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Abstract The peristaltic flow of a Jeffrey fluid in contact with a Newtonian fluid in an inclined

symmetric channel is analyzed under the assumptions of long wavelength and low Reynolds num-

ber. The channel is inclined at angle of b with the horizontal. This model is useful to understand the

two fluid flow behaviors in physiological systems. The velocity field, stream function, interface

shape, pressure rise and frictional force at the wall over one cycle of wavelength are obtained

and the results are shown graphically. It is observed that the variation of the interface shape gives

rise to thinner peripheral region with increasing Jeffrey parameter k1.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Peristalsis is well known to physiologists to be one of the major
mechanisms for fluid transport in many biological systems.

This mechanism occurs in food transport through esophagus,
movement of chyme in the gastrointestinal tract, transport of
lymph in the lymphatic vessels, vasomotion of small blood ves-

sels and urine transport from kidney to bladder through the
ureter. In practical peristaltic pumps are designed by engineers
for pumping corrosive fluids without contact with the walls of
the pumping machinery. Applying a wave frame of reference,
Jaffrin and Shapiro [1] made a detailed analysis on the peri-
staltic pumping of a viscous fluid under long wavelength and

low Reynolds number assumptions. The fixed frame analysis
of peristaltic flow of generalized Newtonian fluid with the
influence of heat and mass transfer has been presented by

Vajravelu et al. [2].
Among several non-Newtonian fluid models proposed for

biofluids, Jeffrey model is one of the simplest non-
Newtonian fluid models accepted by the researchers. Hayat

et al. [3] analyzed the peristaltic transport of a compressible
Jeffrey fluid in a circular tube. Kothandapani and Srinivas
[4] studied the effect of magnetic field on the peristaltic trans-

port of a Jeffrey fluid in an asymmetric channel. Nadeem and
Akbar [5] studied the peristaltic flow of an incompressible Jef-
frey fluid with variable viscosity in an asymmetric channel.

Pandey and Tripathi [6] discussed the peristaltic transport of
a Jeffrey fluid in a circular tube as well as in a channel. Kavitha
et al. [7] presented the peristaltic transport of a Jeffrey fluid in
s Eng J
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Figure 1 Physical model.
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a porous channel with suction and injection. Many studies
have been carried out for the peristaltic transport of a Jeffrey
fluid [8–12].

It is observed in some physiological systems such as esoph-
agus, small blood vessels and ureter, the wall structure doing
the pumping is typically coated with a fluid of different prop-

erties from those of the fluid being pumped. In order to under-
stand the effect of fluid coating on the transport, the single
fluid analysis of peristaltic pumping is extended to two fluid

analysis by including peripheral layer of different viscosity.
Such an analysis was first done by Shukla et al. [13] for channel
and axisymmetric geometries. For non-uniform axisymmetric
tubes, Srivastava et al. [14] made an important contribution

in peristaltic pumping. Brasseur et al. [15] analyzed the influ-
ence of a peripheral layer of different viscosity on peristaltic
pumping with Newtonian fluids. Ramachandra Rao and Usha

[16] discussed the pumping of two immiscible viscous fluids in
a circular tube. The interface between the two layers is deter-
mined from a transcendental equation in the core radius.

Vajravelu et al. [17] studied peristaltic pumping of a
Herschel–Bulkley fluid in contact with a Newtonian fluid.
Vajravelu et al. [18] studied Peristaltic transport of a Casson

fluid in contact with a Newtonian fluid in a circular tube with
permeable wall. Narahari and Sreenadh [19] presented the
peristaltic transport of a Bingham fluid in contact with a
Newtonian fluid. Hari Prabakaran et al. [20] analyzed the

peristaltic pumping of a Bingham fluid in contact with
Newtonian fluid in an inclined channel. All these authors have
specified the interface shape.

Motivated by the above studies, we propose to study the
peristaltic pumping of a Jeffrey fluid in contact with a Newto-
nian fluid in an inclined channel. The velocity field, the stream

function and the pressure rise over one cycle of wavelength are
obtained.

2. Mathematical formulation and solution

Consider the peristaltic transport of a biofluid consisting of
two immiscible and incompressible fluids of different viscosi-

ties l1 and l2 occupying the core by a Jeffrey fluid and periph-
eral layer by a Newtonian fluid in an inclined channel. The
channel is inclined at angle of b with the horizontal. The half
width of the channel is a. The wall deformation due to the

propagation of an infinite train of peristaltic waves is given by

Y ¼ HðX; tÞ ¼ aþ b sin
2p
k
ðX� ctÞ ð1Þ

where k is the wavelength, b is the amplitude and c is the wave
speed.

The subsequent deformation of the interface separating the
core and the peripheral layers is denoted by Y ¼ H1ðX; tÞ
(Fig. 1) which is not known a priori.

2.1. Equations of motion

Under the assumptions that the channel length is an integral
multiple of the wavelength k, the pressure difference across
the ends of the channel is a constant and the periodicity of

the interface is same as that of the peristaltic wave. The flow
becomes steady in the wave frame ðx; yÞmoving with the veloc-
Please cite this article in press as: Kavitha A et al., Peristaltic transport of a Jeffrey fl
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ity c away from the fixed frame ðX;YÞ called laboratory frame.
The transformation between these two frames is given by

x ¼ X� ct; y ¼ Y; uðx; yÞ ¼ UðX� ct;YÞ � c; vðx; yÞ
¼ VðX� ct;YÞ; pðxÞ ¼ PðX; tÞ; w ¼ W� Y ð2Þ

where w and W are the stream functions in the wave and lab-
oratory frames respectively. Using the non-dimensional
quantities,

�x ¼ x

k
; �y ¼ y

a
; �h ¼ h

a
; �h1 ¼ h1

a
; �t ¼ ct

k
;

P ¼ Pa2

l1kc
; / ¼ b

a
; S ¼ a

l1c
S; �wðiÞ ¼ wðiÞ

ac
; �q ¼ q

ac
;

F ¼ Fa

l1kc
; �uðiÞ ¼ uðiÞ

c
¼ @wðiÞ

@�y
; g ¼ qga2

cl1

;

�vðiÞ ¼ vðiÞk
ac

¼ �@wðiÞ

@�x
ði ¼ 1; 2Þ;

�l ¼
1; 0 6 �y 6 �h1

l ¼ l2
l1

� �
; �h1 6 �y 6 �h

8<
: ð3Þ

where �uðiÞ and �vðiÞ are the �x and �y components of velocities in

the wave frame.
The equations governing the flow of Jeffrey fluid in core

region (for details see Kavitha et al. [7]) and Newtonian fluid
in peripheral region in wave frame analysis under the long

wavelength and low Reynolds number assumptions are (drop-
ping the bars)

@

@y

1

ð1þ k1Þ
@2wð1Þ

@y2

" #
þ g sinb ¼ @P

@x
ð4Þ

0 ¼ @p

@y
ð5Þ

and

@2

@y2
l
@2wð2Þ

@y2

" #
þ g sinb ¼ @P

@x
ð6Þ
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The dimensionless boundary conditions are

wð1Þ ¼ 0 at y ¼ 0 ð7Þ

wð1Þ
yy ¼ 0 at y ¼ 0 ð8Þ

wð2Þ ¼ q ¼ Constant at y ¼ h ð9Þ

wð1Þ ¼ wð2Þ ¼ q1 ¼ Constant at y ¼ h1 ð10Þ

wð2Þ
y ¼ �1 at y ¼ h ð11Þ

where q and q1 are the total and the core fluxes respectively
across any cross section in the wave frame. Further the velocity
and the shear stress are continuous across the interface. The

peripheral layer flux is given by q2 ¼ q� q1. It follows from
the incompressibility of the fluids that q; q1 and q2 are indepen-

dent of x. The average non-dimensional volume flow rate Q

over one period T ¼ k
c

� �
of the peristaltic wave is defined as

Q ¼ 1

T

Z T

0

Z h

0

ðuþ 1Þdydt ¼ qþ 1 ð12Þ

The stream function is obtained by applying the boundary
conditions (7) to (11) together with the boundary conditions at

the ends of the channel given by specifying Q or the pressure

difference DP across one wavelength.

2.2. Solution

Solving Eqs. (4–6) together with the boundary conditions (7)
to (11) we obtain the stream function in the core and periph-
eral layers as

wð1Þ ¼ � yþ 3yðqþ hÞF2 � lð1þ k1Þðqþ hÞy3
2F3

� �
for 0 6 y 6 h1 ð13Þ

wð2Þ ¼ � yþ ðqþ hÞ þ 9ðqþ hÞh2y� 3ðqþ hÞy3 � 6ðqþ hÞh3
6F3

� �
for h1 6 y 6 h ð14Þ

The axial pressure gradient is obtained from (4) or (6) as

dp

dx
¼ �3lðqþ hÞ

F3

þ g sin b ð15Þ
Figure 2 The variation of shape of interface for different values

of k1 with Q ¼ 0:1; a ¼ 0:7;/ ¼ 0:4 and l ¼ 0:1.
2.3. The equation of the interface

The interface is also a streamline as seen from the boundary
condition (10). For a given geometry of the wave and the time

averaged flux Q, the unknown interface h1ðxÞ is solved from

(14) using the boundary condition (10). Substituting (10) in
(14) we get the algebraic equation governing the interface
h1ðxÞ as

2½ð1þ k1Þl� 1�h41 � ½ðqþ hÞ½2lð1þ k1Þ � 3�
þ 2ð1� lð1þ k1ÞÞq1�h31 � ½h3 þ 3qh2�h1 þ 2q1h

3 ¼ 0 ð16Þ

where q and q1 are independent of x.
Please cite this article in press as: Kavitha A et al., Peristaltic transport of a Jeffrey fl
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We use the following condition to obtain q1.
h1 ¼ a at x ¼ 0 in Eq. (16), we get

q1 ¼
Qð2lð1þ k1Þ � 3Þa3 þ ð3Q� 2Þa� 2ðlð1þ k1Þ � 1Þa4

2ðð1� ð1þ k1ÞlÞa3 þ 1Þ
ð17Þ

2.4. The pumping characteristics

Integrating Eq. (15) with respect to x over one wavelength, we
get the pressure rise (drop) over one cycle of the wave as

Dp ¼ �3lðQ� 1ÞI1 � 3lI2 þ g sinb I3 ð18Þ
where

I1 ¼
Z 1

0

dx

F3

; I2 ¼
Z 1

0

h

F3

dx; I3 ¼
Z 1

0

dx

The dimensionless frictional force F at the wall across one
wavelength is given by

F ¼
Z 1

0

�h
dp

dx
dx ð19Þ
3. Results and discussions

The shape of the interface for different k1 with

Q ¼ 0:1; a ¼ 0:7;/ ¼ 0:4 and l ¼ 0:1 is shown in Fig. 2. We
observe that the variation of the interface shape gives rise to
thinner peripheral region with increasing k1. The shape of

the interface for different l with Q ¼ 0:1; a ¼ 0:5;/ ¼ 0:4
and k1 ¼ 0:1 is depicted in Fig. 3. The variation of the interface
shape for low viscosity ratios gives rise to a thicker peripheral –
layer in the dilated region.

The shape of the interface for different / with

Q ¼ 0:1; a ¼ 0:5; k1 ¼ 0:1 and l ¼ 0:1 is shown in Fig. 4. We
observe that the variation of the interface shape gives rise to

thinner peripheral region with increasing /.
The variation of pressure rise with time averaged flux is cal-

culated from Eq. (18) for different values of k1 with
/ ¼ 0:4; a ¼ 0:5; b ¼ p

6
; g ¼ 1 and l ¼ 0:1 is shown in Fig. 5.

For 0 6 Q 6 0:2 we observe that DP decreases with increase
in k1 and increases in the rest of the region.
uid in contact with a Newtonian fluid in an inclined channel, Ain Shams Eng J
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Figure 3 The variation of shape of interface for different values

of l with Q ¼ 0:1; a ¼ 0:5;/ ¼ 0:4 and k1 ¼ 0:1.

Figure 4 The variation of shape of interface for different values

of / with Q ¼ 0:1; a ¼ 0:5; l ¼ 0:1 and k1 ¼ 0:1.

Figure 5 The variation of DP with Q for different values of k1
with a ¼ 0:5;/ ¼ 0:4; b ¼ p

6
; g ¼ 1 and l ¼ 0:1.

Figure 6 The variation of DP with Q for different values of l
with a ¼ 0:5;/ ¼ 0:4;b ¼ p

6
; g ¼ 1 and k1 ¼ 0:1.

Figure 7 The variation of DP with Q for different values of b
with a ¼ 0:5;/ ¼ 0:4l ¼ 0:1; g ¼ 1 and k1 ¼ 10.
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The variation of pressure rise with time averaged flux is cal-
culated from Eq. (18) for different values l with

a ¼ 0:5;/ ¼ 0:4; b ¼ p
6
; g ¼ 1 and k1 ¼ 0:1 and is shown in

Fig. 6. We observe that DP increases with increase in l for

0 6 Q 6 0:25 and decreases in the rest of the region. Further,
the variation of pressure rise with time averaged flux is shown
in Fig. 7. It is found that as the angle of inclination b increases

the DP also increases.

4. Conclusions

In this paper, we study the peristaltic pumping of a Jeffrey
fluid in contact with a Newtonian fluid in an inclined symmet-
ric channel under the assumptions of long wavelength and low

Reynolds number. The variation of time-averaged flux with
pressure rise and the interface shape is obtained. Some of the
interesting findings in this analysis are

1. The variation of the interface shape gives rise to thinner
peripheral region with increasing the Jeffrey fluid parameter
k1.

2. The interface shape for low viscosity ratios gives rise to a
thicker peripheral – layer in the dilated region.

3. For time-averaged flux 0 6 Q 6 0:2, the pressure rise DP
decreases with increasing Jeffrey fluid parameter k1 and
increases in the rest of the region.
uid in contact with a Newtonian fluid in an inclined channel, Ain Shams Eng J
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4. The pressure rise DP increases with the increase in angle of

inclination b.
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