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Abstract The paper investigates peristaltic flow of a Power-law fluid in contact with a Jeffrey fluid

in an inclined channel with permeable walls under long wavelength and low Reynolds number

approximations. Power-law fluid is considered in the core region and Jeffrey fluid in the peripheral

region. Expressions for the shape of interface between the two fluids and the pressure rise are

obtained. It is observed that an increase in permeability parameter increases the thickness of the

core layer in the channel. It is also observed that pressure rise increases with decrease in the Jeffrey

parameter.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Peristaltic transport is one of the major mechanisms by which

viscous fluids are transported, generally from a low pressure
region to a high pressure region. The required force to pump
the fluids against the pressure gradient is derived in many

methods in engineering and biological systems. In biological
systems, a progressive wave of contraction and expansion of
the muscles pumps the biological fluids. This mechanism
occurs in swallowing of food through oesophagus, movement

of chyme through intestine, colonic transport in large intestine,
passage of urine from kidney to urinary bladder through ure-
thra, spermatic flows in the male reproductive systems, flow of
blood through blood vessels, etc. In engineering applications,

the principles of peristalsis are used in the design of roller
pumps.

Some of the well-known biofluids are intestinal fluid,

lymph, cerebrospinal fluids, saliva, mother’s milk, sweat,
gastric juices, etc. None of the Newtonian fluid models
explain the characteristics of these fluids in detail. Therefore

they are modelled as non-Newtonian fluids. Some of the
non-Newtonian fluid models which are accepted by researchers
for the study of these fluids are Jeffrey fluid, Casson fluid,

Herschel–Bulkley fluid, Bingham fluid, Power-law fluid, etc.
rmeable

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anssrinivas@vit.ac.in
http://dx.doi.org/10.1016/j.asej.2015.08.019
http://dx.doi.org/10.1016/j.asej.2015.08.019
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2015.08.019
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.asej.2015.08.019


Nomenclature

a half-width of the channel

b amplitude of peristaltic wave
k wave length of the peristaltic wave
c wave speed
u; v velocity components in laboratory frame

p pressure
/ amplitude ratio
l viscosity

syx shear stress
k1 Jeffrey parameter
n the dimensionless Power-law index (fluid behaviour

index)

w steam function

a permeability parameter
b inclination parameter
m the slip parameter
m1 consistency parameter

k permeability
Q average non-dimensional volume flow rate
q total flux

q1 core flux
g gravitational parameter
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The Jeffrey model is the simplest and is accepted as a model for
blood in many investigations. Shapiro et al. [1] have used the

long wavelength approximation and low Reynolds number
to study the peristaltic pumping. Jaffrin and Shapiro [2] laid
the foundation of analysis of peristaltic pumping in 1971, from

where onwards it became a focal point for many investigators.
The transportation of many other physiological fluids of anat-
omy is preferably modelled as Jeffrey fluids in the literature

[3,4].
Bugliarello and Sevilla [5] and Cokelet [6] have shown

experimentally that for the blood flowing through narrow
blood vessels, there exists a peripheral layer of plasma and a

core region of suspension of all the erythrocytes of blood. Thus
it is established that the realistic description of blood flow may
be approximated through two fluid model with the suspension

of all the erythrocytes in the core region as a non-Newtonian
fluid and the plasma in the peripheral region as a Newtonian
fluid. Most of the ducts in living bodies contain thick mucus

secretions at the inner surface of the walls. This layer of mucus,
having a viscosity different to that of the biofluid flowing in the
duct, serves as lubricant and assures smoother flow. The com-
position and the fluid properties may differ in different ducts

of a living body. Therefore the study of peristaltic transport
of two layered fluids with different viscosities has its own
importance in understanding the physiological fluid transport

in living things (see Fig. 1).
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Figure 1 Physical model.
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As two-fluid model fits very close to the mathematical
model of blood with its rheology, a lot of research is being

done on the peristaltic transport of two immiscible fluids.
Shukla et al. [7] have investigated the effects of peripheral layer
viscosity on the peristaltic transport of a biofluid. Brasseur

et al. [8] have studied the influence of peripheral layer of differ-
ent viscosity on peristaltic pumping with Newtonian fluid.
Usha and Ramachandra Rao [9] have studied the peristaltic

transport of two-layered – Power-law fluids. Ramachandra
Rao and Usha [10] and Misra and Pandey [11,12] have studied
the peristaltic transport of two or more fluids with different
viscosities. Vajravelu et al. [13] studied the peristaltic transport

of Casson fluid in contact with Newtonian fluid in a circular
tube with permeable wall. Narahari and Sreenadh [14] investi-
gated peristaltic transport of Bingham fluid in contact with

Newtonian fluid. Vajravelu et al. [15,16] studied the influence
of heat transfer on the peristaltic transport of Jeffrey fluid in
a vertical porous stratum. Bohme and Muller [17] investigated

the impact of nonlinear viscoelastic fluid properties on the
peristaltic pumping characteristics of a non-Newtonian fluid
in a tube. Akram el al. [18] studied the influence of heat and
mass transfer on the peristaltic flow of a Bingham fluid in an

inclined magnetic field and channel with different wave forms.
Noreen Sher Akbar has discussed the effects of magnetic field
on the CNT suspended copper nanoparticles in blood flow

through stenosis with permeable walls [21]. Recently
studies on generation of entropy in peristaltic flows are being
reported. Noreen Sher Akbar has studied the impact of

entropy generation on the peristaltic flow of an incompressible
fluid through a uniform tube [22] and nanofluid with CNT sus-
pension in Plumb ducts [23]. Akbar and Butt [24] has investi-

gated the effects of heat transfer on the peristaltic flow of a
fluid with nanoparticles in a curved channel. Akbar [25] has
investigated the peristaltic flow of a Jeffrey six constant fluid
in an endoscope. Akbar [26] also investigated the MHD peri-

staltic flow a nanofluid with convective surface boundary
conditions.

Driven by this closer applicability to the biofluids, peri-

staltic transport of a Power-law fluid in contact with a Jeffrey
fluid in an inclined channel with permeable walls is considered
in this work. The core layer is Power-law fluid and the

peripheral layer is a Jeffrey fluid. The investigation is carried
out using long wavelength and low Reynolds number
assumptions, as low Reynolds number is assigned to biological

fluids, like urine [20].
Law fluid in contact with a Jeffrey fluid in an inclined channel with permeable
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2. Mathematical formulation of the problem

Consider a two-dimensional peristaltic motion of a Power-law
fluid surrounded by a peripheral layer of a non-Newtonian

Jeffrey fluid in an inclined channel with permeable walls under
long wave length and low Reynolds number assumptions.

The wall deformation due to infinite waves is given by

hðX; tÞ ¼ aþ b Sin
2p
k
ðX� ctÞ ð1Þ

where a= half-width of the channel, b = amplitude of peri-
staltic wave, k = wavelength of the peristaltic wave and

c = the wave speed.
Under the assumptions that length of the tube is an integral

multiple of the wavelength, pressure difference across the

wavelength is constant and the nature of the interface is peri-
odic, the flow frame becomes steady in the wave frame (x, y)
moving with velocity c away from frame (X, Y) called labora-

tory frame. The transformations between the two frames are
given by

x ¼ X� ct; y ¼ Y; u ¼ U� c; v ¼ V;

pðx; yÞ ¼ PðX;Y; tÞ;w ¼ w� Y; q ¼ �Q� 1 ¼ q1 þ q2
ð2Þ

where U, V are velocity components, P is pressure and w is
stream function in the laboratory frame. We assume that

Darcy’s law holds in the porous medium. The Ostwald–De
waele Power-law model is used to model Power-law fluid,
which is given by

syx ¼ m1

@U

@Y

����
����
n�1

@U

@Y
ð3Þ
u1 ¼ �1þ ðP�g sinbÞK
ðKþ1Þ yðKþ1Þ � h

ðKþ1Þ
1

h i
� ðP�g sinbÞ

2l ðh2 � h21 þ 2ahÞ; 0 6 y 6 h1

u2 ¼ �1þ ðP�g sinbÞð1þk1Þ
2l ðy2 � h2 þ 2ahÞ; h1 6 y 6 h

9=
; ð8Þ
where syx is the shear stress, m1 is consistency parameter, @U
@Y

is

rate of deformation and n is the fluid behaviour index.
Using the following non-dimensional quantities:

u1 ¼ u1
c
; u2 ¼ u2

c
; y ¼ y

a
; h ¼ h

a
; t ¼ ct

k
;P ¼ an�1

km1cn
P;

a ¼ amffiffiffi
k

p
� ��1

;w1 ¼ w1

ac
;

w2 ¼
w2

ac
; q ¼ q

ac
;/ ¼ b

a
; x ¼ x

k

l ¼ 1 0 6 y 6 h1
l
m1

a
c

� �n�1
h1 6 y 6 h

( )
ð4Þ
w1 ¼ y
�1þ ðP�g sin bÞK

ðKþ1ÞðKþ2Þ yðKþ1Þ � ðKþ 2ÞhðKþ1Þ
1

h i
� ðP�g sin bÞð1þk1Þ

2l ðh2 � h21 þ 2ahÞ

2
4

3
5; 0 6

w2 ¼ qþ h� yþ ðP�g sinbÞð1þk1Þ
6l y3 � 3h2yþ 2h3 � 6ahðy� hÞ
 �

; h1
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where / is the amplitude ratio, P is the dimensionless pressure,
a is the permeability parameter, m is the slip parameter, k is the
permeability, l is the dimensionless quantity that yields the
ratio of the slip parameter l and consistency parameter m1.

The governing equations of motion under lubrication
approach (dropping the bars), may be written as

@
@y

@u1
@y

� 	n� 	
þ g sinb ¼ @P

@x
; 0 6 y 6 h1

@
@y

l
1þk1

@u2
@y

� 	n� 	
þ g sinb ¼ @P

@x
; h1 6 y 6 h

9>=
>; ð5Þ

The dimensionless boundary conditions are

@u1
@y

¼ 0 at y ¼ 0

u2 ¼ �1� a
@u2
@y

at y ¼ h ð6Þ

where g is the gravitational parameter, and a is dimensionless
permeability (including slip) parameter. Second boundary con-

dition is following Saffman [19] which is an improved condi-
tion to Beavers and Joseph slip condition.

The average non-dimensional volume flow rate over period

T ¼ k
c

� �
of the peristaltic wave is defined as

Q ¼ qþ 1

T

Z T

0

h dt ¼ qþ 1 ð7Þ
3. Solution of the problem

Solving Eq. (5) together with the boundary conditions (6), we
get
where P ¼ dp
dx
;K ¼ 1

n
.

The flow rate q is given by

q ¼ q1 þ q2

q ¼ R h1
0
u1 dyþ R h2

h1
u2dy

q ¼ �h� ðP�g sin bÞKhKþ2
1

ðKþ2Þ � ðP�g sinbÞð1þk1Þ
3l h3 � 3ahh1 � h31


 � ð9Þ

The relation betweenQ and DP can be obtained by eliminat-
ing q from Eqs. (7) and (9) followed by integration of P with
respect to x over one wavelength. But this relation cannot be

presented, as P is not known explicitly as function of h1 and Q.
The solutions of the stream functions can be obtained by

using the conditions w1 ¼ 0 at y ¼ 0 and w2 ¼ q at y ¼ h in

(8) as
y 6 h1

6 y 6 h2

9>>>=
>>>;

ð10Þ
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Figure 3 The variation of shape of interface with permeable

parameter a.
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The stream function reduces to the case of two Newtonian
fluids with permeable walls when K ¼ 1 and k1 ¼ 1.

The interface equation is obtained from the condition

w1 ¼ q1 or w2 ¼ q2.
Substituting in Eq. (10), we get

Q1 ¼ �ðP� g sinbÞKhKþ2
1

ðKþ 2Þ

� ðP� g sinbÞð1þ k1Þ
2l

h1 h2 � h21 þ 2ah
� � ð11Þ

Q1 ¼ q1 þ h1:

To determine P in Eq. (11), we use the continuity of the
stream function at the interface given by w1 ¼ q at y ¼ h1.
We get

Q1 ¼ Q

þ ðP� g sinbÞð1þ k1Þ
6l

h31 � 3h2h1 þ 2h3 � 6ahðh1 � hÞ
 �
ð12Þ

or

P ¼ 6lðQ1 �QÞ
ð1þ k1Þ h31 � 3h2h1 þ 2h3 � 6ahðh1 � hÞ
 �þ g sinb

Eliminating P from Eqs. (11) and (12), the nonlinear equa-
tion governing the interface is given by

ðQ�Q1Þ 6KlK jQ�Q1 jK�1

ð1þk1Þk h31�3h2h1þ2h3�6ahðh1�hÞ½ �K
�

þ 3ðKþ2Þðh2�h21þ2ahÞ
hKþ1
1

h31�3h2h1þ2h3�6ahðh1�hÞ½ � þ
ðKþ2Þ
hKþ2
1


� ðKþ2ÞQ

hKþ2
1

¼ 0

ð13Þ

Eq. (13) reduces to fourth-order algebraic equation derived

by Brasseur et al. [8] for two Newtonian fluids when k ¼ 1 and
k1 ¼ 0. The values of q1 or Q1 are determined by solving Eq.
(13) iteratively under the conditions h1 ¼ b at x ¼ 0. Later
the same equation is solved iteratively for h1 at every axial sta-

tion x. The pressure gradient P is determined using Eq. (12)
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and then integrated over one wavelength to obtain the pressure
rise DP across one wavelength.

4. Results and discussions

The effect of permeability parameter, Jeffrey parameter k1 on
the pumping characteristics is discussed for different values of

parameters of interest. We note that the results of the present
work reduce to the case of two immiscible Newtonian fluids for
k ¼ 1 and k1 ¼ 0. The viscosity near the wall of the ducts has

been found to be different from that in the central region for
many biological systems such as oesophagus.
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Figure 4 The variation of shape of interface with index k.
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4.1. Interface

The interface that is derived from (13) is a stream line in thewave
frame. It is determined for varying parameters from its equation,
using a numerical technique and is shown in Figs. 2–4. In Fig. 2,

we observe that the shape of the interface is slightly affected
when the viscosity ratio l is changed. In Fig. 3 we notice that
the increase in the permeability parameter a increases the thick-
ness of the core layer in the channel. Increased wall permeability

allows more of the peripheral fluid to leak out, which results in
decreased thickness of the peripheral fluid, at the same time
increasing the thickness of the core fluid. From Fig. 4, we infer
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Figure 5 The variation of DP with �Q for different values of
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that the increase in the index k gives rise to thinner core layer
in the channel.

4.2. Pumping characteristics

The relationship between Q and DP is depicted in Fig. 5, for
different values of amplitude ratio / with the values of other

parameters fixed as a ¼ 0:1; b ¼ 0:7; l ¼ 0:1; k1 ¼ 1 and
k ¼ 2. It is seen that the pressure rise decreases linearly with

the average flow. We observe that for a given DP, the flux Q

increases with increasing amplitude ratio / for 0 6 Q 6 0:08.
The behaviour is otherwise for Q > 0.08. It can be understood
that for a given flux value, the pressure rise increases with an
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Figure 7 The variation of DP with Q for different values of

Jeffrey parameter k1.
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increase in the amplitude ratio for 0 6 Q 6 0:08 and opposite

behaviour is found for Q > 0.08. In Fig. 6, the relation

between DP and Q is drawn for different values of viscosity
ratio l with other parameters fixed as a ¼ 0:1; b ¼
0:7; / ¼ 0:7; k1 ¼ 1 and k ¼ 2. We observe that the larger
the viscosity ratio, the greater is the pressure rise, against

which the pump works. For a given DP, the flux Q depends
on l and is decreasing with the increasing l. Fig. 7 shows

the relation between Q and DP for different values of Jeffrey
parameter k1. The other parameters are fixed as
a ¼ 0:1; b ¼ 0:7;/ ¼ 0:7; l ¼ 0:1 and k ¼ 2. We observe that

for a given DP, the flux Q depends on k1 and it increases with

the decreasing value of Jeffrey parameter k1.
Fig. 8 shows the relationship between Q and DP for differ-

ent values of permeability parameter a, with other parameters

fixed as l ¼ 0:1; b ¼ 0:7; / ¼ 0:7; k1 ¼ 1 and k ¼ 2. We

observe that for a given DP, the flux Q depends on a and
increases with decreasing of permeability parameter a. Fig. 9
shows the relation between Q and DP for different values of

inclination parameter b, for fixed a ¼ 0:1; k ¼ 0:2; / ¼
0:7; l ¼ 0:1 and k1 ¼ 1. We observe the change in DP for

the increasing flux Q is very small and so the pumping curves

are approximately parallel lines. In fact the pressure rise is
decreasing with increasing flux. It is also seen that for a given

DP, the flux Q depends on b and it increases with the increas-
ing value of inclination parameter b.

5. Conclusions

Driven by the closer applicability of two-fluid model to bioflu-

ids, the peristaltic transport of a Power-law fluid in contact
with a Jeffrey fluid is investigated in an inclined channel.
The problem is modelled with Power-law fluid in core region

and Jeffrey fluid in peripheral layer. Expressions for the shape
of interface and the pressure rise are evaluated. The effect of
different parameters of interest on the interface and the pres-

sure rise are presented graphically. The analysis shows that
the permeability of the wall affects the interface and an
increase in the permeability increases the thickness of the core
Please cite this article in press as: Sreenadh S et al., Peristaltic pumping of a power –
walls, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej.2015.08.019
layer. It is observed that the increase in the viscosity increases
the pressures rise against which the pump works. Another
interesting point observed is that for a given pressure rise,

decreasing Jeffrey parameter increases the flux. The flux also
found to increase with decreasing permeability parameter for
a given pressure rise.
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