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KEYWORDS Abstract The influence of elasticity on peristaltic transport of Herschel-Bulkley fluid in a
tube of non-uniform cross-section is investigated. The exact solutions for flow quantities such
as velocity, stream function, pressure gradient, and volume flow rate are derived. The relation-
ship between flux and pressure difference is discussed. The effects of different pertinent param-
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Non-uniform tube;
Non-newtonian fluid;

Yield stress; eters on variation of flux along the radius of the tube are analyzed through graphs. The results
Volume flow rate; show that the yield stress and fluid behavior index has significant effect on flux variation of
Elasticity Herschel-Bulkley fluid in a non-uniform elastic tube. The effect of elastic parameters on flux

variation is analyzed. Trapping phenomenon is presented graphically to understand the physical
behavior of various parameters. In the absence of non-uniform parameter the present results are
similar to the observations of Vajravelu et al. [19].
© 2019 Beihang University. Production and hosting by Elsevier B.V. on behalf of KeAi. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Most of the earlier research works were concentrated on
peristaltic pumping of non-Newtonian fluids through chan-
nels/tubes to understand the flow behavior of physiological
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due to their elastic nature and non-uniform cross-section
which has many practical biomedical applications. This
ilsevien | Production and Hosting by Elsevier on behalf of KeAi non-uniform geometry is observed in the case of
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Nomenclature

b amplitude of the wave

¢ amplitude ratio

0 azimuthal angle

a change in the radius of the tube due to peristalsis

a’ change in the radius of the tube due to elasticity

u coefficient of viscosity

Ty shear stress

m constant whose magnitude depends on length of the
tube

g conductivity

z distance along the tube from inlet end

p density

q dimensionless flux

t,t elastic parameters

Po external pressure

p1 inlet pressure

L length of the tube

P2 outlet pressure

n power-law index

p(2) pressure of the fluid

P pressure gradient

ap radius of the tube in the absence of elasticity
Y shear rate

1 stream function

8 stream function in plug flow region
T tension of the tube wall

t time

u velocity of the fluid flow

uy velocity of the plug flow

A wave length of the peristaltic wave
0 wave number

c wave speed

To yield stress

vasdeferens which is the part of male reproductive system.
Although the geometric and kinematic properties of vasde-
ferens are not well established, it is generally observed to be
a non-uniform duct. So study of mechanism of peristalsis in
non-uniform geometry is used to understand the application
of spermatic fluid flow in vasdeferens [1].

Herschel-Bulkley fluid is considered to understand the
blood flow characteristics in small arteries. The effect of
peristalsis and elasticity on non-Newtonian fluid flow in a
tube of non-uniform cross section is examined. At low shear
rates blood obeys the Casson fluid model that takes into ac-
count the yield stress of the fluid. By taking blood as a non-
Newtonian fluid model, Scott Blair and Spanner [2] reported
that blood obeys the Casson model for moderate shear rate
flows. Further, the author observed, that, there is no differ-
ence between the Casson plots and Herschel-Bulkley plots of
the experimental data over the range where the Casson plot is
valid. It is observed that the Casson fluid model can be used
for moderate shear rates in small diameter tubes whereas the
Herschel-Bulkley fluid model can be used at still lower shear
rate flow in very narrow arteries where the yield stress is
high. Also the Herschel-Bulkley equation reduces to three
different cases such as Bingham model, Power-law and
Newtonian model for different conditions.

At first Latham [3] analyzed the motion of the fluid in the
peristaltic pump experimentally. A detailed study on peri-
staltic motion in a channel and tubes for Newtonian fluid is
made by Shapiro et al. [4] by taking long wavelengths and
low Reynolds number approximations. The different types
of Newtonian and non-Newtonian fluids are considered in
the study of peristalsis to understand the behavior of phys-
iological fluids. Rao and Mishra [5] discussed the peristaltic
motion of power-law fluid in a porous tube. The influence of
yield stress and amplitude ratio on peristaltic motion of
Herschel-Bulkley fluid in a two dimensional channel is
examined by Vajravelu et al. [6].

Further Vajravelu et al. [7] extended the study for in-
clined tube. Various researchers made theoretical and

experimental investigations to understand the nature of
peristaltic motion in different geometries under different
assumptions. Nadeem and Akbar [8] discussed the Influence
of heat transfer on a peristaltic transport of Herschel-
Bulkley fluid in a non-uniform inclined tube.

The flow geometry plays an important role in under-
standing the nature of different fluid flows. Most of the earlier
studies were concentrated on rigid channels and tubes. Some
investigations on elastic nature of the tubes reveal many
interesting behavior of arteries and small blood vessels since
most of the vascular systems are flexible in nature. It is more
adequate to consider such elastic nature of flow geometries to
analyze the flow of physiological fluids. Roach and Burton
[9] made an experimental study and presented the reason for
the shape of distensibility curves of arteries. Whirlow and
Rouleau [10] considered the viscous fluid flow in a thick
walled elastic tube to understand nature of blood flow in
arteries. Rubinow and Keller [11] discussed applications of
blood flow by considering viscous fluid flow through elastic
tube. Some earlier studies on elastic tubes were made by
various researchers (Wang and Turbell [12], Misra and Ghosh
[13], Sharma et al. [14], Pandey and Chaube [15]).

A mathematical model was proposed by Vajravelu et al.
[16] to study the Herschel-Bulkley fluid flow in an elastic
tube. Peristaltic pumping of viscous fluid in an elastic tube
was investigated by Takagi and Balmforth [17]. The New-
tonian and power-law fluids in elastic tubes are analyzed by
Sochi [18]. Vajravelu et al. [19] discussed peristaltic trans-
port of Herschel-Bulkley fluid in an elastic tube. Shen et al.
[20] studied the conductivity of arterial pulsatile blood flow
by an elastic model. Peristaltic transport of Casson fluid in
an elastic tube is examined by Vajravelu et al. [21].

Impact of stratification and Cattaneo-Christov heat flux
in the flow saturated with porous medium is studied by
Nadeem and Muhammad [22]. Muhammad et al. [23]
analyzed heat transport phenomenon in the ferro magnetic
fluid over a stretching sheet with thermal stratification.
Electro-osmotic flow of couple stress fluids in a micro
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channel propagated by peristalsis is discussed by Tripathi
et al. [24]. Tripathi et al. [25] investigated electro thermal
transport of nanofluids via peristaltic pumping in a finite
micro channel: effects of Joule heating and Helmholtz-
Smoluchowski velocity. Nadeem et al. [26] studied mathe-
matical analysis of ferromagnetic fluid embedded in a
porous medium. Thermal radiation effects on electro
osmosis modulated peristaltic transport of ionic nano liquids
in biomicrofluidics channel is examined by Prakash et al.
[27]. Three dimensional magnetohydrodynamic (MHD)
flow of nanofluid over an exponential porous stretching
sheet with convective boundary conditions is considered by
Nayak et al. [28]. Muhammad et al. [29] analyzed the ferrite
nano particles in the flow of ferromagnetic nanofluid.
Motivated by the above studies, a mathematical model is
proposed to analyze the effect of elasticity on peristaltic
transport of Herschel-Bulkley fluid in a non-uniform tube. The
exact expressions for axial velocity, stream function and vol-
ume flow rate are obtained. The influence of different pertinent
parameters on flux variation is analyzed through graphs.

2. Mathematical formulation

Figure 1 represents the peristaltic flow of incompressible
Herschel-Bulkley fluid in a non-uniform elastic tube of
length L and radius a(z). The tube walls are subjected to
infinite sinusoidal wave movement with constant speed c.

At any axial station z, the wall deformation of the tube is
given by

- 2 _
?:h:a/(z,t)zao+m2+bsin<77r(2—ct)> (1)
The constitutive equation for Herschel-Bulkley fluid is

T=u(y)" +7o for 7> 7,

v=0 for 7 < 7. (2)

The equation of motion governing the flow is

1o __ . op
%g(r Trz) - _Ev (3)
Where

A
T.= —u (5) + 7o (4)

The appropriate boundary conditions are

T,, 1s finite at 7=0 ()
=0 at 7=d/(z,t)

The non-dimensional quantities are

r ro z u ’ "
r=—, r=—, z=-, u=-, a=— ad =—,
ap a A c ap a
7 b h a'p g
t=77 ¢=;07 h=670’ = AO/.LCn, q_ﬂ'azC"
0 (6)
To T T
TO="—"7"7 "~ Trz= n = n
u(c/ay) ulc/a)” " Aulc/ao)
A .
r=h=1 —l—ﬁ-i-(ﬁSIHZTF(Z— 1)
ao

The governing equations in non-dimensional form are
given by
10
——(rr,.) =P, (7)

Where P = — 2.
The non-dimensional boundary conditions are

7, is finite at »=0, (8)
u=0 at r=h=d'(z,1).

3. Solution of the problem

Solving Eq. (7) using the boundary condition (8), we get
the velocity field as

External
pressure p,

3

0 Outlet
h T a'+a pressure p,
Inlet
pressure p, |y | Plug flow >z >
R Plug flow

Figure 1

c

Physical model.
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(@ —r)™ = (r— ro)%H) for ro <r <h.

©)
ou

using the boundary condition §*=0 at » = rg, The upper limit
of the plug flow region is obtained as ry = 27¢/P. Also using
the condition 7,, =7, atr = d’, we obtain P = 27, /a’. Hence

DT for0<r<1 (10)
.

using the relation Eq. (10) and taking »=r in Eq. (9), we
get the plug flow velocity as

1

P

2%<;+1>

Integrating Eqs. (9) and (11) and using the conditions, u =
%%—‘f, ¥,=0at r=0, and ¥ =y, at r = ro, we get the
stream function as

u, =

((a’—ro)%“) for 0 <r<r. (11)

)%+2

P . (r—ro <2r—|—r%+ro>
" 1

T

and stream function for plug flow region as,

1
F},a/;+l

Yy =——~
2k<ﬁ+1>

The volume flux ¢ through any cross-section is given by

Ly r
[(1 — 1) } 5 for 0 <r <ry. (13)

ro a

q= 2/u,,rdr+2/u rdr=FPra">. (14)
0 0
L 2(1-7) <r+‘;+2)
where F = =" 11—

oh (%H)

()

The above Eq. (14) gives the volume flux of Herschel-
Bulkley fluid for a non-uniform tube with peristalsis in the
absence of elasticity.

4. Theoretical determination of flux
application to blood flow through artery

In this section, the elasticity of the tube wall is taken in to
consideration along with peristalsis to determine the varia-
tion of flux. Consider the peristaltic pumping of an incom-
pressible Herschel-Bulkley fluid through a non-uniform
elastic tube of radius a(z) and length L as shown in Figure 1.
Here a(z) =d' + a” is the varying tube radius which con-
sisting both peristalsis and elasticity effects. To calculate the
flux of Herschel-Bulkley fluid through an elastic tube, we
use the method of Rubinow and Keller [11]. Let p; and p»
represents the pressure of fluid at the entrance and exit
respectively and py is the external pressure. Here the inlet
pressure p; is assumed to be greater than outlet pressure p;.
As a result of inside and outside pressure difference, the
tube wall may expand or contract. Due to this elastic
property of the tube wall there exist changes in the shape of
cross-section of tube. Hence, the conductivity ¢ of the tube
at z depends on the pressure difference. Therefore the con-
ductivity o=0(p(z) — po) is a function of (p(z) — po).
Also, we assume that the flux ¢ and the pressure gradient are
related by the expression

ro <r<h. (12)

g=0(p—po)P". (15)

From Egs. (14) and (15), we have,

o(p—po)=Fa"". (16)

By taking elastic property into consideration in addition
to the peristaltic movement, the above Eq. (16) can be
written as

o(p—po)=F(d +d")*. (17)

here @’ and a” are the radius of the tube with peristalsis and
elasticity respectively. Since the flow is of Poiseuille type,
the radiusa”is a function of (p —py) at each cross-section.
The tube wall deformation due to peristaltic wave is

A
diz)=1+ ? + ¢sin2w(z —1).
0

Integrating Eq. (15) with respect to z from the z=0 and
applying inlet condition p(0) = p;, we get
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fz= / (o())'dp'. (18)

p(z)—po

here p’ = p(z) — po. The above Eq. (18) determines p(z)
implicitly in terms of ¢ and z. To find O we set z=1 and

P1—Po
N
g =F" (a +a")y""! L%Z +0 (441”3 — 154" +20a"

P2—Ppo

1
— IO—I—W)]da”

p(1)=p, in Eq. (18), which yields (25)
Rewriting Eq. (25), we have,
P1—Po %

_ / man+1 | b "3 "2 " 1 "

q=F (@ +4d") —5+ | 4d"” — 154" +20a" — 10 +— | |da (26)
a a
P2—Po

., e o The Eq. (206) is difficult to evaluate and the fluid behavior
9= / (o(p))"dp (19) " index n takes the different values for both shear thinning and
p(1)=po shear thickening cases. The experimental works presented in

using Egs. (17) and (19), we have

P1—Po
qﬂ o FV!

p2—po

(a/+a//)3n+ldpl (20)

Eq. (20) can be solved if we know the form of the
function a”(p — po). If the stress or tension T(a”) in the
tube wall is known as a function of a”, then a”(p’) can be
found using the equilibrium condition (Rubinow and Keller

[11]).

T(d")/a"=p — po. (21)

4.1. Method of Rubinow and Keller

Roach and Burton [9] determined the static pressure —
volume relation experimentally by considering 4 cm long
piece of the human external artery, and converted into a
tension verses length curve. Using least squares method
Rubinow and Keller [11], we have

T(d")=t(d"—1)+n(d —1)". (22)

where #; =13 and £, = 300, when we substitute Eq. (22) in
Eq. (21), we get

1
P/:P—POZF[H(“N— 1)+ 6(a" — 1)5]- (23)

t 1
dp' = {—‘2 1 (4a”3 — 154" +20d" — 10 + —2>] da".
a a
(24)

Substituting Eq. (24) in Eq. (20), we get the flux as

Table 1 on shear thinning fluids like apple sauce and banana
puree at different temperatures shows that, in particular the
power-law index value is taken as n=1/3 (Cheremisinoff

[30]).
Solving Eq. (26) with n=1/3 we get,

q=Flg(d") —g(d")]’ (27)
where

gla)=1(da"+2d'loga"— a’ /a")
24" /3+d" /5(8d'—15) +d"* /4(4a” ~30a' +20)

g | Fa"7/3(—150" +40d'~10) +a" /2(20d” ~20d) | 1

2
a

!/
+d" (- 104" + 1) ——+2d'loga"
a

5. Results and discussion

Peristaltic transport of Herschel-Bulkley fluid in a non-
uniform elastic tube is investigated in the present paper. The

Table 1  Values of m and n for banana puree and apple sauce at
different temperatures.

Fluid Temperature Category m n
Banana puree 168 Shear thinning 68.9 0.46

120 Shear thinning 41.5 0.48
Apple sauce 77 Shear thinning 220 0.28
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influence of various parameters such as amplitude ratio ¢,
yield stress 7y, power-law index #, elastic parameters #; and
t, inlet and outlet pressure on flux variation along non-
uniform tube radius using Rubinow and Keller method is
analyzed through graphs.

The variation of flux along non-uniform tube radius for
different values of yield stress 7, amplitude ratio ¢, power-
law index n, inlet pressure and outlet pressure are shown in
Figures 2—7 respectively. It is noticed from Figure 2 that the
increasing values of yield stress parameter has significant
effect on volume flow rate of Herschel-Bulkley fluid. That is
the flux decreases as yield stress increases because the
increasing yield stress increases the resistance to flow hence
the velocity of the fluid gets reduced which yields to
decrease in the flux. The influence of amplitude ratio on flux
variation is illustrated in Figure 3. It is clear that the flux
enhances for increasing values of ¢. That is increasing
amplitude ratio enhances the maximum displacement of the
fluid particles. The flux variation for different values of fluid
behavior index »n for both shear thinning and shear

1| —=—1,=0.5
|| —*—17,=0.6
—a—1,=0.7

—_ = = e e
S N B OV 0
PR B | |

Fluxx10"
)
(o)
1

S o o o ¢
[T NS TN N )
PR TR N R B

T T T T

2.6 2.7 2.8 2.9 3.0
Radius

N
W

Figure 2 Flux vs. radius for different values of yield stress 7o with
t1 =13, =300, z=0.1, ¢ = 0.6, ap = 0.01, m = 0.0005, A=
1, n= 0.333, = 0.0

1.8
{[—=—¢=04

1.6q| —e—¢=05
{| —a—¢=06

2.5 2.6 2.7 2.8 2.9 3.0
Radius
Figure 3  Flux vs. radius for different values of amplitude ratio ¢
with #; =13, =300, z = 0.1, 7= 0.5, ap= 0.01,
0.0005, A= 1, n= 0.333, t= 0.01.

m=

o]
W

%)
T

—
w
|

Fluxx10"

104

2.5 2.6 2.7 2.8 2.9 3.0
Radius
Figure 4 Flux vs. radius for different values of power-
law index n with t; =13, 1, =300, z=0.1, $=0.6, ay=0.01, m=
0.0005, A=1, 79=0.5, t=0.01 (for shear thinning fluid).

200+

1504

,_.
IS
T

Fluxx10"

50

2.5 2.6 2.7 2.8 2.9 3.0
Radius
Figure 5  Flux vs. radius for different values of power-law index n with

t =13, 15=300,z = 0.1, 70 = 0.5, ap = 0.01, m = 0.0005, A =
1, ¢ = 0.6, t= 0.01 (for shear thickening fluid).

7 - —#— p,p=-10
| —o—p,—p,=0
6| 4 p,~p;~10

Fluxx10’
(98]
1

R
e

T T T r T
0.2 0.4 0.6 0.8 1.0

p 1_p0
Figure 6  Flux vs. inlet pressure for different values of outlet pres-

sure with 1 =13, =300, z=0.1, ¢ = 0.6,
0.0005, A= 1, 7o= 0.1, n= 0.333, t= 0.01.

ayg = 0.01, m=
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Fluxx107
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1 -= p—p,=-10
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Figure 7  Flux vs. outlet pressure for different values of inlet pres-

sure with 1, =13, 1,=300, z=0.1, ¢ = 0.6, ap = 0.01, m=
0.0005, A= 1, 7= 0.1, n= 0.333, ¢= 0.0L.

thickening fluids are shown in Figures 4 and 5 respectively.
It is found from Figure 4 that increasing n for shear thinning
fluids enhances the flux. In shear thinning fluids viscosity
decreases with increasing shear rate, hence the resistance to
flow decreases. Therefore the fluid velocity increases which
increases the flux. The opposite trend is observed for shear
thickening case in Figure 5.

Figure 6 represents the variation in flux along inlet
pressure and external pressure difference p; —po for
different values of outlet and external pressure difference
P2 — po. It is observed that the flux increases with increasing
values of p, — py due to non-uniform pressure difference at
inlet and outlet pressure. The opposite behavior is observed
in the case of inlet pressure and external pressure difference
p1— po- That is from Figure 7 it is noticed that the flux
reduces with increasing values of p; — po for fixed values
outlet and external pressure difference p, — pg. The flux
variation along non-uniform elastic tube for different values
of elastic parameters #; and ¢, are presented in Figures 8 and
9 respectively. The results reveal that the flux enhances with
increasing values of elastic parameters ¢, and #. That is
increasing elastic parameter increases the flexible nature of
the tube. So the cross-section of the tube increases which
enhances the flux.

Trapping is another interesting phenomenon observed in
peristalsis mechanism. The effects of different pertinent
parameters power-law index n, yield stress 7, amplitude
ratio ¢ and elastic radius parameter @” on the size of trapped
bolus are presented in Figures 10—14 respectively. Figures
10 and 11 represent the effect of power-law index n on
bolus size for both shear thinning and thickening fluids. It is
noticed that the bolus size decreases with increasing values
of fluid behavior index.

1.8

1.6+

1.4+

1.2

1.0+

2.5 2.6 2.7 2.8 2.9 3.0
Radius

Figure 8  Flux vs. radius for different values of elastic parameter ¢,
with 7 =300, z=0.1, ¢=0.6, ¢y = 0.01, m = 0.0005, A= 1,
0= 0.1, n=0.333, t= 0.01.

Figure 12 illustrates that the size of the trapped bolus
reduces with increasing values of yield stress parameter 7.
The influence of amplitude ratio ¢ on the bolus is illustrated
in Figure 13. It is clear that the bolus size enhances with
increasing values of ¢. The effect of elasticity parameter on
trapping is observed from Figure 14 and it is clear that the
bolus size enhances as a” increases. Figure 15 represents the
variation in the flux for different values of yield stress 7¢ in
the absence of non-uniform parameter. It is observed that if
m = 0, the present results are similar to the observations of
Vajravelu et al. [19].

8 —=—1,=300

7

Fluxx10"
-
1 1

25 2.6 2.7 2.8 2.9 3.0
Radius
Figure 9  Flux vs. radius for different values of elastic parameter #;
with 4 =13, z=0.1, $=0.6, a9 = 0.01, m= 0.0005, A= 1,
o= 0.1, n= 0.333, += 0.01.
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Figure 10  Streamlines with m =0.005, 1=0.1, ay=1, ¢=0.2, 0=0.5, 7=0.1, ¢"=0.3, r=0.01 and (i) n =10 (ii) n=20 (iii) n=30
(for shear thickening fluids).

NI N\ N\

25 25

20 20 20

15 15 15

10 10 10

05 s L :
08 10 12 14 16 08 10 12 14 16 0.8 1.0 12 1.4 1.6

Figure 11  Streamlines with m =0.005, 1=0.1, ay=1, ¢=0.2, 0=0.5, 7=0.1, ¢"=0.3, 1=0.01 and (i) n=0.2 (ii)) n=0.3
(iii) n=0.4 (for shear thinning fluids).
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Figure 12 Streamlines with m =0.005, 21=0.1, ay=1, ¢=0.2, 0=0.5, n=0.333, a"=0.3, 1=0.01 and (i) 7o = 0.3 (i) 7o = 0.4
(iii) 7o = 0.5.
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Figure 13 Streamlines with m =0.005, 2=0.1, ay=1, n=0.333, 0=0.5, 7=0.1, ¢"=0.3, t=0.01 and (i) ¢ = 0.3 (ii) ¢ =
0.4 (i) ¢ = 0.5.
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Figure 14 Streamlines with m =0.005, 1=0.1, ap=1, n=0.333, 0=0.5, 79=0.1, ¢=0.2, +=0.01 and (i) «"=0.5 (ii) " =
0.6 (iii) «” = 0.7.

6. Conclusions

1.8
The present study deals with the peristaltic transport of a
1.5 Herschel-Bulkley fluid in a non-uniform elastic tube. The
analytic expressions for axial velocity, volume flow rate and
1.2+ stream function are presented. The effects of various phys-
ical parameters on volume flow rate are calculated by
é 0.9 Rubinow and Keller method [11]. The trapping phenome-
g non is explained graphically. The important observations are
= 0.6 summarized as follows.
0.3- i) The flux as a function of non-uniform tube radius
increases for increasing values of amplitude ratio ¢
0.0 and it decreases for yield stress parameter 7
. : , : . : . : , ii) The flux of Herschel-Bulkley fluid in a non-uniform
2.5 2.6 2.7 2.8 2.9 3.0 tube with peristalsis and elasticity decreases as fluid
Radius behavior indexn (for both shear thinning(n < 1) and
Figure 15  Flux vs. radius for different values of yield stress 7 in shear thickening(n > 1)) increases.

the absence of non-uniform parameter (m =0) with 1, =13, 5= 300,
z=0.1, $=0.6, n=0.333, 1=0.01, d' =1+ ¢sin2w(z —1) (Vajra-
velu at al [19]).

iii) The flux as a function of inlet pressure increases as outlet
pressure increases but the opposite behavior is observed
for the case of increasing values of inlet pressure.
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iv) The variation in flux enhances with growing values of
elastic parameters #; and #,.

v) The size of the trapped bolus increases for increasing
values of ¢ anda” and it decreases as g andn
increases.
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