PAPER • OPEN ACCESS

Planar graph characterization of NDSS graphs

To cite this article: M Yamuna and A Elakkiya 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042129

View the article online for updates and enhancements.

Related content

Planar graph characterization of Uniquely colorable graphs M Yamuna and A Elakkiya

- Non - domination subdivision stable graphs
M Yamuna and A Elakkiya
Comparing in vivo biodistribution with radiolabeling and franz cells permeation assay to validate the efficacy of both methodologies in the evaluation of nanoemulsions: a safety approach C S Cerqueira-Coutinho, V E B De Campo, A L Rossi et al.

Planar graph characterization of NDSS graphs

M Yamuna and A Elakkiya
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, India.
E-mail: myamuna@vit.ac.in

Abstract

Planar graph characterization is always of interest due to its complexity in characterization. In this paper, we obtain a necessary and sufficient condition for a graph to be NDSS and hence characterize the planarity and outer - planarity of its complement $\overline{\mathrm{G}}$.

1. Introduction

Dominating sets has been used in graph theory for characterizing graphs based on various properties. In [1], Magda Dettlaff, Joanna Raczek and Jerzy Topp have proved that the decision problem of the domination subdivision number is NP - complete even for bipartite graphs. In [2], B. Sharada et.al have provided the problem of domination subdivision number of grid graphs $\mathrm{P}_{\mathrm{m}, \mathrm{n}}$ and determine the domination subdivision numbers of grid graphs $P_{m, n}$ for $m=2,3$ and $n \geq 2$.
Characterizing planar graphs based on graph properties is a general problem discussed by different authors. In [3], M. Yamuna et al have provided a characterization of planar graphs when G and its complement are γ - stable. In [4], Val Pinciu showed that for outer planar graphs where all bounded regions are 3 - cycles, the problem of identifying the connected domination number is equal to an art gallery problem, which is identified to be NP - hard. In [5], By Joseph Battle, Frank Harary and Yukihiro Kodama have proved that every planar graph with nine vertices has a non - planar complement. In [6], Jin Akiyama and Frank Harary have characterized all graphs for which G and its complement are outer planar. In [7], Enciso and Dutton have classified planar graph based on $\overline{\mathbf{G}}$ and also they have proved the following result.
R1. If G is a planar graph, then $\gamma(\overline{\mathbf{G}}) \leq 4$.
R2. If u is an up vertex for a graph in G, then u must be included in every possible $\gamma-$ set [8].

2. Terminology

We consider only simple connected undirected graphs $G=(V, E)$ with n vertices and medges. The open neighbourhood of $v \in V(G)$ is defined by $N(v)=\{u \in V(G) \mid u v \in E(G)\}$, while its closed neighborhood is $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \cup\{\mathrm{v}\}$. H is a sub graph of G , if $\mathrm{V}(\mathrm{H}) \subseteq \mathrm{V}(\mathrm{G})$ and $\mathrm{uv} \in \mathrm{E}$ (H) implies $u v \in E(G)$. If H satisfies the added property that for every $u v \in E(H)$ if and only if $u v \in E$ (G), then H is said to be an induced sub graph of G and is denoted by $\left\langle H_{i}\right\rangle$. Two graphs are homeomorphic if one can be obtained from the other by the creation of edges in series or by the merging the edges in series. In graph theory, K_{5} and $\mathrm{K}_{3,3}$ are called Kuratowski's graph. A path is a trail in which all vertices (except perhaps the first and last ones) are distinct, P_{n} denotes the path with n vertices. A cycle is a circuit in which no vertex except the first (which is also the last) appears more than once. C_{n} is a cycle with n vertices. K_{n} is a complete graph with n vertices. A star S_{n} is the
complete bipartite graph $K_{1, n}$: a tree with one internal node and n leaves (but, no internal nodes and n +1 leaves when $n \leq 1$). The complement of a graph G is a graph $\overline{\mathbf{G}}$ on the same vertices \ni two distinct vertices of $\overline{\mathbf{G}}$ are adjacent if and only if they are not adjacent in G.
An elementary contraction of a graph G is obtained by merging two adjacent vertices u and v, i.e., by the removal of two vertices u and v and the addition of a new vertex x adjacent to those vertices to which u or v was adjacent. A graph G is contractible if it can be generated from G by a chain of elementary contractions [9]. For properties related to graph theory we refer to Harary[9].
A set of vertices D in G is said to be a dominating set if for every vertex of $\mathrm{V}-\mathrm{D}$ is \perp to some vertex of D. The smallest possible cardinality of any dominating set D of G is called a minimum dominating set - abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by $\gamma(G)$.The private neighbourhood of $v \in D$ is defined by pn $[v, D]=N(v)-N(D-$ $\{\mathrm{v}\}$). A vertex v is said to be selfish in the MDS D , if v is required only to dominate itself. A vertex of degree one is called pendant vertex and its neighbor is called a support vertex. If there is a $\gamma-$ set of G containing v, the v is said to be good. If v does not belongs to any of the $\gamma-$ set of G, then v is said to be a bad vertex. A vertex v is known to be a down vertex if $\gamma(\mathrm{G}-\mathrm{u})<\gamma(\mathrm{G})$. A vertex v is known to be a level vertex if $\gamma(\mathrm{G}-\mathrm{u})=\gamma(\mathrm{G})$. A vertex v is said to be a up vertex if $\gamma(\mathrm{G}-\mathrm{u})>\gamma(\mathrm{G})$. For properties related to domination we refer Haynes et al [8].
A subdivision of a graph G is a graph obtained from the subdivision of edges in G. The subdivision of some edge e with end vertices $\{u, v\}$ generate a graph with one new vertex w, and with an edge set replacing e by two new edges, $\{\mathrm{u}, \mathrm{w}\}$ and $\{\mathrm{w}, \mathrm{v}\}$ and it is denoted by $\mathrm{G}_{\mathrm{sd}} \mathrm{uv}$. Let w be the vertex introduced by subdividing $u v$. We shall denote this by $G_{s d} u v=w$. If G is any graph and D is a $\gamma-$ set for G, then $D \cup\{w\}$ is a $\gamma-$ set for $G_{s d} u v$ implies $\gamma\left(G_{s d} u v\right) \geq \gamma(G), \forall u, v \in V(G), u \perp v . A$ graph G is defined as DSS, if $\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=\gamma(\mathrm{G}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp \mathrm{v}[10$]. In [10], the following result is proved.
R3. A graph G is domination subdivision stable if and only if $\forall u, v \in V(G)$, either \exists a $\gamma-$ set containing u and v or $\exists \gamma-$ set D such that

1. $\mathrm{pn}(\mathrm{u}, \mathrm{D})=\{\mathrm{v}\}$ or
2. v is $2-$ dominated.

In this paper we consider graphs for which $\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=\gamma(\mathrm{G})+1$.

3. Results and Discussions

In this section, we provide a necessary and sufficient condition for a graph to be NDSS and characterize the planarity and outer - planarity of NDSS graph.

3.1 Non - domination subdivision stable graph

Theorem 1

A graph G is NDSS if and only if

- every γ - set of G is independent.
- G has no two dominated vertices.

Proof

Assume that G is NDSS

- If G has a $\gamma-\operatorname{set} D \ni u, v \in D, u \perp v$, then D itself is a $\gamma-$ set for $G_{s d} u v$, a contradiction as G is NDSS, implies every $\gamma-$ set of G is independent.
- If $u \in D \ni v$ is 2 - dominated, u adjacent to v, then D itself is a $\gamma-$ set for $G_{s d} u v$, a contradiction as G is NDSS, implies G has no 2 - dominated vertices.
Conversely, assume that the conditions of the theorem are satisfied. If G is not NDSS, then by R3 $\exists \mathrm{a} \gamma$ - set D э
- either $u, v \in D$.
- $\mathrm{pn}(\mathrm{u}, \mathrm{D})=\{\mathrm{v}\}$
- $\quad \mathrm{v}$ is $2-$ dominated.
a contradiction to our assumption, implies G is NDSS.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042129 doi:10.1088/1757-899X/263/4/042129

Observations

O1. If G is a NDSS graph, then any $v \in V(G)$ is not selfish.
Proof
If possible, assume that \exists one $\mathrm{v} \in \mathrm{V}(\mathrm{G}) \ni \mathrm{v}$ is selfish. Let D be any $\gamma-$ set for G . $\mathrm{D}^{\prime}=\mathrm{D}-\{\mathrm{v}\} \cup\{\mathrm{w}$ \} is a $\gamma-$ set for $\mathrm{G}_{\mathrm{sd}} u v$, implies G is not NDSS, a contradiction.
O2. If G is a NDSS graph, then G has no down vertices.
Proof
If possible, assume that \exists one $v \in V(G)$, v a down vertex. We know that if v is a down vertex, then $\exists \mathrm{a}$ $\gamma-$ set D for G including v such that v is selfish, a contradiction, (by O 1) implies G has no down vertices.
O3. If G is a NDSS graph, then a pendant vertex is always a level vertex.

Proof

Since $\mathrm{pn}(\mathrm{u}, \mathrm{D}) \geq 2$ for any NDSS graph, $\operatorname{deg}(\mathrm{v})=1$, there exist no $\gamma-$ set containing v . Also an up vertex is included in every $\gamma-$ set, [R2] implies v is not an up vertex. By (O 2) v is always a level vertex.
O4. If G is a NDSS graph, then $\langle p n(u, D)\rangle$ is not complete for every $u \in D, G \neq K_{n}$. Proof
If possible assume that there exist one $u \in D$, such that $\langle p n(u, D)\rangle$ is a clique. Let $p n(u, D)=\left\{u_{1}\right.$, $\left.u_{2}, \ldots, u_{k}\right\}$. Since $\langle p n(u, D)\rangle$ is a clique, $D-\{u\} \cup\left\{u_{i}\right\}, i=1,2, \ldots, k$ is a $\gamma-$ set for $G \ni$ for any v $\in N\left(u_{i}\right)$ is 2 - dominated, a contradiction as G is NDSS.
O5. If G is a NDSS graph, then \exists no $v_{i} \in N(u, D)$ adjacent to every $v_{j} \in N(u, D), i \neq j, \operatorname{deg}\left(v_{j}\right) \geq 2$. Proof
Let $u \in D$. Let $N(u)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. If \exists one $v_{i} \ni v_{i}$ adjacent to every $v_{j}, i \neq j, j=1,2, \ldots k$ then $D-$ $\{u\} \cup\left\{v_{j}\right\}$ is a $\gamma-$ set for G, эevery $w_{i} \in N\left(u_{j}\right)$ is 2 - dominated, a contradiction.
O6. If G is a NDSS graph, then $\mathrm{pn}(\mathrm{u}, \mathrm{D}) \geq 2$.

Proof

If $p n(u, D)=v$ for some $u \in D$, then $D^{\prime}=D-\{u\} \cup\{w\}$ is a $\gamma-$ set for $G \ni D^{\prime}|=|D|$, a contradiction as G is NDSS, implies pn ($u, D) \geq 2$.

3. 2. Planarity

We recollect the following theorems on planar graphs.
R4. A graph is planar if and only if it does not contain either K_{5} or $K_{3,3}$ or any graph homeomorphic to either of them.
R5. A graph G is planar if and only if it does not have a subgraph contractible to Kuratowski's graph[9].
R6. A necessary and sufficient condition for a graph G to be outer planar if it has no subgraphhomeomorphic to K_{4} or $K_{2,3}$ except $K_{4}-x$ [9].
We shall prove that a NDSS graph is planar, non - planar, or non - outer planar using R4, R5 and R6.
If $\gamma(\mathrm{G})=1$, then complement of G is disconnected and hence complement of G is not a NDSS graph. Also by R1, if G is a planar graph, then $\gamma(\overline{\mathbf{G}}) \leq 4$. So in the remaining part of this section we limit our discussion to cases where $1<\gamma(\mathrm{G}) \leq 4,1<\gamma(\overline{\mathbf{G}}) \leq 4$. In all graphs, in the remaining part of the discussion,
i. ----------- represents the newly added edges in the current discussion.
ii. When we apply edge contraction, a vertex receives a label of the contracted vertices. For example y: $\mathrm{bb}_{1} \mathrm{x}_{1} \mathrm{x}_{2}$ means that the contracted edges are $\mathrm{bb}_{1}, \mathrm{~b}_{1} \mathrm{x}_{1}, \mathrm{x}_{1} \mathrm{X}_{2}$ and is assigned the new label as y .

Theorem 2

If G is a NDSS graph, then $\langle V-D\rangle$ is not complete, where D is a $\gamma-$ set for G.

Proof

Let $D=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a γ - set for G. Let $N\left(u_{1}\right)=\left\{a_{1}, a_{2}, \ldots, \mathbf{a}_{\mathbf{m}_{1}}\right\}, N\left(u_{2}\right)=\left\{b_{1}\right.$, $\left.\mathrm{b} 2, \ldots, \mathbf{b}_{\mathbf{m}_{2}}\right\}, \ldots, N\left(\mathrm{u}_{\mathrm{k}}\right)=\left\{\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathbf{k}_{\mathbf{m}_{k}}\right\}$. Since G is NDSS $\left|\mathrm{m}_{\mathrm{i}}\right| \geq 2$, for all $\mathrm{i}=1,2, \ldots$, k. If $\langle\mathrm{V}-$ $D\rangle$ is complete, then $D^{\prime}=\left\{a_{1}, b_{1}, c_{1}, d_{1}\right\}$ is $a \gamma-$ set for $G,\left(a_{1} \operatorname{dominates} N\left(u_{1}\right), N\left(u_{2}\right), \ldots, N\left(u_{k}\right.\right.$), b_{1} dominates $\mathrm{u}_{2}, \mathrm{c}_{1}$ dominates $\mathrm{u}_{3}, \mathrm{~d}_{1}$ dominates u_{4}) such that $\left\langle\mathrm{D}^{\prime}\right\rangle$ is complete, a contradiction as G is NDSS.

Theorem 3

Let G be a NDSS graph. Let $\gamma(G)=3$. Let $D=\left\{u_{1}, u_{2}, u_{3}\right\}$ be a $\gamma-$ set for G. Let $X_{1}=p n\left(u_{1}, D\right)$ $=\left\{a_{1}, a_{2}, \ldots, \mathbf{a}_{\mathbf{k}_{1}}\right\}, X_{2}=\operatorname{pn}\left(u_{2}, D\right)=\left\{b_{1}, b_{2}, \ldots, \mathbf{b}_{\mathbf{k}_{2}}\right\}, X_{3}=\operatorname{pn}\left(u_{3}, D\right)=\left\{c_{1}, c_{2}, \ldots, \mathbf{c}_{\mathbf{k}_{3}}\right\}$. Then the following statements are true together

1. X_{1} is collectively not adjacent to at least k_{1} vertices in X_{2}, X_{3}
2. X_{2} is collectively not adjacent to at least k_{2} vertices in X_{1}, X_{3}.
3. X_{3} is collectively not adjacent to at least k_{3} vertices in X_{1}, X_{2}.

Proof

Since G is NDSS, $\left|k_{i}\right| \geq 2, i=1,2,3$. If k_{1} vertices in X_{1} are collectively not adjacent to at least k_{1} vertices in X_{2}, then we can find k_{1} non adjacent pairs $\left(a_{i}, b_{j}\right), i=1$ to $k_{1}, j=1$ to k_{2}. If this is not true then there exist at least one a_{i} adjacent to every b_{j}. Similarly if k_{1} vertices in X_{1} are not collectively not adjacent to at least k_{1} vertices in X_{3}, then there exist at least one a_{i} that is adjacent to every c_{k}, that is there exist one $\mathbf{a}_{\mathbf{i}_{1}}$ adjacent to every bj and some $\mathbf{a}_{\mathbf{i}_{\mathbf{2}}}$ adjacent to every \mathbf{c}_{k} ($\mathbf{a}_{\mathbf{i}_{\mathbf{1}}}$ may be equal to $\mathbf{a}_{\mathbf{i}_{\mathbf{2}}}$). Similarly there exist one $\mathbf{b}_{\mathbf{j}_{1}}$ adjacent to every a_{i} and some $\mathbf{b}_{\mathbf{j}_{2}}$ adjacent to every $c_{k}\left(\mathbf{b}_{\mathbf{j}_{1}}\right.$ may be equal to $\mathbf{b}_{\mathbf{j}_{2}}$).
Similarly there exist one $\mathbf{c}_{\mathbf{k}_{1}}$ adjacent to every a_{i} and some $\mathbf{c}_{\mathbf{k}_{2}}$ adjacent to every b_{j} ($\mathbf{c}_{\mathbf{k}_{1}}$ may be equal to $\mathbf{c}_{\mathbf{k}_{\mathbf{2}}}$). Then $\left\{\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{b}_{\mathbf{j}_{\mathbf{2}}}, \mathbf{c}_{\mathbf{k}_{\mathbf{1}}}\right\}$ is a γ - set for G such that $\left\{\mathbf{a}_{\mathbf{i}_{\mathbf{1}}}, \mathbf{b}_{\mathbf{j}_{\mathbf{2}}}, \mathbf{c}_{\mathbf{k}_{\mathbf{1}}}\right\}$ is not independent, a contradiction as G is NDSS.

Remark

1. Generalizing Theorem 3 if $D=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, X_{1}=p n\left(u_{1}, D\right)=\left\{a_{1}, a_{2}, \ldots, \mathbf{a}_{\mathbf{k}_{1}}\right\}, X_{2}=p n\left(u_{2}\right.$, $D)=\left\{b_{1}, b_{2}, \ldots, \mathbf{b}_{\mathbf{k}_{2}}\right\}, \ldots, X_{m}=p n\left(u_{m}, D\right)=\left\{m_{1}, m_{2}, \ldots, \mathbf{m}_{\mathbf{k}_{\mathrm{m}}}\right\}$, then the following statements are true together
X_{1} is collectively not adjacent to at least k_{1} vertices in $X_{2}, X_{3}, \ldots, X_{m}$.
X_{2} is collectively not adjacent to at least k_{2} vertices in $X_{1}, X_{3}, \ldots, X_{m}$.

-

X_{m} is collectively not adjacent to at least k_{m} vertices in $X_{1}, X_{2}, \ldots, . X_{m-1}$.
2. For every $i_{1}=1$ to $k_{1}, i_{2}=1$ to $k_{2}, \ldots ., i_{m}=1$ to k_{m}, there exist at least one pair $\left(\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{b}_{\mathbf{i}_{2}}\right),\left(\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{c}_{\mathbf{i}_{3}}\right)$, $\ldots,\left(\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{m}_{\mathbf{i}_{\mathbf{m}}}\right)$ of vertices that are not adjacent. This means that every $\mathbf{a}_{\mathbf{i}_{\mathbf{1}}}$ not adjacent to at least one $\mathbf{b}_{\mathbf{i}_{2}}, \mathbf{c}_{\mathbf{i}_{3}}, \ldots, \mathbf{m}_{\mathbf{i}_{\mathbf{m}}}$.

Theorem 4

If G is a NDSS graph such that $\gamma(G)=4$, then $\overline{\mathbf{G}}$ is non planar.

Proof

Let $D=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be $a \gamma-$ set for G. Let $p n\left(u_{1}, D\right)=\left\{a_{1}, a_{2}, \ldots, \mathbf{a}_{\mathbf{k}_{1}}\right\}$, pn $\left(u_{2}, D\right)=\left\{b_{1}, b_{2}, \ldots\right.$, $\left.\mathbf{b}_{\mathbf{k}_{2}}\right\}$, pn $\left(u_{3}, D\right)=\left\{c_{1}, c_{2}, \ldots, \mathbf{c}_{\mathbf{k}_{3}}\right\}, \ldots$, pn $\left(u_{4}, D\right)=\left\{d_{1}, d_{2}, \ldots, \mathbf{d}_{\mathbf{k}_{4}}\right\}$. Since G is NDSS,$\left|k_{i}\right| \geq 2$ for all $i=1,2,3,4$. Since $\langle D\rangle$ is independent in $G,\langle D\rangle$ is complete in $\overline{\mathbf{G}}$.

G
Figure 1.

Figure 2.
By Theorem 3, we know that there exist at least 2 vertices in $\mathrm{V}-\mathrm{D}$ which are not adjacent. Arbitrarily let us assume that some $a_{i}, i=1,2, \ldots, k_{1}$ not adjacent to some $b_{j}, j=1,2, \ldots, k_{2}$. Also a_{i} is adjacent to $\left\{\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$.
Since in $G a_{i}$ not adjacent to b_{j} and b_{j} not adjacent to u_{1}, in $\overline{\mathbf{G}}$ there exist an edge from a_{i} to b_{j} and b_{j} to u_{1}. Contracting edge $a_{i} b_{j}, a_{i} b_{j}$ is adjacent to $u_{1} .\left\langle u_{1}, u_{2}, u_{3}, u_{4}, u_{5}: a_{i} b_{j}\right\rangle$ is K_{5}, implies $\overline{\mathbf{G}}$ is non planar.

Figure 3.

Theorem 5

Let G be a NDSS graph such that $\gamma(\mathrm{G})=3$, then $\overline{\mathbf{G}}$ is non - planar.
Proof
Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ be a γ - set for G. Let $\mathrm{pn}\left(\mathrm{u}_{1}, \mathrm{D}\right)=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}_{1}}\right\}$, $\mathrm{pn}\left(\mathrm{u}_{2}, \mathrm{D}\right)=$ $\left\{b_{1}, b_{2}, \ldots, \mathbf{b}_{\mathbf{k}_{2}}\right\}$, pn $\left(u_{3}, D\right)=\left\{c_{1}, c_{2}, \ldots, \mathbf{c}_{\mathbf{k}_{3}}\right\}$. Since G is NDSS, $\left|k_{i}\right| \geq 2$ for all $i=1,2,3$. Since $\langle D\rangle$ is independent in $\mathrm{G},\langle\mathrm{D}\rangle$ is complete in $\overline{\mathbf{G}}$.

Figure4.

Figure 5.

Since G is NDSS by Theorem 2, $\langle\mathrm{V}-\mathrm{D}\rangle$ is not complete, implies \exists at least two vertices in V - D which are not adjacent. Arbitrarily let us assume that some a_{i} not adjacent to some b_{j}. Since in G, a_{i} not adjacent to b_{j} they are \perp in \bar{G}. Also $b_{j} \perp u_{1}$. We know that a_{i} is adjacent to u_{2} and b_{j} is adjacent to u_{3}. Contracting edge $\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$ adjacent to $\mathrm{u}_{1} \cdot\left\langle\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}: \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}}\right\rangle$ is K_{4}.

Figure 6.
By O6 and remark 2 of Theorem 3, there exist one b_{k} not adjacent to $b_{j}, k \neq j$ and some c_{1} not adjacent to b_{k} in G. In \bar{G}, c_{1} adjacent to b_{k}, c_{1} adjacent to u_{2}. We know that b_{k} adjacent to u_{4}, u_{1}, u_{3} and c_{1} adjacent to u_{1}. Contracting edges $b_{k} c_{1}, c_{1} u_{2},\left\langle u_{1}, u_{2}, u_{3}, u_{4}, u_{5}: b_{k} c_{1}\right\rangle$ is K_{5}, implies $\overline{\mathbf{G}}$ is non planar.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042129 doi:10.1088/1757-899X/263/4/042129

Figure 7.
If Fig. 8 (a) $\gamma(\mathrm{G})=2, \overline{\mathbf{G}}$ non planar. For the graph in Fig. 8 (b) $\gamma(\mathrm{G})=2, \overline{\mathbf{G}}$ planar. So when $\gamma(\mathrm{G})$ $=2, \overline{\mathbf{G}}$ may or may not be planar. Contracting edges 63,52 we see that $\langle 1,4,63,52\rangle$ is K_{4}, implies $\overline{\mathbf{G}}$ is non outer - planar. We generalize this result in Theorem 6.

G

\bar{G}

Figure 8 (a).

Figure 8 (b).

Theorem 6

Let G be a NDSS graph such that $\gamma(G)=2$, then $\overline{\mathbf{G}}$ is non - outer planar.
Proof
Let $\mathrm{D}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ be $\mathrm{a} \gamma-$ set for G. Let pn $\left(\mathrm{u}_{1}, \mathrm{D}\right)=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}_{1}}\right\}$, pn $\left(\mathrm{u}_{2}, \mathrm{D}\right)=\left\{\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathbf{b}_{\mathbf{k}_{2}}\right\}$.
Since G is NDSS, $\left|k_{i}\right| \geq 2$ for all $i=1,2$. Since $\langle D\rangle$ is independent in $G,\langle D\rangle$ is complete in $\overline{\mathbf{G}}$.

Figure 9.

Figure 10.
Since G is NDSS by Theorem $2,\langle\mathrm{~V}-\mathrm{D}\rangle$ is not complete, implies \exists at least two vertices in $\mathrm{V}-\mathrm{D}$ which are not adjacent. Arbitrarily, let us assume that some a_{i} not adjacent to some b_{j}.
Since in $G a_{i}$ not adjacent to b_{j} they are \perp in \bar{G}.Also b_{j} adjacent to u_{1}. Contracting edge $a_{i} b_{j}, a_{i}$ adjacent to u_{1} implies $\left\langle u_{1}, u_{2}, u_{3}: a_{i} b_{j}\right\rangle$ is K_{3}.

Figure 11.

By O6 and remark 2 of Theorem 3, there exist one b_{k} not adjacent to $b_{j}, k \neq j$ and some $a_{l}, l \neq i$ not adjacent to b_{k} in G. In $\overline{\mathbf{G}}, b_{k}$ adjacent to b_{j}, a_{1} not adjacent to u_{2}, b_{k} not adjacent to u_{1}. Contracting $a_{1} b_{k}$, $\left\langle u_{1}, u_{2}, u_{3}, u_{4}: a_{1} b_{k}\right\rangle$ is K_{4}, implies $\overline{\mathbf{G}}$ is non - outer planar.

Figure 12.

4. Conclusion

This paper contributes to planarity characterization of NDSS graphs. We conclude that if G is an NDSS graph then,

- $\overline{\mathbf{G}}$ is non - planar if $2<\gamma(\mathrm{G}) \leq 4$.
- $\overline{\mathbf{G}}$ is non - outer planar if $\gamma(\mathrm{G})=2$.

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042129 doi:10.1088/1757-899X/263/4/042129

References

[1] Magda Dettlaff, Joanna Raczek and Jerzy Topp, http://arxiv.org/pdf/1310.1345.pdf
[2] Balaji S, Kannan K and Y B Venkatakrishnan 2013 WSEAS Transactions on Mathematics 12 1164-72
[3] Yamuna M and Karthika K 2014 WSEAS Transactions on Mathematics13 493-504
[4] Gunasekaran S, Nagarajan N, 2008 WSEAS Transactions on Mathematics 258 - 67
[5] https://projecteuclid.org/download/pdf_1/euclid.bams/1183524923
[6] Akiyama J, Harary F, 1979 Internat. J. Math Science 2223 - 228
[7] http://www.cs.ucf.edu/ renciso/Global Domination in Planar Grap.pdf
[8] Yamuna M and Karthika K 2012 Elixir Appl. Math 53 11833-35
[9] Harary F 2011 Graph Theory Addison Wesely, Narosa Publishing House
[10] Haynes T W et al. 1998 Fundamentals of Domination in GraphsMarcel Dekker, New York
[11] Yamuna M and Karthika K 2012International Journal of Mathematical Archive 4 1467-71

