is due to the suspension of RBCs in plasma.  An analysis by Kapur 

[7] indicates that Casson fluid model and Herschel-Bulkley fluid (H-B fluid) model have non-

zero yield stress and exhibits a non-Newtonian fluid behavior.  Hence, these models are more 

suitable to study blood flows in narrow arteries.  It is reported that, in recent studies, the 

existence of peripheral layer plays a significant role in functioning of the unhealthy or diseased 

arterial system (see Shukla et al. [8], Cocklet and Goldsmith [9], Pralhad and Schultz [10], 

Sharan and Propel [11], Srivastava [12], Srivastava and Saxena [13] and Chakravarty and Dutta 
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[14]).   Shankar and Usik Lee [15] studied two-fluid Herschel-Bulkley model for blood flow in 

catheterized arteries and studied the effect of catheter ratio with peripheral layer thickness.  

Charkravarthy et al. [16] studied the effect of peripheral layer viscosity on the unsteady two-

layered pulsatile blood flow in a stenosed flexible artery.  Shukla et al [17] examined the 

influence of peripheral layer viscosity on flow with slight stenosis by considering blood as a 

power-law fluid model.  It is found that the wall shear stress decreases as peripheral layer 

viscosity decreases. 

Researchers in biomedical engineering and scientific field have explored extraordinary results in 

the flow and heat transfer of non-Newtonian fluid from different geometries because of its ever 

increasing biomedical industrial applications in endoscopy, heart beat controlling processes, 

polymer technology, metallurgy, petroleum industry, cooling of nuclear reactors, power 

generation, etc. Due to this significance the authors [20-24] discussed the non-Newtonian flow 

characteristics over various geometries and physical effects. With this they concluded that non-

Newtonian fluids have tendency to control the flow behavior. 

 Motivated by the above evidences an attempt is made to study the effect of peripheral 

layer viscosity in a mild stenosed artery by considering blood as a Herschel – Bulkley fluid 

model. The various physical parameters of the flow velocity, volume flow rate and shear stress 

are investigated for the variations in yield stress, viscosity and stenosis height. 

2. Mathematical Formulation 

The following assumptions were made in the formulation of the physical problem: 

� The artery is assumed to be a mild stenotic cylindrical tube. 
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� The stenotic protuberance is assumed to be an axisymmetric surface produced by a cosine 

curve following Young [18]. 

� Blood is considered  to be Herschel – Bulkley fluid model 

� The blood flow is assumed to be steady and laminar and fully developed. 

The radius of the stenosis can be described mathematically in the form: 
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where R(z) is the radius of the stenosedartery, 0R is the constant radius , 0L is the length of the 

stenosis and Bδ is its maximum height ( 0Rs 〈〈δ , Fig.1). 

To see the effects of peripheral layer viscosity on the flow behavior, we consider the viscosity 

function )(rµ  as follows Lih [19]: 

µ (r)   =  ),(0 1,1 zRr ≤≤µ  

           =   )()(1;2 zRrzR ≤≤µ
,                         (2)

 

where ,1µ , 2µ are the viscosities of the central and the peripheral layers respectively.  The 

function R1 (z) represents the geometry of the central layer which is taken to be  

0

1 )(

R

zR

  
=  








−−+−

2
(

2
cos1

2
0

00

L
dz

LR
B πδα ,        d  ≤  z  ≤ 0L + d 

             =    α                                                              ,         elsewhere              (3) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

whereα is the ratio of central core radius to the tube radius in the non- stenotic region.  The 

constant Bδ  is the maximum bulging of the interface at z = d +(L0/2) due to the presence of 

stenosis. 

The basic equations governing the flow is (see Shukla et al. [8])
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  ,                                                                                                               (4) 

The constitutive equation for Herschel – Bulkley fluid model (see Kapur [7]) is given by 
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whereθ is the yield stress of the fluid, n is the power law index. 

The appropriate boundary conditions are  

uf   = 0  at    r = R(z),  up = 0  at  r = R1(z), 

fp ττ =
  
at  r = R1(z),

r

up

∂
∂

 = 0  at  r = 0.                                    (6)     

Where up is the core velocity and uf  is the peripheral velocity, pτ  and fτ  are shear stresses in the 

core and peripheral regions respectively.                                                                                                                                                     

3.  Method of Solution 

Using equation (2) and equations (3) – (6) we obtain the core velocity up and the peripheral 

velocity uf as follows 
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The shear stress at the wall is given by 
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The volumetric flow rate Q is given by 
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4.  Results and Discussion 

           In this model, we investigated the physical flow characteristics of Herschel – Bulkley 

fluid model of blood flow in an artery with mild stenosis in the presence of peripheral layer 

viscosity.  We presented the numerical solutions for Aorta.  The power-law index n = 0.95, the 
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center of the stenosis is taken as 2.0=sδ , 05.1=α the viscosity of the Herschel – Bulkely fluid is 

considered as pc.5.31 =µ  and radius of the Aorta R0 = 1.7 cm.  Fig. 2 shows the effect of θ on 

core velocity profiles shown graphically. It is seen that velocity decreases with the increase in 

θ and the velocity profiles takes parabolic curve.  At the axis of the artery the velocity is more 

and keeps reducing when reaches the artery wall.   Due to this cause we saw decrement in the 

velocity profiles. 

             Figs. 3 and 4 illustrate the influence of yield stress θ  and 1ε  on the peripheral velocity 

uf.   In Fig.3, it is clear that the peripheral velocity profiles uf enhances with increasing values of 

yield stressθ .  The velocity achieves its maximum at z = 0.2.  The velocity profiles are shown 

mixed performance, initially the velocity fields increases up to z = 0.2 and retains reducing up to 

z = 0.4 and again jumps repeating the same action for the advanced values of z.  This is because 

of the arterial wall is considered as a cosine curve i.e. the velocity is acts periodic nature in the 

peripheral region.  In Fig. 4 it is observed that the opposite performance with increasing values 

of 1ε .  Figs. 5 and 6 represent the volumetric flow rate Q profiles for various values of θ  

versus 1ε .  It is observed that Q declines drastically as 1ε increases. This is happens because of 

the stenosis, the gap or the area in which the flow diminishes in the channel. But the volumetric 

flow rate is growing with increasing values of .θ An opposite action is seen in the case of 

viscosity ratio as displayed in Fig.6.  These explanations are accurate for any physiological 

situation. 

Figs. 7–8 describe the shear stress profilesτ versus z.  It is seen that the shear stress 

dispersion is periodic nature at the stenotic wall r = R(z).  The higher values (0 to 0.2) of axial 

distance z shear stress increases and then it is decreases as z increases from 0.2 to 0.4, this 
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actions indicates in the flow is periodic in nature. The supreme shear stress happens at the center 

of the stenosis. In Fig.7 shear stress dispersion with deviations in yield stress is plotted.  The rise 

in yield stress value increases the shear stress as perceived Fig.8. The similar behavior is 

detected as an increase in1ε . The volume flow rate (Q) versus pressure gradient (P) is tabulated 

for various numerical values of 
2µ and θ  in Table 1.  It is observed from that the volume flow 

rate rises with the higher values of P.  Moreover, similar to the preceding deviations of Q withθ  

and 1ε  the volumetric flow goes on decreasing with increase values of the viscosity ratio2µ . But, 

Q rises with the increasing in .θ From the numerical solutions presented in Table 2, it is noted 

that volume flow rate is low in two-layered model compared to the single-layered model. The 

similar observation is given by Shukla et al [8]. 

 

5.  Conclusions 

1. The existence of peripheral layer will be useful for understanding the functioning of the 

diseased arterial system 

 2. The present study reveals that the physiological model can be applied to stenosis affected 

small vessels where the non-Newtonian behavior is more prominent such as carotid artery, 

femoral arteries, coronaries and arterioles.  

3. The mass-flux reduced as the consistency of peripheral layer fluid decreases, this happens due 

to the enhancement of pseudo plastic nature of the blood. 
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Fig. 1: Geometry of a stenosed artery with peripheral layer 
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               Fig. 2:Plug core velocity up versus r profiles for valuesθ when 10/12 µµ = 1ε =0.2                  

 

 

 
Fig. 3:Peripheral velocity uf versus z profiles for values θ  when   10/12 µµ = 1ε =0.2 
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Fig. 4: Peripheral velocity uf versus z 1ε for values θwhen 10/12 µµ =  
 
 

 
Fig. 5:Mass-flux Q variation vs. aspect ratio profiles for values 1ε  
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Fig. 6: Mass-flux Q variation versus aspect ratio1ε for values viscosity ratio 
when 3.0=θ             

             

  
Fig.7: Shear stress variation τ versus z for values θ   when   10/12 µµ = ,  2.01 =ε  
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Fig. 8: Shear stress variation versus z axis for values1ε when   10/12 µµ = , 3.0=θ  
 

Table 1: Pressure-flow rate relationship for different values of 2µ and θ  when  2.01 =ε  

 
 
P 

Q 

2µ = 1µ /10 2µ = 1µ /5 2µ = 1µ /3 θ =0.1 θ =0.2 θ =0.3 

 
5 
 

 
59.48176 

 
58.47899 

 
57.14197 

 
49.72296 

 
56.1249 

 
62.94163 

 
15 
 

 
144.1209 

 
141.6 

 
138.2387 

 
135.3945 

 
141.179 

 
147.0958 

 
25 
 

 
226.5221 

 
222.5288 

 
217.2044 

 
218.113 

 
223.6997 

 
229.3638 

 
35 
 

 
307.4018 

 
301.9643 

 
294.7143 

 
299.1739 

 
304.6456 

 
310.1716 

 
45 
 

 
387.1841 

 
380.3223 

 
371.1734 

 
379.0814 

 
384.4727 

 
389.9059 

 
55 
 

 
466.1133 

 
457.8428 

 
446.8154 

 
458.1056 

 
463.4356 

 
468.7995 
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Table 2: Volumetric flow rate Q distribution in various blood vessels 
 

 
 
Blood vessels 
Radius R0 cms 

Two layered H-B fluid model 
Q 

Single layered H-B fluid model 
Q 

1ε = 0.1 1ε = 0.15 1ε = 0.1 1ε = 0.15 
 
Arteriole        
0.008 
 

 
0.023933 

 
0.024468 

 
0.023987 

 
0.02452 

 
Coronary        
0.15 
 

 
0.027472 

 
0.024271 

 
0.027868 

 
0.024354 

 
Carotid           0.4 
 

 
0.253161 

 
0.185929 

 
0.283987 

 
0.207249 

 
Femoral         0.5 
 

 
0.56206 

 
0.433316 

 
0.638 

 
0.490247 

 
Aorta              1.7 
 

 
59.26 

 
54.72643 

 
69.01058 

 
63.71778 
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Highlights 

 

1. The existence of peripheral layer will be useful for understanding the functioning of the 

diseased arterial system 

 2. The present study reveals that the physiological model can be applied to stenosis affected 

small vessels where the non-Newtonian behavior is more prominent such as carotid artery, 

femoral arteries, coronaries and arterioles. 


