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Abstract The present article analyzed the peristaltic flow

of a nanofluid in a uniform tube for micropolar fluid. The

governing equations for proposed model are developed in

cylindrical coordinates system. The flow is discussed in a

wave frame of reference moving with velocity of the wave

c. Under the assumptions of longwave length the reduced

coupled nonlinear differential equations of momentum,

energy, and concentrations are solved by Homotopy per-

turbation method is used to get the solutions for velocity,

temperature, nano particle, microrotation component. The

solutions consists Brownian motion number Nb, thermo-

phoresis number Nt, local temperature Grashof number Br

and local nano particle Grashof number Gr. The effects of

various parameters involved in the problem are investi-

gated for pressure rise, pressure gradient, temperature and

concentration profile. Five different waves are taken into

account for analysis. Streamlines have been plotted at the

end of the article.

Keywords Peristaltic flow � Nano fluid � Uniform tube �
Micropolar fluid � HPM solutions

Introduction

Micropolar fluids are fluids with microstructure belonging

to a class of fluids with nonsymmetrical stress tensor

referred to as polar fluids. Physically, they represent fluids

consisting of randomly oriented particles suspended in a

viscous medium, and they are important to engineers and

scientists working with hydrodynamic-fluid problems and

phenomena (Grzegorz et al. 1998) Eringen (1996) was first

who introduced the concept of simple micropolar fluids to

characterize concentrated suspensions of neutrally buoyant

deformable particles in a viscous fluid, where the individ-

uality of substructures affects the physical outcome of the

flow. He coat that micropolar fluid describe the microro-

tation effects to the microstructure model After the first

investigation of Eringen (1996) this model has attracted the

attention of many scientist, mathematician, physicists and

engineers, because the well known Navier–Stokes’ theory

does not describe previously the physical properties of

polymer fluids, colloidal solutions, suspension solutions,

liquid crystals, animals blood, exotic lubricants and fluid

containing small additives. A micropolar model for axi-

symmetric blood flow through an axially nonsymmetreic

but radially symmetric mild stenosis tapered artery is pre-

sented by Mekheimer and El Kot (2008). They discussed

that a subclass of these microfluids is known as micropolar

fluids where the fluid microelements are considered to be

rigid. Basically, these fluids can support couple stresses and

body couples and exhibit microrotational and microinertial

effects. Nadeem et al. (2010) analyzed the effects of heat

transfer on a peristaltic flow of a micropolar fluid in a

vertical annulus.

Recently, peristaltic problems has gained a considerable

attention of researchers because of its applications in

physiology, engineering and industry i.e. urine transport

from kidney to bladder, swallowing food through the

esophagus, chyme motion in the gastrointestinal tract,

vasomotion of small blood vessels and movement of

spermatozoa in human reproductive tract. There are many
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engineering processes as well in which peristaltic pumps

are used to handle a wide range of fluids particularly in

chemical and pharmaceutical industries. This mechanism is

also used in the nuclear industry. The recent developments

on the topic include (Mekheimer and Abd Elmaboud 2008;

Vajravelu et al. 2007; Mekheimer 2008; Srinivas and

Kothandapani 2008; Kothandapani and Srinivas 2008;

Srinivas et al. 2009; Nadeem 2009).

Nano fluid is a fluid containing nanometer-sized parti-

cles, called nano particles. These fluids are engineered

colloidal suspensions of nano particles in a base fluid

(Buongiorno 2006). The nano particles used in nano fluids

are typically made of metals, oxides, carbides, or carbon

nano tubes. Nano fluids have novel properties that make

them potentially useful in many applications in heat

transfer, including microelectronics, fuel cells, pharma-

ceutical processes, and hybrid-powered engines (Das et al.

2007). In engineering devices it has been widely used for

engine cooling/vehicle thermal management, domestic

refrigerator, chiller, heat exchanger, and nuclear reactor, in

grinding, in machining, in Space, defense and ships, and in

Boiler flue gas temperature reduction. They exhibit

enhanced thermal conductivity and the convective heat

transfer coefficient compared to the base fluid (Sadik and

Pramuanjaroenkij 2009) In peristaltic literature only one

investigation has been done by Akbar (2011) They studied

the peristaltic flow of a nano fluid in an endoscope. They

observed that with the increase in the Brownian motion

parameter Nb and the thermophoresis parameter Nt tem-

perature profile increases.

Motivated by the possible applications and previous

studies regarding the micropolar fluid and nano fluid, we

have presented the peristaltic flow of a micropolar fluid in a

uniform tube with nano particles. Equations of momentum,

energy, and concentrations are coupled so Homotopy per-

turbation method is used to get the solutions for velocity,

temperature, nano particle, microrotation component. The

solutions consists Brownian motion number Nb, thermo-

phoresis number Nt, local temperature Grashof number Br

and local nanoparticle Grashof number Gr. The effects of

various parameters involved in the problem are investi-

gated for pressure rise, pressure gradient, temperature and

concentration profile. Five different waves are taken into

account for analysis. Streamlines have been plotted at the

end of the article.

Physical model and fundamental equations

Let us consider the flow of an incompressible micropolar

fluid in a uniform tube with nano particles. The flow is

generated by sinusoidal wave trains propagating with

constant speed c1 along the walls of the tube. Heat transfer

along with nanoparticle phenomena has been taken into

account. The walls of the tube are maintaining temperature
�T0 and nanoparticle volume fraction �C0, while at the centre

we have used symmetry condition on both temperature and

concentration. The geometry of the wall surface is defined as

�h ¼ aþ b sin
2p
k

�X � c1�tð Þ; ð1Þ

where a is the radius of the tube, b is the wave amplitude, k
is the wavelength, c1 is the propagation velocity and �t is the

time. We are considering the cylindrical coordinate system

ð �R; �XÞ, in which �X-axis lies along the center line of the tube

and �R is transverse to it.

Introducing a wave frame (�r; �x) moving with velocity c1

away from the fixed frame ð �R; �XÞ by the transformations

�x ¼ �X � c1�t; �r ¼ �R; ð2Þ

�vr ¼ �Vr � c1; �vx ¼ �Vx; ð3Þ

in which �U; �W and �u; �w are the velocity components in the

radial and axial directions in the fixed and moving coor-

dinates respectively.

Dimensionless variables are defined as

R¼
�R

a
; r¼ �r

a
; Z¼

�Z

k
; z¼ �z

k
; W ¼

�W

c1

; w¼ �w

c1

; U¼ k �U

ac1

;

u¼ k�u

ac1

; P¼ a2 �P

c1kl
; h¼

�T� �T0ð Þ
�T0

; t¼ c1�t

k
; d¼ a

k
;

Re¼ 2qc1a

l
; r¼

�C� �C0ð Þ
�C0

; h¼
�h

a
¼ 1þkkz

a0

þ/sin2pz;

a¼ k

qcð Þf
; Nb¼

qcð ÞpDB
�C0

qcð Þf
; vr¼

k�vr

ac
; j¼

�j

a2
:

Nt¼
qcð ÞpD �T

�C0

qcð Þfa
; Pr ¼

m
a
; Gr ¼

gaa3 �T0

m2
;

Br ¼
gaa3 �C0

m2
:vx¼

�vx

c
; vh¼

a

c
�vh: ð4Þ

The equations of an incompressible micropolar fluid

(Nadeem et al. 2010) with nano particle (Akbar 2011) in

dimensionless form under long wave length assumptions

are defined

ovr

or
þ vr

r
þ ovx

ox
¼ 0 ð5Þ

0 ¼ oP

ox
; ð6Þ

o ¼� oP

ox
þ 1

1� Nð Þ
N

r

o rvhð Þ
or
þ o2vx

or2
þ 1

r

ovx

or
þ d2 o2vx

ox2

� �

þ GrHþ Brr; ð7Þ
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0 ¼ �2vh þ � ovx

or

� �
þ 2� N

m2

o

or

1

r

o rvhð Þ
or

� �� �
; ð8Þ

0 ¼ 1

r

o

or
r
oH
or

� �
þ Nb

or
or

oH
or
þ Nt

oH
or

� �2

; ð9Þ

0 ¼ 1

r

o

or
r
or
or

� �� �
þ Nt

Nb

1

r

o

or
r
oH
or

� �� �
: ð10Þ

in which N is the coupling number m is the micropolar

parameter, Pr, Nb, Nt, Gr and Br are the Prandtl number, the

Brownian motion parameter, the thermophoresis parame-

ter, local temperature Grashof number and local nanopar-

ticle Grashof number.

The corresponding boundary conditions in dimension-

less form are

vh ¼ 0;
ovx

or
¼ 0;

oh
or
¼ 0;

or
or
¼ 0; at r ¼ 0;

ð11aÞ

vh ¼ 0; vx ¼ �1; h ¼ 0; r ¼ 0;

at r ¼ h ¼ 1þ / sin 2px: ð11bÞ

Solution of the problem

Homotopy perturbation solution

The combination of the perturbation method and the ho-

motopy method is called the HPM (an analytical technique)

(Akbar 2011; He 1998, 1999, 2005), which eliminates the

drawbacks of the traditional perturbation methods while

keeping all their advantages.

For homotopy perturbation method we have taken L ¼
1
r

o
or r o

orð Þ as the linear operator. We can define the initial

guesses as given below which satisfies the boundary

conditions

h10 r; xð Þ ¼ r2 � h2

4

� �
; r10 r; xð Þ ¼ � r2 � h2

4

� �
Nt

Nb

;

vh10 r; xð Þ ¼ r5 � h5

50

� �
dP0

dx

m2ð1� NÞ
2� N

;

ð12Þ

Let us define

H r; qð Þ ¼ H0 þ qH1 þ q2
2H2 þ � � � ð13Þ

r r; qð Þ ¼ r0 þ qr1 þ q2r2 þ � � � ð14Þ

vh r; qð Þ ¼ vh0 þ qvh1 þ q2
2vh2 þ � � � ð15Þ

Adopting the same procedure as done by (Akbar 2011;

He 1998, 1999, 2005), the solution for temperature,

nanoparticle phenomena and microrotation component

can be written as for q = 1.

h r; xð Þ ¼ r2 � h2

4

� �
þ Nt

r3 � h3

18

� �
� Nt

r4 � h4

64

� �

þ 1

4
h2 � r2
� �

� Nb

r4 � h4

64

� �
þ NtNb

r5 � h5

300

� �

� NtNb

r6 � h6

1152

� �
; ð16Þ

r r;xð Þ¼� r2�h2

4

� �
Nt

Nb

þ1

4
h2�r2
� �

�Nt

Nb

h2�r2

4

� �

�Nt

Nb

Nt r3�h3ð Þ
18

�Nt r4�h4ð Þ
64

þ1

4
h2�r2
� �� �

;

ð17Þ

vh r;xð Þ ¼ r5� h5

50

� �
dP

dx

m2ð1�NÞ
2�N

� h5m2ðN� 1Þ r2� h2ð Þ
200ðN� 2Þ

� dP0

dx
þ

a6 r5� h5
� �

25
þ a4 r8� h8ð Þ

25

þ 50a5 N� 2ð Þ r7� h7ð Þ
2450ðN� 2Þ þm2ðN� 1Þ r7� h7ð Þ

2450ðN� 2Þ
dP0

dx

þ a3 r9� h9ð Þ
81

þ a2 r10� h10ð Þ
100

þ a1 r11� h11ð Þ
121

;

ð18Þ

Substituting Eqs. (16)–(18) in Eq. (7), the solution for

velocity and pressure gradient can be written as follows

vx r;xð Þ ¼� 1þ a8 r� hð Þþm2h5ðN� 1ÞNðr� hÞ
50ðN� 2Þ

dP

dx

þ 1

4
2a9þ 1�Nð ÞdP

dx

� �
r2� h2
� �

þ a10 r3� h3ð Þ
3

þ a11 r4� h4ð Þ
4

þ
a12 r5� h5
� �

5
þ

a13 r6� h6
� �

6

�
m2ðN� 1ÞN r6� h6

� �
300ðN� 2Þ

dP

dx
þ a14 r7� h7ð Þ

7

þ a15 r8� h8ð Þ
8

� a16 r9� h9ð Þ
9

þ a17 r10� h10ð Þ
10

þ a18 r11� h11ð Þ
11

þ a19 r12� h12ð Þ
12

;

ð19Þ
dP

dx
¼ F1 þ h� a20

a21

: ð20Þ

where a1 to a21 are constants evaluated using Mathematica.

Flow rate in dimensionless form can be written as

explained by (Akbar 2011)

F1 ¼ 2Q� /2

2
� 1;

The pressure rise DP and friction force F are defined as

follows
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DP ¼
Z1

0

dP

dx
dx; ð21Þ

F ¼
Z1

0

h2 � dP

dx

� �
dx; ð22Þ

where dP
dx is defined in Eq. (20).

For analysis, we have considered five waveforms

namely sinusoidal, multi-sinusoidal, triangular, square and

trapezoidal. The non-dimensional expressions for these

wave forms are given by
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Fig. 1 a Pressure rise, b frictional force for N = 0.8, m = 0.8, Gr = 0.5, Br = 0.5, Nt = 0.5, Nb = 10
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Fig. 2 a Pressure rise. b Frictional force for / = 0.2, m = 0.8, Gr = 0.5, Br = 0.5, Nt = 0.5, Nb = 10
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Fig. 3 a Pressure rise, b frictional force for / = 0.2, N = 0.8, Gr = 0.5, Br = 0.5, Nt = 0.5, Nb = 0.4
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1. Sinusoidal wave:

h zð Þ ¼ 1þ / sin 2pzð Þ

2. Multi sinusoidal wave:

h zð Þ ¼ 1þ / sin 2m1pzð Þ

3. Triangular wave:

h zð Þ ¼ 1þ /
8

p3

X1
m¼1

�1ð Þnþ1

2m� 1ð Þ2
sin 2p 2m� 1ð Þzð Þ

( )

4. Square wave:

h zð Þ ¼ 1þ /
4

p

X1
m¼1

�1ð Þnþ1

2m� 1
cos 2p 2m� 1ð Þzð Þ

( )
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Fig. 4 a Pressure rise, b frictional force for / = 0.2, N = 0.8, Gr = 0.5, Br = 0.5, m = 0.5, Nb = 0.4
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5. Trapezoidal wave:

h zð Þ ¼ 1þ /
32

p2

X1
m¼1

sin p
8

2m� 1ð Þ
2m� 1ð Þ2

sin 2p 2m� 1ð Þzð Þ
( )

Numerical results and discussion

In this section we have presented the solution for the peri-

staltic flow of a micropolar fluid with nano particles passing

a uniform tube graphically. The expression for pressure rise

DP is calculated numerically using mathematics software.

The effects of various parameters on the pressure rise

DP are shown in Figs. 1a, 2, 3, 4a for various values of

amplitude ratio /, coupling number N, micropolar param-

eter m and thermophoresis parameter Nt. It is observed from

Figs. 1a, 2, 3, 4a that pressure rise increases with the

increase in amplitude ratio /, coupling number N and mi-

cropolar parameter m while the pressure rise decreases with

the increase in thermophoresis parameter Nt. Peristaltic

0 0.5 1 1.5

150

200

250

300

350

400

450

(a)

x

d
P

/d
x

φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20

0 0.5 1 1.5
100

150

200

250

300

350

400

450

500

550

x

d
P

/d
x

φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20

0 0.5 1 1.5
100

150

200

250

300

350

400

450

500

550

x

d
P

/d
x

φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20

0 0.5 1 1.5
200

220

240

260

280

300

320

x

d
P

/d
x

φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20

0 0.5 1 1.5
100

150

200

250

300

350

400

450

500

550

x

d
P

/d
x

φ = 0.05
φ = 0.10
φ = 0.15
φ = 0.20

(b)

(c) (d)

(e)

Fig. 7 Pressure gradient versus z for a sinusoidal wave, b multisinusoidal wave, c square wave, d triangular wave, e trapezoidal wave for

N = 0.8, m = 0.8, Gr = 0.5, Br = 0.5, Nt = 0.5, Nb = 10, Q = -0.2
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pumping region is (-1 B Q B 0.3) for Fig. 1 and for

Figs. 2, 3, 4 peristaltic pumping region is (-1 B Q B 0)

and augmented pumping region is (0.31 B Q B 1) and

(0.1 B Q B 1), respectively. Figures 1b, 2, 3, 4b represent

the behavior of frictional forces. It is depicted that frictional

forces have an opposite behavior as compared to the pres-

sure rise. Effects of temperature profile have been shown

through Fig. 5a, b. It is seen that with the increase in the

Brownian motion parameter Nb and the thermophoresis

parameter Nt, temperature profile increases and maximum

temperature occurs at r = 0. The nanoparticle phenomena r
for different values of the Brownian motion parameter Nb

and the thermophoresis parameter Nt are shown in Fig. 6a

and b. We have observed that the nanoparticle phenomena

increase with an increase in Brownian motion parameter Nb

and decrease with an increase in the thermophoresis

parameter Nt. Figure 7a–e are prepared to see the behavior

of pressure gradient for different wave shapes. It is observed

from the figures that for ze[0, 0.5] and [1.1, 1.5] the pressure

gradient is small, and large pressure gradient occurs for

Fig. 8 Streamlines for a sinusoidal wave, b multisinusoidal wave, c square wave, d triangular wave, e trapezoidal wave for N = 0.8, m = 0.8,

Gr = 0.5, Br = 0.5, Nt = 0.5, Nb = 10, Q = -0.2
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ze[0.5, 1], moreover, it is seen that with increase in /
pressure gradient increases. Figure 7 shows the streamlines

for different wave forms. It is observed that the size of the

trapped bolus in triangular wave is small as compared to the

other waves. It is also depicts that streamlines and pressure

gradient takes the form of the wave which is taken into

account (Fig. 8).

Conclusion

This study examines the peristaltic flow and the effects of

heat transfer on a peristaltic flow of a micropolar fluid in a

vertical annulus. Long wavelength assumption is used. The

main points of the performed analysis are as follows:

1. It is observed that pressure rise increases with the

increase in amplitude ratio /, coupling number N and

micropolar parameter m while the pressure rise

decreases with the increase in thermophoresis param-

eter Nt.

2. The frictional forces have an opposite behaviour as

compared to the pressure rise.

3. It is seen that with the increase in the Brownian motion

parameter Nb and the thermophoresis parameter Nt

temperature profile increases.

4. Effects of Brownian motion parameter Nb and the

thermophoresis parameter Nt on concentration profile

are opposite.

5. Pressure gradient increases with an increase inw.

6. It is depicts that pressure gradient takes the form of the

wave which is taken into account.

7. The size of trapped bolus for triangular wave is small

as compared to the other waves.
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