Accepted Manuscript

I

INFORMATICS

Peripheral layer viscosity on the stenotic blood vessels for Herschel-Bulkley fluid IN MEDICINE-
model

G. Neeraja, P.A. Dinesh, K. Vidya, C.S.K. Raju

PII: S2352-9148(17)30066-7
DOI: 10.1016/j.imu.2017.08.004
Reference: IMU 59

To appearin:  Informatics in Medicine Unlocked

Received Date: 8 June 2017
Revised Date: 3 August 2017
Accepted Date: 15 August 2017

Please cite this article as: Neeraja G, Dinesh PA, Vidya K, Raju CSK, Peripheral layer viscosity on the
stenotic blood vessels for Herschel-Bulkley fluid model, Informatics in Medicine Unlocked (2017), doi:
10.1016/j.imu.2017.08.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.imu.2017.08.004

PERIPHERAL LAYER VISCOSITY ON THE STENOTIC
BLOOD VESSELSFOR HERSCHEL-BULKLEY FLUID MODEL

G Neeraja, Dinesh P A, Vidya K? ,and C. S. K. Rajt"

(*Ramaiah Institute of Technology, Bengaluru 560 054)
(?’SDMIT, Uijire, Dept. of Mathematics, Dakshina KanadiV4 240)
CVIT University, Dept. of Mathematics, Vellore 63201
(“GITAM University, Dept. of Mathematics, Bangalokgrnataka-)

Corresponding Author E-mail: chakravarthula.raji2@vit.ac.in



Abstract

This paper deals with a theoretical investigatidiblood flow in an arterial fragment with the
existence of stenosis. The stream-wise blood &dceas steady and it is composed of two layers
(the central core and plasma). The blood is takidretnon-Newtonian liquid described with help
of Herschel-Bulkley fluid model. The artery is silaed as a cylindrical tube. Flow of blood is
considered as steady. An extensive quantitativeloeeqion has been performed through
numerical computations of the flow physical pararet(the velocity, mass flux and shear
stress). It is found that the mass-flux reducedhes consistency of peripheral layer fluid

decreases, this happens due to the enhancemesgwaf@plastic nature of the blood.
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1. Introduction

To our knowledge in the literature, it has beemsesbed that, in some experimental
studies done by Whitemore [1], Forrestor and Yo[R]g Shukla et al. [3], Jain et al. [4] and
Neeraja et al. [5, 6] on blood flows in tubes ofadler diameters indicates that under certain flow
conditions mainly at low shear rate blood behavke b non-Newtonian fluid. The non-
Newtonian behavior of blood is due to the suspensefdRBCs in plasma. An analysis by Kapur
[7] indicates that Casson fluid model and Hersd&dkley fluid (H-B fluid) model have non-
zero yield stress and exhibits a non-Newtoniardfliéhavior. Hence, these models are more
suitable to study blood flows in narrow arteriedt is reported that, in recent studies, the
existence of peripheral layer plays a significané rin functioning of the unhealthy or diseased
arterial system (see Shukla et al. [8], Cocklet &@wldsmith [9], Pralhad and Schultz [10],

Sharan and Propel [11], Srivastava [12], Srivastawh Saxena [13] and Chakravarty and Dutta



[14]). Shankar and Usik Lee [15] studied two-dliierschel-Bulkley model for blood flow in
catheterized arteries and studied the effect ofietat ratio with peripheral layer thickness.
Charkravarthy et al. [16] studied the effect ofipleeral layer viscosity on the unsteady two-
layered pulsatile blood flow in a stenosed flexilalgery. Shukla et al [17] examined the
influence of peripheral layer viscosity on flow tislight stenosis by considering blood as a
power-law fluid model. It is found that the wahesar stress decreases as peripheral layer
viscosity decreases.
Researchers in biomedical engineering and scietiitefid have explored extraordinary results in
the flow and heat transfer of non-Newtonian fluidnfi different geometries because of its ever
increasing biomedical industrial applications indescopy, heart beat controlling processes,
polymer technology, metallurgy, petroleum industggoling of nuclear reactors, power
generation, etc. Due to this significance the ath@0-24] discussed the non-Newtonian flow
characteristics over various geometries and phlysibacts. With this they concluded that non-
Newtonian fluids have tendency to control the floghavior.

Motivated by the above evidences an attempt isemtadstudy the effect of peripheral
layer viscosity in a mild stenosed artery by coesity blood as a Herschel — Bulkley fluid
model. The various physical parameters of the fl@wcity, volume flow rate and shear stress

are investigated for the variations in yield stresscosity and stenosis height.

2. Mathematical Formulation

The following assumptions were made in the formaitaof the physical problem:

» The artery is assumed to be a mild stenotic cyiaditube.



= The stenotic protuberance is assumed to be anmamisyric surface produced by a cosine
curve following Young [18].
» Blood is considered to be Herschel — Bulkley flmddel

»= The blood flow is assumed to be steady and lanandrfully developed.

The radius of the stenosis can be described matteathain the form:

R®) =, 9% {1+c052—ﬂ(2—d—iﬂ, d<z<lL+d
R, 2R, Lo 2

=1, elsewhere ()

where R@) is the radius of the stenosedarteRyjs the constant radiuslL, is the length of the

stenosis and,is its maximum heightd,(( R,, Fig.1).

To see the effects of peripheral layer viscositytloe flow behavior, we consider the viscosity

function u(r) as follows Lih [19]:
pu =m0 <1 s R@

where u, , p,are the viscosities of the central and the perghkzryers respectively. The

functionR; (2) represents the geometry of the central layer wisithken to be

_Rl(z) = a—i 1+c052—7T(z—d—i , d< z < L0+d
R, 2R, L, 2

= a , elsewhere (3



whereq is the ratio of central core radius to the tubeusdn the non- stenotic region. The

constantdg is the maximum bulging of the interface at z = (lli#2) due to the presence of

stenosis.

The basic equations governing the flow is (see Bhetkal. [8])

__(rz') =- — (4)
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whered is the yield stress of the fluid, n is the powav ladex.

The appropriate boundary conditions are

U =0at r=R(2, uy=0 at r = Ry(2),

_ au,
I,=T; atr=Ry(2), yzo at r=0. (6)

Whereu, is the core velocity angt is the peripheral velocityf, and 7; are shear stresses in the
core and peripheral regions respectively.
3. Method of Solution

Using equation (2) and equations (3) — (6) we obthe core velocity piand the peripheral

velocity us as follows
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wherep = —%.
dz

The shear stress at the wall is given by

Ju

Z-W|r=R(z) = or ! (9)

r=R(2)

The volumetric flow rate Q is given by

Q= Q + Q.10

Q= J;RLZm,uldrz —%[A +A],

Q= [ 27 dr= -%[A +A],

where
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4. Resultsand Discussion
In this model, we investigated the pbakiflow characteristics of Herschel — Bulkley
fluid model of blood flow in an artery with mildestosis in the presence of peripheral layer

viscosity. We presented the numerical solutiomsAlorta. The power-law inder = 0.95, the



center of the stenosis is taken@s= 02, a = 105the viscosity of the Herschel — Bulkely fluid is

considered agy = 35¢.p and radius of the AortagR 1.7 cm. Fig. 2 shows the effect 6f on

core velocity profiles shown graphically. It is sethat velocity decreases with the increase in
6 and the velocity profiles takes parabolic curvet thfe axis of the artery the velocity is more
and keeps reducing when reaches the artery wBllie to this cause we saw decrement in the
velocity profiles.

Figs. 3 and 4 illustrate the influemteyield stressf and &£, on the peripheral velocity
. In Fig.3, it is clear that the peripheral vetp@rofiles us enhances with increasing values of
yield stresg. The velocity achieves its maximum at z = 0.2he Velocity profiles are shown
mixed performance, initially the velocity fieldscieases up to z = 0.2 and retains reducing up to
z = 0.4 and again jumps repeating the same aatiotné advanced values of z. This is because
of the arterial wall is considered as a cosine eum. the velocity is acts periodic nature in the

peripheral region. In Fig. 4 it is observed tha bpposite performance with increasing values

ofe,. Figs. 5 and 6 represent the volumetric flow r@eprofiles for various values of

versust;. It is observed that Q declines drastically&#creases. This is happens because of
the stenosis, the gap or the area in which the flominishes in the channel. But the volumetric

flow rate is growing with increasing values éf. on opposite action is seen in the case of
viscosity ratio as displayed in Fig.6. These emptens are accurate for any physiological
situation.

Figs. 7-8 describe the shear stress profibesrsus z. It is seen that the shear stress
dispersion is periodic nature at the stenotic wallR(z). The higher values (0 to 0.2) of axial

distancez shear stress increases and then it is decreasesnaseases from 0.2 to 0.4, this



actions indicates in the flow is periodic in natufee supreme shear stress happens at the center
of the stenosis. In Fig.7 shear stress dispersitindeviations in yield stress is plotted. Theris

in yield stress value increases the shear stregser®ived Fig.8. The similar behavior is
detected as an increasegin The volume flow rate (Q) versus pressure gradiepis tabulated
for various numerical values qf ,and 8 in Table 1. It is observed from that the volurioavf

rate rises with the higher values of P. Moreosanjlar to the preceding deviations of Q wth

and &; the volumetric flow goes on decreasing with insgeaalues of the viscosity rajig. But,

Q rises with the increasing ifl. From the numerical solutions presented in Tablg 8, noted
that volume flow rate is low in two-layered modelngpared to the single-layered model. The

similar observation is given by Shukla et al [8].

5. Conclusions

1. The existence of peripheral layer will be usdfi understanding the functioning of the

diseased arterial system

2. The present study reveals that the physiolbgicadel can be applied to stenosis affected
small vessels where the non-Newtonian behavior asenprominent such as carotid artery,

femoral arteries, coronaries and arterioles.

3. The mass-flux reduced as the consistency oplperal layer fluid decreases, this happens due

to the enhancement of pseudo plastic nature dfltrel.
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Fig. 1. Geometry of a stenosed artery with peripheralrlaye
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Table 1. Pressure-flow rate relationship for different valwéy,and & when £, = 0.2

P = 4110 | =415 yzz/,zl/sQ 6=0.1 6=0.2 6=0.3
5 59.48176 | 58.47899 | 57.14197 | 49.72296| 56.1249 | 62.94163
15 | 144.1209| 141.6 | 138.2387| 135.3945| 141.179 | 147.0958
25 | 226.5221 | 222.5288| 217.2044| 218.113 | 223.6997| 229.3638
35 | 307.4018 | 301.9643| 294.7143| 299.1739| 304.6456| 310.1716
45 | 387.1841 | 380.3223| 371.1734| 379.0814 | 384.4727| 389.9059
55 | 466.1133 | 457.8428| 446.8154 | 458.1056 | 463.4356| 468.7995




Table 2: Volumetric flow rate Q distribution in various bldaessels

Blood vessels

Two layered H-B fluid model

Q

Single layered H-B fluid model

Q

Radius B cms £=0.1 £=0.15 £=0.1 £=0.15
Arteriole 0.023933 0.024468 0.023987 0.02452
0.008

Coronary 0.027472 0.024271 0.027868 0.024354
0.15

Carotid 0.4 0.253161 0.185929 0.283987 0.207249
Femoral 0.5 0.56206 0.433316 0.638 0.490247
Aorta 1.7 59.26 54.72643 69.01058 63.71778




Highlights

1. The existence of peripheral layer will be useful for understanding the functioning of the

diseased arterial system

2. The present study reveals that the physiological model can be applied to stenosis affected
small vessels where the non-Newtonian behavior is more prominent such as carotid artery,

femoral arteries, coronaries and arterioles.



