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Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system.
Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this
paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records
of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based
indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time
identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT
can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the

data logging system to identify operational faults and behavioural anomalies effectively.

1. Introduction

Currently, most of the manufacturing systems are con-
trolled by PLC because of its adaptability, modularity, user-
friendliness, and low cost [1-4]. Operational faults associated
with PLC control process occur most often (about 70%)
among all kinds of faults [3, 5]. It is very difficult to
identify faults and their detailed effects in a PLC controlled
manufacturing system because PLC has a very inflexible
programming system, and PLC device or its control system
does not contain any built-in module for this task [4] (in
this work, the term “fault” refers to the operational fault).
Significant damage to the system can result if the faults
propagate though the system. Moreover, it becomes harder
to distinguish the root cause of the fault once it propagates
through the system and, hence, real time detection of a
fault is necessary in the manufacturing industry in order to
save them from great loss of revenue. Usually, maintenance
and operation engineers find it difficult to repair the fault
sources because of the lack of knowledge about control logics
and the fault’s characteristics. These issues can be addressed

by providing engineers an easy understandable represen-
tation of the control characteristics and knowledge about
the fault. The detection of behavioural anomalies associated
with control process is another important requirement of
the manufacturing industry and receives increasing attention
from researchers. This is mainly because it is possible to get
a clear indication of the fault prior to its occurrence from
the deviation of the control process behaviour. Moreover,
behavioural anomaly detection can also help operators to
identify several other issues such as device performance
degradation and increment in production of low quality
items. There is an increasing need for an automated tool
that can solve the above-mentioned purposes that we have
addressed in this work.

In past three decades, a lot of research works on fault
detection in PLC controlled manufacturing systems have
been done. In past work [4], a hamming distance based
signal pattern matching mechanism for fault detection was
proposed by Qin and Wang. In [6], an approach was taken
that automatically generates the PLC code for process obser-
vation and fault detection. In related article [3], a method



was proposed that automatically generates a knowledge base
from the PLC program and pneumatic and hydraulic circuit
diagram; and using that knowledge base performs fault
diagnosis. Two complementary models, that is, logical and
sequential diagnosis model, were proposed by Hu et al. [2] to
satistfy the same purpose (a similar approach was proposed
in [7]). In another paper [5], a hierarchical diagnosis model
based on the fault tree analysis was proposed (in addition
to the logical and sequential diagnosis model) to improve
the fault diagnosis procedure. A completely separate type of
approach that models the control process by using a distinct
class of automaton, called Nondeterministic Autonomous
Automaton with Output (NDAAO) was introduced by Klein
et al. [8]. There are many research articles which later
extended that basic work (recent examples include: [9-13]).
In these types of approaches, the nominal manufacturing pro-
cess behaviour is represented by a NDAAO type automaton
and the faults are detected based on whether the observed
system behaviour is following the transition behaviour of the
NDAAO type automaton. In [14, 15], a (deterministic) Finite
State Machine (FSM) based approach was proposed for fault
detection. In another paper [16], the P-invariant of Petri Nets
was applied to discover the sequence faults and the exclusive
logic functions were applied to detect the sensor and actuator
faults.

Unfortunately, all the above-mentioned approaches are
focused only on the theoretical justification of fault detection
procedure, and behaviour anomaly detection has not been
considered. In addition, they actually used the log data
records from a small manufacturing process (or a small PLC
control program) in order to validate their approach. These
days, in a manufacturing system, a PLC is responsible for
controlling thousands of devices and each device is operated
by potentially many signals. Millions of signals performing
billions of input-output operations take place every day. To
find faults, it does not suffice to have only a theoretical or
mathematical framework. It is also necessary to have an
efficient software implementation of that framework; thus the
real time identification of faults (or behavioural anomalies)
becomes possible with feasible computer resources. All the
mentioned literatures mainly focus on theoretical framework
design and practical implementation details or empirical
results of their timeliness have been less stressed. Moreover,
all the above-mentioned approaches use a single state of their
theoretical control process model to represent the complete
physical state of the manufacturing system. These types
of approaches become infeasible with growing complexity
of the manufacturing system. The approaches proposed in
[6, 16] do not fall into this category since they utilize the
PLC code for fault detection. However, approaches like this
require additional PLC scanning time and, therefore, increase
the difficulty to achieve fast responses in real time control
(especially for large manufacturing systems).

In this paper, we present an automated behavioural
anomaly and fault detection tool called PLAT that can over-
come the above-mentioned limitations. PLAT automatically
creates a model of the manufacturing system control process
and finds faults and behavioural anomalies using that model.
PLAT uses the log data records of the PLC signals for this
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FIGURE 1: PLC controlled manufacturing system model.

purpose. Actually, rapid advances in communication technol-
ogy have dramatically improved the timeliness and accuracy
of the PLC signal log data records. These days, data loggers
are able to produce highly accurate log data records of the
PLC signals in real time (see, e.g., [17-19]). Thereby log data
records of PLC signals became a useful source of information
and opportunities have been created for researchers to detect
faults and behavioural anomalies in real time by analyzing
these log data records. Our proposed tool PLAT can easily
identify faults and behavioural anomalies from the log data
produced by a manufacturing system in real time. Moreover,
without requiring process specific control knowledge, PLAT
can provide an easy understandable graphical representation
of the complicated device control behaviour to operators.
PLAT can also handle a large manufacturing system with
reasonable computer configuration. The remainder of this
paper is organized as follows: the control process mod-
elling and the working procedure of PLAT are described
in Section 2. Results of our experiments are presented in
Section 3. Section 4 contains our conclusive remarks of
the work followed by a list of relevant and state-of-the-art
references.

2. PLAT: Control Process Model Design and
Working Procedure

This section is divided into six subsections. In Section 2.1,
the problem description is given. An overview of the PLAT
system and the theoretical control process modelling pro-
cedure are discussed in Sections 2.2 and 2.3, respectively.
In Section 2.4, the control process model implementation
procedure of PLAT is described. The control process model
indexing mechanism (in computer memory) and the fault
and behavioural anomaly detection procedure of PLAT are
presented in Sections 2.5 and 2.6, respectively.

2.1. Problem Statement. In Figure 1, an overall model of the
PLC controlled manufacturing system is given. PLC controls
the manufacturing system according to the control program
embedded in its controller. As can be seen in Figure 1,
after execution of the PLC program, it supplies the output
information (by converting them into electrical signals) to
the actuators such as motor starters and switches. Actuator
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FIGURE 2: Manufacturing subsystem: group of devices.

TaBLE I: Log data format.

Time stamp Symbol name Status
14:45:34.17 Group2-Devicel-Signal2 1
14:46:57.12 Groupl-Device3-Signall 1
14:48:14.31 Group2-Devicel-Signal2 0
14:49:19.23 Groupl-Devicel-Signall 1
14:52:41.15 Groupl-Devicel-Signal3 1

operations take place and the resulting new sensor signals
that identify the state of the control process are transmitted
back to the PLC program. In the PLC memory, these discrete
state PLC input-output (I/O) signals indicate the operating
states of the manufacturing system by which behavioural
anomaly and fault detection can be carried out. The data
logger continuously records these discrete I/O signal data sets
from the PLC memory and inserts them into the log database
for further analysis.

Every PLC signal log data record contains three fields
of information: (i) time stamp, system clock time when the
log data record was generated; (ii) symbol name, formal PLC
signal name; and (iii) value, which represents the ON/OFF
status of the signal. An example log data format is given
in Table1l. The time stamp is given in hour, minute, and
second format (separated by a “:”). The symbol name provides
the PLC signal name extended by the device (that the
signal operates) and the group name to uniquely identify
that signal (in Table 1, signal, device, and group names are
separated by a “-”). PLC controlled manufacturing systems
are modular systems; that is, they are composed of many
subsystems that operate together to fulfill a composite task.

Usually, devices that work together for a particular job
form a group in the manufacturing system (i.e., independent
subsystems of the manufacturing system). An example group
of a manufacturing system is shown in Figure 2. As can be
seen, this subsystem is completely independent and isolated.
In order to apply our PLAT tool, symbol names must follow
this specific naming rule (as shown in Table 1). The naming
convention of symbol name may differ according to system
users’ preferences. However, it is not difficult to change it to
the required format stated above (can also be implemented
by providing an additional PLC address to symbol name
mapping module). The field name “Status” of Table 1 provides
the ON/OFF status of its corresponding signal (1 for ON and
0 for OFF). PLC data logger repeatedly examines the PLC
memory and inserts the log data record into the database
whenever a signal changes its status value (see, e.g., [17]).
A fault occurs in the control process, if any signal is found
in an erroneous state (i.e., instead of an ON state, an OFF
state is observed, and vice versa) and behavioural anomalies
take place, if significant change in any signal (or device)
behaviour is observed. In the manufacturing industry, daily
billions of log data records are inserted by the data logger into
the rapidly growing database for future analysis and, hence,
an efficient data handling mechanism is needed in order to
identify faults and behavioural anomalies in real time.

2.2. PLAT System Overview. An overall model of the working
procedure of PLAT is given in Figure 3. As can be seen from
Figure 3(a), at first a nominal model of the PLC control
process is built by using the log data records taken from
a fault-free manufacturing system. In literatures, it is often
argued that it is hard to find a fault-free manufacturing
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FIGURE 3: PLAT system overview. (a) Control process model generation. (b) Fault and behavioural anomaly identification procedure.
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FIGURE 4: Part Loader device behaviour. (a) State based I/O model. (b) Signal-time chart.

process in real life. Actually, we have used the term “fault-
free” to denote the acceptable one. This makes it possible
that some soft faults are assimilated in the control process
model [in PLC terminology, the term “soft faults” refers to the
faults that are unknown to the system and are not fatal to the
system operation]. However, since the model contains the soft
faults in an acceptable range, it is always possible to identify
the real fatal one. Moreover, the presence of low number of
soft faults also helps to avoid a huge number of unimportant
soft fault detections (in this paper, the term “fault” actually
refers to the hard or fatal fault; the same is also true for the
behavioural anomalies). The fault and behavioural anomaly
identification procedure of PLAT is shown in Figure 3(b). As
can be seen, the nominal control process model is compared
with the observed log data records in order to detect the faults
and behavioural anomalies. If there is no difference between
the observed and the expected behaviour of the signals, then
the system is supposed to be fault or behavioural anomaly-
free. Otherwise, the detailed information about the fault or
the behavioural anomaly is reported to the file system. We
have used Process Optra [20] data logger (customized for our
purpose) to acquire the log data records from PLC memory.

2.3. Control Process Model Design. 'This section is divided into
two subsections. The control process modelling mechanism
of PLAT is given in Section 2.3.1 and the theoretical founda-
tions of the model are discussed in Section 2.3.2.

2.3.1. Theoretical Control Process Model Formulation. In a
PLC controlled manufacturing system, a set of PLC 1/O
signals are used to control a particular device. In literature,
PLC controlled device behaviour is usually represented by a
state-based I/O model or by using a similar kind of automaton
model [6, 21, 22]. A state-based I/O model of a device actually
expresses the functional role of its control signals. We discuss
the device behaviour modelling by using the Part Loader
device example of Figure 4 (see Figure 2 also). In the initial
phase, a part is loaded to the Part Loader. Then, it moves
through rail track towards Robot 1. After reaching the end
position, Robot 1 picks up the part from it and, then, the
Part Loader returns back to its home position. In Figure 4(a),
state-based I/O model of that Part Loader device is given
(see, e.g., [21]). As can be seen, Part Loader is operated based
on five control signals. Among them, the RET and the ADV
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input sensor signals are used to notify the location of the
device (i.e., Part Loader is in home or advanced position),
and the PRT_CHK input sensor signal is used to notify if a
part is loaded in the Part Loader. Two output signals, that is,
FORWARD and BACKWARD, are used to operate the Part
Loader field device. An example signal-time chart depicting
the behaviour of its control signals is given in Figure 4(b).
In the initial state, the process starts when the Part Loader
is in its home position. So, the sensor at the home position
detects it and the RET signal becomes ON. If a part is loaded
to the Part Loader, then the PRT_CHK signal is turned ON.
This causes the Part Loader to move towards the Robot 1
by making the FORWARD signal ON, and after this motion
is started, the RET signal becomes switched OFE If the
ADV signal is turned ON that means the Part Loader has
reached the end position of the rail track, and this causes the
FORWARD signal to be turned OFF. The PRT_CHK signal
goes to OFF state when Robot 1 picks up the part and then
Part Loader starts to return to its home position by making
the BACKWARD signal ON. This causes the ADV signal
to be turned OFE The RET signal becomes ON when the
Part Loader returns to its home position and after this the
BACKWARD signal becomes switched OFF. This cycle, called
device cycle, starts again when another part is loaded to
the Part Loader. The state-based I/O model of Figure 4(a)
depicts this behaviour. The small arrows around the circle
signify when the model enters or leaves that specific state. The
transition FORWARD(1) specifies that the FORWARD signal
is ON and represents the forward motion (towards Robot 1)
of the Part Loader. Similarly, the BACKWARD(1) transition
represents the backward motion (towards the home position)
of the Part Loader.

We can easily define this entire device behaviour (as can
be seen in Figure 4) using signal-state I/O model of Figure 5.
With this signal-state I/O model, we are able to incorporate
all the behavioural information of the Part Loader stated
above. Actually, the state-based I/O model of Figure 4(a)
is simply redrawn to consider the signal-state transition
sequence information. For example, in Figure 5, Part Loader
starts working when the RET signal is ON, represented
by the RET_ON signal-state (signal name extended by its
state). At the same time, the BACKWARD signal is needed
to be switched OFF and, hence, the next signal-state of
the Part Loader is the BACKWARD_OFE. Then it moves
to the next signal-state which is PRT_CHK_ON, and so
on (see Figure 4(b) also). The transition from RET_ON
to PRT_CHK_ON signal-state (shown in red color) occurs
due to the missing BACKWARD_OFF signal-state in the
first device cycle (as no signal status change event takes
place in the BACKWARD signal). We can easily identify it
from the number of transition occurrences. We have also
incorporated the transition time information in this model
(signal-time chart information of Figure 4(b)). The values
associated with the transition arrows in Figure 5 specify
the time that corresponding transitions should take. This
compact theoretical representation based on event-sequence
information of the I/O signals corresponding to a device not
only helps PLAT to detect faults and behavioural anomalies
but also helps it to gain speed during fault searches.
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FIGURE 5: Signal-state I/O model of the Part Loader device.

Our main motivation is to model all PLC controlled
device behaviour using this kind of signal-state I/O model as
shown in Figure 5. The signal-state I/O model expressed in
terms of a device’s control signals actually defines its control
characteristics. If any device behaviour fails to follow its
corresponding signal-state I/O model, then we can easily
conclude that faults or behavioural anomalies have taken
place in the control process. Faults in the signal-states (or
changes in the signal behaviour) will also affect the signal-
state /O models of the devices, by which we can easily
identify faults (or behavioural anomalies). For example,
after ADV signal goes to OFF state (notifies Part Loader
is returning back to its home position), if we find that the
PRT_CHK signal becomes ON again due to some unexpected
PRT_CHK signal behaviour, then we can easily conclude that
the fault has taken place in the control process. In that case,
we will get a transition error while moving from ADV_OFF
to PRT_.CHK_ON signal-state (faulty transition, according
to the model in Figure 5). We must build such signal-state
I/O model not only for each device but also for each group;
thus interrelations between device control processes can be
defined. For example, as we have stated earlier, the part is
removed from the Part Loader by Robot 1 after reaching
the end of the rail track (see Figure 2). This information
needs to be included in the control process model and, hence,
signal-state I/O models for the groups are also required (recall
that devices that work together form a group). Modelling
of group behaviour is similar. A device is represented by its
starting (or any other) signal in the signal-state I/O model
of its group. The starting signal of a device refers to the first
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FIGURE 7: Modified signal-state I/O model. (a) Signal-state I/O model with multiple transitions. (b) Modified signal-state transition model.

signal that appears in its signal-state I/O model (in our Part
Loader example, the RET signal is the starting signal). For
simplicity, if we can think of a device as having only one
signal, that is, its starting signal, and a group as a device, then
the modelling of the group can be the same as the device.
As an example, Figure 6(a) shows signal-time chart of the
starting signals of two devices (i.e., Part Loader and Robot
1) of the group presented in Figure 2 (the signal name is
extended by the device name to uniquely identify that signal
in that group). The signal-sate I/O model representation of
that group is presented in Figure 6(b) (assume that the group
of Figure 2 contains only those two devices). As we can see,
at the beginning, both starting signals of that group are ON
at the same time. However, this happens only for the first
device cycle. From the second device cycle onwards, RBT1-
HOME_POS_ON to PrtLDR-RET_ON transition takes time
t, (which is actually the true transition time) and, hence,
only the transition time t, is shown. The signal-sate I/O
models of the groups are also required for fault detection.
This is because some of the devices are operated based only
on very few input signals and, hence, if any or some of those
signals go to ON/OFF state permanently due to the fault,
the device may stop working (which means no signal status

changes can be observed for that device). In that case, PLAT
can identify the fault from the signal-sate I/O model of its
group. We do not build any model to define the interrelation
between operations of groups because, as we have stated
previously, groups are independent subsystems that have no
relation to each other. Our complete control process model
is a composition of each signal-state I/O model of the devices
and groups (with some small modifications, described in next
paragraph).

The signal-state I/O model of a device or group will
not always be as simple as depicted in Figures 5 and 6(b).
In the signal-state I/O model, one state may have multiple
transitions (as shown in Figure 7(a)) and each transition may
have multiple transition times (as shown in Figure 7(b)). The
multiple transitions or multiple transition times not only can
occur due to some missing status change events of the signals
in the first device cycle but also can take place depending
on the manufacturing process condition at that particular
time point. For example, consider a scenario where a robot
picks a part from the Part Loader and place it into two bins
according to its quality (say, good or bad). The signal-state
I/O model of that robot can have two different transition
paths according to the quality of the part. Now, suppose that
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if the quality of the part is good, then it will be processed
further and if it is bad, then the Part Loader returns back
to its home position immediately to carry another part. In
this scenario, the PRT_CHK_OFF to the BACKWARD_ON
signal-state transition (see Figure 5) has two transition times,
one for good and another for bad quality parts. In the signal-
state I/O model, if we deal with multiple transitions (or
multiple transition times) by simply adding another path
to the corresponding signal-state node, then we miss some
information such that (suppose) the percentage of bad quality
parts is much lower than the percentage of good quality
parts (if it becomes high then that could be an anomaly
in the control process behaviour). We incorporate this kind
of information in signal-state I/O model by including the
state transition probabilities as shown in Figure 7(a) (the
edge values shown are transition probabilities; for clarity,
transition times are omitted). A transition with multiple
transition times can be thought as different transitions and
each such transition certainly has a transition probability that
is simply incorporated into Figure 7(b). So, in our modified
signal-state I/O model, each transition has two kinds of
information attached to it: (i) transition probability and (ii)
transition times and their corresponding probability.

2.3.2. Theoretical Foundations of the Signal-State I/O Model.
A signal-state I/O model of a device or group is actually a
kind of discrete-time Markov chain [23, 24] (see the following
definitions).

Definition 1. Suppose, {X,, n > 0} is a discrete-time
stochastic process that can take values from a countable set
S, called the state space. {X,,, n > 0} is called a discrete-time
Markov chain (DTMC) if it satisfies the Markov property. The
Markov property can be formally expressed in the following
way:

P(X,=i,| X,.1=i

n-1

Xz =iy s> Xo =1o)

n-1°
= P(Xn = in | Xn—l = in—l) (1)

(VA 20, ipi, 1y...rig€S],
where P(X,, = i,) is the probability to be in state i,, at step n
In other words, the conditional distribution of the future
states of DTMC depends only on the current state and is
independent of all the previous states (see, e.g., [23, 24]).

Definition 2. A DTMC is said to be time homogeneous, if
P(X, = j| X, =1) = P; is independent of n.

Definition 3. The probability of the transitions from state i
can formally be defined as follows: Vij P,; > 0 and } ;s P; =
1 [Vi, jeSl.

So, if we exclude the timing information from the model,
then the signal-state I/O model (of a device or a group)
is basically a time homogeneous DTMC (its state space
is composed of the signal-status names of all the signals
belonging to that device or group). Please note that the
time homogeneity and the Markov property are satisfied

because the system states are changed according to the
sensor feedback to the PLC program (dynamic execution; see
Figure 1).

Definition 4. Let P} = P(Xy,, = j | X; = i); then state j is
said to be reachable from state i, if there exists # > 1 such that
Pg > 0. The state j is said to be one-step reachable from state

L 1 .
i, if P; (or, simply, P;;) > 0.

If a fault occurs in the control process, it completely
alters the sequence of status change events of the PLC
signals (in other words, the signal-state transition sequences
of the devices and groups are completely modified) [10-
14]. So, if PLAT finds any signal-state of a device or group
that is not one-step reachable from its immediate previ-
ous signal-state (according to the corresponding nominal
signal-state I/O model), then we can easily conclude that
a fault has taken place in the system. In some extreme
situations, the whole manufacturing subsystem (or group)
may stop working because of the occurrence of a fault
(implying that the corresponding control program has fallen
into an unproductive loop). For example, if a failure in
PRT_CHK sensor occurs at the beginning of a Part Loader
device cycle (see Figures 4 and 5), then the subsystem
of Figure 2 stops working (because Part Loader cannot
transfer the part to Robot 1). These types of faults can
easily be identified by maintaining a timer counter in com-
puter memory for each group [if any timer gets expired
(after a relatively long time period) that implies a fault
has occurred in the control process]. PLAT automatically
builds the signal-state I/O models (with modified transition
model, as in Figure 7(b)) for the devices and groups and
attempts to find faults and behavioural anomalies using
those models. PLAT can identify two types of behavioural
anomalies: (i) transition time error (if a transition takes
longer than anticipated) and (ii) transition or transition time
probability error (if any significant changes in probability
occur).

To summarize the above discussion, we model the control
process in terms of the behaviour of the groups that it
operates. To define each group behaviour, first we char-
acterize each device behaviour of that group in terms of
the interrelations among its control signals and, then, we
characterize that group behaviour in terms of the interre-
lations among the starting signals of those devices (a kind
of divide and conquer strategy is taken). We took this
design approach because defining group behaviour in terms
of the interrelations among all the control signals in that
group (most of the existing approaches use this strategy)
could generate a very complex model with many high-degree
signal-state nodes. For example, suppose a group contains
two Part Loader devices and their independent actuators
act exactly in parallel. If we define group behaviour in
terms of the interrelations among control signals, a small
delay in one of the Part Loader signal-state transitions could
generate a very complex signal-state [/O model with many
unnecessary transition edges. A goal of our approach is to
reduce the total number of transitions (or total degree of the
graph) required for modelling the group behaviour by using



device-level abstraction. This gives us speed gain during fault
and behavioural anomaly searching phase (by significantly
cutting down the size of the model). In PLAT, a fault (or
an anomaly that has significant impact on system operation)
cannot remain unidentified because, in that case, the system
fails to produce the exact same sequence of transitions (with
almost the same transition time, transition, and transition
time probabilities) as in the nominal signal-state /O models
(11, 12, 14] [we should mention that most of the existing
automaton (see for instance: [9-14]) and event-sequence
based approaches (see, e.g., [2, 3]) also provide the same
fault detection accuracy rate, as they use the same fault
detection principle (i.e., detect the faults based on whether
there is any deviation in the sequence of signal status change
events); anyhow, they do not solve the complete problem
of real time fault and behavioural anomaly detection in
large manufacturing systems]. So, the above stated model-
size reduction is done without losing any useful information
related to faults or behavioural anomalies associated with
control process. Moreover, device-level abstractions give sys-
tem users easily understandable domain and control process
error interpretation. Unlike PLAT, the existing approaches
cannot deal with large manufacturing processes (see Sec-
tion 1). As an example, consider the NDAAO automaton
based approaches [8-13]. A single state of the NDAAO
automaton characterizes the complete manufacturing process
state and is represented by a boolean vector of length N,
where N is the total number of PLC I/O signals (means,
theoretically it is possible to have 2 number of states).
This boolean vector is needed to be packed in a very
few computer words through hashing (otherwise, it will
take long computational time during fault searches). If the
vector length N is very high then it can generate a large
number of hash code collisions that makes it practically
infeasible [note that a faulty state can take any value from
0to 2N - 1)]. Unfortunately, there is no straightforward
way to handle this (the same argument is also valid for
the other automaton and event-sequence based approaches
mentioned in Section 1). The maximum number of possible
states in our proposed control process model is comparatively
quite lower, that is, 2 x (N + M), where N is the total
number of signals and M is the total number of devices. In
addition, as all the state names can be obtained in advance
(using PLC program symbol list), the hash code collisions
can easily be avoided with a reasonable collision resistant
hash function and an appropriate seed value (in case of
other automaton based approaches, it is impossible to obtain
the identification number or name of the faulty state in
advance). At this point, we should mention that some large
manufacturing systems are controlled by multiple PLCs and
are informationally centralized. In a centralized architecture,
there exists a main server computer where log data records
from multiple sources are gathered. Unlike other approaches,
PLAT can easily handle such informationally centralized
systems. This becomes possible because the complete control
process model of PLAT is built based on the signal-state I/O
models of the devices and groups (not based on the complete
process states).
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2.4. Control Process Model Implementation Procedure. This
section has two subsections. In Section 2.4.1, the signal-
state transition model (a signal-state I/O model without
transition time, transition, and transition time probabilities)
building procedure and the transition probability calculation
procedure of PLAT are presented. In Section 2.4.2, we discuss
the procedure used by PLAT to find the transition times and
their corresponding probabilities.

2.4.1. Signal-State Transition Model Building and Transi-
tion Probability Calculation Procedure. PLAT automatically
builds the signal-state I/O model for each group and device
from the PLC signal log database. The log database must
be from a fault-free system (see Figure 3(a)). PLAT starts
working by collecting all the device names and their corre-
sponding signal-state names (using PLC program symbol list)
for each group by using the data structure of Figure 8(a).
In this data structure, first column stores the name of the
devices, second column stores the number of signal-states
associated with that device, and third column stores the
corresponding set of signal-state names through a pointer
to an array (an arrow represents a pointer access). For each
symbol name, the device name of that record is inserted into
the first column of its corresponding group’s data structure,
and the signal name, extended by its state, is inserted into
the signal-state set of the corresponding device through a
pointer access (corresponding second column value will be
updated accordingly). Then the data structure of Figure 8(a)
is converted into two sequential data structures, as shown
in Figure 8(b); thus the need to access signal-state set
through the pointers can be eliminated (for speed gain).
The conversion procedure is simple. The first column of
the Device Array in Figure 8(b) contains the sorted set of
device names stored in Figure 8(a). The second column
values of the Device Array are the cumulative addition of the
number of signal-states of the devices. The signal-state array
of Figure 8(b) simply contains all the signal-state names of
all the devices stored in Figure 8(a). The signal-state set of
each device is inserted into the signal-state array according
to the order of devices in Device Array (the signal-state set
is sorted before insertion). With these sequential structures,
mapping a device to its corresponding signal-state set (reverse
mapping) is simple. For example, in the signal-state array,
the signal-state set of Device2 starts from position 2. This
position is recorded in the second column corresponding to
the previous row of Device2 in Device Array (this position
for the first device name in Device Array is 0). The number
of signal-states belonging to Device2 can be calculated from
the Device Array by subtracting the position number (i.e.,
2) from its corresponding second dimension value (ie., 6).
This explanation shows that, with these sequential structures,
we can easily access the complete signal-state set that can
contain a large number of elements without any pointer
access (just one additional subtraction is needed). Moreover,
as the signal-state set of each device is sorted, we can easily
perform binary searches on it.

The signal-state transition model building procedure is
depicted in Figure 9 based on the example given in Figure 8.



Computational Intelligence and Neuroscience

%
Devicel 2 Pointer il_ggi} 15_1%;11;111:
. : Signal Signal
5 Device3 2 Pointer 3 ON 3 OFF
: : Signal Signal Signal Signal
Device2 4 Pointer 4 ON 4 OFF 2 ON 2 OFF
%
()
Devicel 2
Cumulatively added
- Device2 6 number of signal-
Sorted device set states of the devices
Device3 8

Device array

Devicel sorted signal-

Device2 sorted signal-state set

Device3 sorted signal-

state set state set
e oo AT
Signal Signal Signal Signal Signal Signal Signal Signal
1_OFF 1_ON 2_OFF 2_ON 4_OFF 4_ON 3_OFF 3_ON

Signal-state array

(®)

FIGURE 8: Data structure for storing signal-state information of a group. (a) Data structure for storing signal-state information of the devices

of a group. (b) Converted sequential data structures.
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FIGURE 9: Signal-state transition model building procedure. (a) Example log data records of Device2. (b) Data structure for signal-state
transition model creation. (c) Hash table structure for calculating transition probabilities.

At first, the log data records are sorted according to the device
name of each group (which means log data records related to
the first device name of the Device Array are processed first
and so on; this process is repeated for each group). An exam-
ple set of log data records (suppose Device2 of Figure 8(b)
and Device2 belong to Groupl) and its corresponding signal-
state transition model are given in Figures 9(a) and 9(b),
respectively. A signal-state is represented in the data structure
of Figure 9(b) by its position number in the signal-state set

of the corresponding device. For example, in Figure 8(b),
Signal2_OFF is the first signal-state in the signal-state set of
Device2 and, hence, is represented in Figure 9(b) by 0. Recall
that the signal-state set of each device is a sorted set and,
hence, integer conversion can be done by performing a binary
search. In Figure 9(b), the array position and corresponding
array value(s) are basically integer-represented signal-states
that indicate between which signal-states the transition hap-
pened. The data structure of Figure 9(b) is an array initialized
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with null values, and any integer values representing signal-
states may simply be inserted into the corresponding array
position. If the corresponding array position is already filled,
then it is replaced by a pointer to an array, and the old
value(s) and the new value are inserted into that new array. In
general, a large number of signal-states do not have multiple
transitions; thus this kind of data structure will give speed
gain by significantly reducing pointer accesses. We converted
signal-states to integer values; thus we can largely avoid
expensive string comparison operations. While building such
a signal-state transition model, we do have to maintain a
hash table for calculating the transition probabilities. This
hash table, shown in Figure 9(c), is a simple two-dimensional
array. In the first dimension, the hash code of the signal-state
transition is stored and, in the second dimension, a counter is
maintained which identifies how many times that transition
has occurred.

The hash codes of the signal-state transitions are gener-
ated by using a simple hash function, that is, (Current_State x
q + Next_State), where “Current_State” and “Next_State” are
integer-represented signal-states between which transitions
have occurred, and g is an integer number greater than the
number of signal-states for that device. In Figure 9(c), the
q value is considered 100 (assuming the number of signal-
states are less than that). This simple hash function distributes
the hash values quite well over a large output domain (in
every interval of size g, there will be very few instances) and
there will be no chance of hash code collision (because each
signal-state is represented by a unique integer number). For
collision resolution in the hash table (because the hash codes
are mapped onto a small number of buckets by modulus
operation), we use simple linear probing technique [25].
This is because any complex collision resolution technique
could penalize performance as our hash function has already
uniformly distributed the key-values over the bucket range.
Signal-state transition models for the groups are also created
following the same procedure. However, some additional
modification is required for the signal-state to integer con-
version procedure in order to maintain uniqueness of the
integer-represented signal-state values. The signal-states of a
group are integer-represented by the following:

(the corresponding device position in the device set

2)

x 2 + status value of the signal).

For example, in Groupl, signal-state Signal2_ OFF of
Device2 (belonging to the starting signal of Device2) is
represented by (0 x 2 + 1) = 1 [recall that the value of
status OFF is 0 and the position of Device2 in Device Array
of Figure 8(b) is 1]. This simple conversion provides unique
signal-state representations for a group (because a device is
represented by its starting signal in the signal-state I/O model
of its group). By using this simple procedure, signal-state
transition model for a group or a device is built and transition
probabilities are calculated.

2.4.2. Transition Time and Transition Time Probability Cal-
culation Procedure. We now discuss the procedure used
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by PLAT to find transition times and their corresponding
probabilities. Recall that, in our previous signal-time chart
example of a Part Loader (see Figure 4(b)), the signals are
always ON or OFF for a fixed amount of time. For example,
the FORWARD signal is always ON for time #;. In practice,
this is not always the case. As can be seen in Figure 4(b), the
FORWARD signal is ON until the Part Loader reaches the
end of the rail track. This time depends on the speed of the
physical device (as sensors give feedback to the PLC program;
see Figure 1) and, hence, cannot always be the same. This
can also vary depending on the time stamp accuracy of the
data logger. As can be seen from Figure 5, for this reason, the
transition time instances for a particular transition will also
vary. However, they do not vary significantly because of the
almost fixed speed of the physical device and modern, highly
accurate data loggers [17, 18]. We can represent this transition
time by taking the mean of these instances (the average
transition time). However, as stated before, a transition can
have multiple transition times. In a large manufacturing
system, where thousands of devices are working, it is difficult
to know how many transition times a particular transition
actually has and, hence, in order to determine this, we
need a transition time clustering algorithm. The purpose of
clustering is to separate the time instances for a particular
transition into several clusters; thus classification of the
time instances (as “normal” or “erroneous”) can be done
by choosing a representative point from the clusters. In our
case, the cluster means (average transition times) are used as
the “actual” transition times in the signal-state I/O models
and the highest-valued instances of the clusters (maximum
transition times) are used to determine the transition time
errors.

Several approaches have been introduced in the literature
to address the above-mentioned clustering problem, such as
Jenks natural breaks, k-means, PAM, CLARANS, AGNES,
DIANA, CURE, and DBSCAN [26-34]. In general, the time
complexity of these clustering algorithms is very high. For
example, all the mentioned algorithms (except k-means)
have a time complexity > O(n®), where n is the total
number of instances [26-34]. With the access of special data
structure, the time complexity of these algorithms can be
reduced. However, often construction of such data structure
severely penalizes the performance [31]. We have to perform
clustering for each transition and this can severely penalize
the performance if we employ an algorithm with high
computational complexity (or with a special data structure
construction cost). Unlike others, k-means algorithm has a
very low time complexity of O(tkn), where t is number of iter-
ations, k is number of clusters, and # is number of instances
(usually k, t < n) [29-31]. Moreover, k-means algorithm is a
widely used approach in the literature because of its very fast
software execution. In recent research, k-means algorithm
has been widely used for clustering one-dimensional data for
these reasons as well [35]. However, k-means algorithm has
one well-known weakness; that is, it often terminates at local
optima. This issue can largely be avoided by using careful
seeding technique [36]. Several seeding methods have been
proposed in literature; however, they mainly focus on high
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dimensional data. In fact, one-dimensional data is easy to
handle (particularly in our case) as it can be easily sorted (we
always use Introsort algorithm [37] for this purpose) and its
distances can be easily calculated. Hence, different seeding
technique is required to take advantage of one-dimensional
transition time data. Algorithm 1 provides our overall algo-
rithm for finding average and maximum transition times
of the clusters and their corresponding probabilities. The
algorithm returns the mean and the highest value of the
transition times if its instances do not vary much (which
implies single cluster; see Algorithm 1, lines (3)-(10)). Oth-
erwise, k-means algorithm (with a careful seeding strategy) is
applied (see lines (12)-(34)). The seeding technique of our k-
means algorithm is inspired by Jenks natural breaks method
[26-28]. Informally, Jenks natural breaks method attempts
to find “breaks” (positions from where new cluster should
start) in the sorted number line where most significant gaps
(or differences) appear [26-28]. The definition of “significant
gap” varies from lower- to higher-order numbers. We have
incorporated this intuition into our seeding technique and
definition of gap in our algorithm (see lines (12)-(21)). In
fact, we have just calculated the relative differences of the data
points in our gap calculation that indeed penalizes the higher-
order numbers. We have introduced parameter € to penalize
very low order numbers (this also prevents any “division by
zero” errors; see line (14)). The parameter ¢ is not difficult
to set and should be set to a small integer number (further
details are in our experimental section). The mean values of
the partitions (partitioned by those breaks) are supplied as
initial cluster centers to the k-means algorithm to overcome
the class outlier sensitivity issue (see lines (22)-(34)). For the
convenience of the readers, the detailed k-means algorithm is
presented in Algorithm 2 [the Introsort algorithm is not given
here for lack of space; it can be found in [37], pp. 986-987].
The main goal of our seeding technique is to spread out
the initial cluster centers according to the data distribution;
thus the poor local optima problem can be largely avoided.
Though theoretically our careful seeding technique does
not guarantee optimality, in practice, it binds the local
optima (if global optima are not found) very close to the
global optima, because of the initial cluster center choices.
In practice, we have also seen that usually the transition
time clusters are well separated (can be realized from our
discussion of Section 2.3) and, hence, it is relatively easy
for our simple k-means algorithm to bind the local optima
very close to the global optima. We call our proposed
k-means algorithm carefully seeded k-means (CSk-means
algorithm). CSk-means algorithm is O(nlogn) competitive
with the traditional k-means algorithm. This is because we
use Introsort algorithm (see Algorithm 1, line (4)) with
time complexity of O(nlogn) for sorting the data points
[please note that the gap calculation procedure of CSk-
means algorithm (see Algorithm 1, lines (12)-(21)) also gives
additional time complexity of O(kn); however, it is compen-
sated during the k-means algorithm (see Algorithm 2, lines
(1)-(25)) because the k-means algorithm is performed on
the sorted transition time data]. After CSk-means algorithm,
the (single-linkage) Hierarchical Agglomerative Clustering
(HAC) algorithm [29, 38] is applied to merge the clusters

1

whose centers are not “far away” (in a user-defined way)
from each other (see Algorithm 1, line (35)). For reader’s
convenience, the HAC algorithm is provided in Algorithm 3.
Usually, transitions have very small number of transition
times and we recommend using slightly higher value as the k
value (k is the number of clusters) because this will help CSk-
means algorithm to dynamically mitigate the outlier issue
(i.e., for an outlier CSk-means algorithm will not lose an
actual cluster). In the manufacturing systems, the transition
time outliers mostly originate during the system start-up
time. This is the reason why we discard clusters that have very
low support (see Algorithm 3, lines (36)-(41)).

The signal-state I/O models of the devices and the groups
are build using this procedure (as discussed in Section 2.4.1
and in this subsection) and are saved into the file for future
use. The integer-represented signal-states are converted back
to their original form (i.e., signal-state name extended by
its device and group name format). For user’s convenience,
signal-state I/O models are saved in DOT language (a graph
description language) and can be visualized by any DOT lan-
guage parser such as Graphviz [39]. This gives an easy under-
standable graphical representation of complicated device or
group control behaviour to users. Moreover, maintenance
engineers can easily identify detailed effects of the faults from
this graphical visualization. The procedure discussed above
actually helps PLAT to generate the signal-state I/O models
rapidly from a large database.

2.5. Signal-State I/O Model Indexing Mechanism. After build-
ing the control process model, PLAT has a set of signal-
state I/O models, one for each device and group. As we have
stated earlier, even for a small manufacturing system, the set
can contain hundreds of such signal-state I/O models. The
main challenge is to efficiently represent those signal-state
I/0 models in computer memory such that the identification
of faults and behavioural anomalies can be done in real time.
From the computer science point of view, this problem can be
thought as a mapping of two databases: one database, that is,
reference database from which the signal-state I/O models are
built, and another database, that is, query database in which
we have to search the faults and behavioural anomalies. PLAT
builds an index hash table from the signal-state I/O models
(saved in the file system) to satisfy this purpose. The signal-
state I/O models are nothing but a series of transition rules.
Table 2 gives an example set of transition rules for Device2 of
Figure 9. From now on with the term “device name” (resp.,
“signal name”), we will refer its complete name to uniquely
identify it, that is, device (resp., signal) name extended by its
group (resp., device and group) name. At first, PLAT builds
a hash table, the “index hash table” (as in Figure 10) from
the transition rules of all the devices and groups. In the first
column of the index hash table, hash values of the transitions
are stored. The hash value of a transition is the concatenation
of the hash values of the signal-state names between which
the transition has occurred. We use MurmurHash2 hash
function [40] for hashing the signal-state names because of
its high avalanche effect, collision resistance, and speed [41].
The default size of the hash value of a signal-state name is
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Inputs: Time_Array[], k, N
% The transition time instances are stored in Time_Array(]; k (>1) is the
initial number of clusters (set by the user and will be the same for all the
transitions); and N is the total number of transition time instances %
Outputs: Clus_Avg[], Clus_Max[], Clus_Prob[], k
% Clus_Avg|] stores the mean values of the clusters (average transition
times); Clus_Max[] stores the highest-valued instance of each cluster
(maximum transition times); Clus_Prob/[] stores the support of each cluster
(transition time probabilities); and k is the final number of clusters %
declare and initialize Clus_Avg[k], Clus_-Max[k] and Clus_Prob[k]
% all the arrays are filled with zeros %
call function Introsort(Time_Array) % apply Introsort algorithm to sort Time_Array[] %
% code for single cluster %
if (Time_Array[N — 1] — Time_Array[0]) < (user-defined) threshold value
then
fori=0to N -1 do
Clus_Avg[0] = Clus_Avg[0] + Time_Arrayl[il;
end for
if Clus_Avg[0] # 0 then
Clus_Avg[0] = Clus_Avg[0]/N; Clus_Max[0] = Time_Array[N — 1];
Clus_Prob[0] =1; k=1;
% code for (probable) multiple clusters %
else
declare and initialize Gap_Val[k — 1], Pos[k — 1] and &
% Gap_Val[] and Pos[] are filled with —1’s; Gap_Val[] keeps track of
the (k — 1) largest “GAP”s in the sorted number line (or Time_Array(]);
Pos[] stores the corresponding array positions (ending points of clusters or “breaks”);
and & (>0) is a small integer number (user-defined) %
fori=0to N -2 do
var gap = (Time_Arrayli + 1] — Time_Array[i])/(Time_Arrayl[i] + &);
% calculate GAP between two instances; var implies Temporary Variable %
var min = Gap_-Val[0];  var minlndex = 0;
for j=1tok—-2 do
if Gap_Val[j] < min then
min = Gap_Val[jl; minlndex = j;
end for
if gap > min then
Gap_Val[minIndex] = gap; Pos[minIndex] = i;
end for
call function Introsort(Pos) % apply Introsort() to sort Pos[] %
% split the array into k partitions (based on sorted (k — 1) positions in Pos[]);
then, calculate the mean of each partition and store them in Clus_Avg|[] %
fori=0tok—-1 do
var templ = =1;  var temp2 = —1;
if i == 0 then
templ = 0; temp2 = Pos[0];
elseif i < (k — 1) then
templ = Pos[i — 1] + 1; temp2 = Posli];
else
templ = Pos[i — 1] + 1; temp2=N —1;
for j = templ to temp2 do
Clus_Avgli] = Clus_Avg[i] + Time_Array|jl;
end for
if Clus_Avg[i] # 0 then
Clus_Avgli] = Clus_Avgli]/(temp2 — templ + 1);
end for
% pass the newly calculated mean values (stored in Clus_Avg|[]) as the
initial cluster centers to the (traditional) k-means algorithm %
call function K_Means_Algorithm(Time_Array, k, N, Clus_Avg, Pos);
% Apply HAC algorithm to merge the clusters whose centers are not far away
(in a user-defined way) from each other %

ArLGoriTHM 1: Continued.
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(35)

(36)

call function HAC_Algorithm(Time_Array, k, N, Pos, Clus_Avg, Clus_Max, Clus_Prob);

% the average and maximum transition times of the clusters and their corresponding
probabilities can be found in Clus_Avg(], Clus_Max[] and

Clus_Prob([], respectively [from 0th to (k — 1)th position] %

Save the clustering results into the file and Exit the procedure

ALGORITHM I: Transition time clustering algorithm (CSk-means algorithm with HAC).

% all function parameters are passed by reference(c++ style) %
% prm implies Function Parameter %
% Apply (traditional) k-means Algorithm on the transition time data-set
(the initial cluster centers are stored in Clus_Avg[]) %
(1) wvar repeat_k_means = true; % repeat until a condition is met %
(2) do % classify the samples according to the nearest mean
(the sorted mean values are stored in Clus_Avg[]) %
% in other words, split the array into k partitions based on the distance from
nearest mean (note: Time_Array(] is also a sorted array) %
3) var temp = 0;

(4) fori=1toN-1do % calculate the distances from the centres %
(5) var distl = |Time_Array[i] — Clus_Avg[temp]|;
(6) var dist2 = |Time_Array[i] — Clus_Avg[temp +1]|;
(7) if distl > dist2 then % determine the new splitting positions %
(8) Pos[temp] =i—1; temp =temp +1;
9) if temp == (k — 1) then break; % exit the loop %

end for

(10) declare Old_Clus_Avg[k] % stores the means of the previous iteration %
(11) fori=0tok—-1 do % shift the mean values to Old_Clus_Avg([] %
(12) Old_Clus_Avgli] = Clus_Avgli]; Clus_Avg[i] =0
end for
% calculate the means of the (new) clusters and store them in Clus_Avg|[] %
(13) fori=0tok -1 do

(14) var templ = =1;  var temp2 = —1;

(15) if i == 0 then

(16) templ = 0; temp2 = Pos[0];

(17) elseif i < (k — 1) then

(18) templ = Pos[i — 1] + 1; temp2 = Pos|i];

(19) else

(20) templ = Pos[i — 1] +1; temp2=N —1;

(21) for j = templ to temp2 do

(22) Clus_Avgli] = Clus_Avgl[i] + Time_Array|jl;

end for

(23) if Clus_Avgl[i] # 0 then

(24) Clus_Avgli] = Clus_Avglil/(temp2 — templ + 1);
end for

(25) repeat_k_means = false;
(26) fori=0tok -1 do
27) if |Clus_Avg[i]l—- Old_Clus_Avgli]| > (very small) threshold value
then % refers that the cluster means are significantly different %
(28) repeat_k_means = true; break; % another iteration %
end for
(29) while repeat_k_means # false % termination condition %
% note: K_-Means_Algorithm() only updates the mean values
(stored in Clus_Avg[]) and the array splitting positions (stored in Pos[]) %

ALGORITHM 2: Function K_Means_Algorithm().

13
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% Apply HAC (Hierarchical Agglomerative Clustering) Algorithm to merge
the clusters whose centers are not far away from each other %

(1) declare vectors (dynamic arrays) Tmp_ClAvg, Tmp_TotIns and Tmp_CIMax
% Tmp_ClAvg (temporarily) stores the mean values of the clusters;
Tmp_TotlIns stores the total number of instances of each cluster; and
Tmp_CIMax stores the highest-valued instance of each cluster %

(2) fori=0tok—-1do

(3) Tmp_ClAvg. Add(Clus_Avgli]); % Add() function is used to add a
new element at the end of the vector %

(4) Clus_Avgli] = —1; Clus_-Max[i] = -1; Clus_Probli] = -1;
end for

(5) fori=0tok—1 do

(6) var templ = =1;  var temp2 = —1;

(7) if i == 0 then

(8) templ = 0; temp2 = Pos[0];

9) elseif i < (k—1) then

(10) templ = Pos[i — 1] + 1; temp2 = Pos]i];
(11) else

(12) templ = Pos[i — 1] + 1; temp2=N —1;

(13) Tmp_TotIns.Add(temp2 — templ + 1);

(14) Tmp_CIMax.Add(Time_Array[temp2]);
end for

(15) var cIMrgl = 0;  var cIMrg2 = 0; % used to store the index
numbers of the clusters that have the lowest pairwise distance %

(16) var repeat_HAC = true; % repeat until certain conditions are met %

(17) do % apply the single-linkage HAC algorithm %
(18) var shortDist = maximum 64-bit integer value;
(19) for i = 0to k — 2 do % find the two clusters that are most similar %
(20) if (Tmp_ClAvg[i + 1] — Tmp_ClAvgli]) < shortDist then
(21) shortDist = Tmp_ClAvg[i + 1] — Tmp_ClAvg][i];
(22) cMrgl=i; cMrg2=i+1;
end for

(23) if shortDist < (user-defined) similarity threshold value then
% merge the two clusters and calculate the mean, the total number of instances
and the highest-valued instance of the resulting cluster %

(24) var tmpl = Tmp_CIAvg[cIMrgl] x Tmp_TotIns[cIMrgl];
(25) var tmp2 = Tmp_ClAvg[cIMrg2] x Tmp_TotIns[cIMrg2];
(26) var tmp3 = Tmp_TotIns[cIMrgl] + Tmp_TotIns[cIMrg2];
(27) Tmp_ClAvg[cIMrgl] = (tmpl + tmp2)/tmp3;
(28) Tmp_TotIns[cIMrgl] = tmp3;
(29) Tmp_ClMax[cIMrgl] = Tmp_CIMax[cIMrg2];
% Remove() function deletes an element at the specified position %
(30) Tmp_ClAvg.Remove(cIMrg2);  Tmp_TotIns.Remove(cIMrg2);
(31) Tmp_CIMax.remove(cIMrg2); k=k-1;
(32) else
(33) repeat_HAC = false; % all the cluster centers are far away
from each other — the halting condition of HAC algorithm %
(34) if k == 1 then repeat_ HAC = false; % single cluster %
(35) while repeat_HAC # false % termination condition %

% store the average and maximum transition times back into Clus_Avg(]
and Clus_Max([], respectively; also calculate the probability values and store
them in Clus_Prob[] (note: k is the resulting number of clusters) %

(36) var tmpl =k — 1;  var tmp2 = 0;

(37) for i = 0 to tmpl do
% remove the clusters that have very low support (means: outliers) %

(38) if (Tmp_TotIns[i]/N) > (user-defined) probability threshold value then

(39) Clus_Avg[tmp2] = Tmp_ClAvg[i]; Clus_Max[tmp2] = Tmp_CIMax[i];
(40) Clus_Prob[tmp2] = Tmp_TotIns[i]/N; tmp2 = tmp2 + I;
(41) else k=k-1; % decrease the total number of clusters %

end for

ALGORITHM 3: Function HAC_Algorithm().
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TABLE 2: Example set of transition rules.
Example Example Example
Current signal state Next signal state (transitI;(?n) (Ii’;?;%iegnal’i:;ge Enax1mll)mi tra(nsitiorI; Figne
probability transition time probability
Groupl-Device2-Signal2_OFF Groupl-Device2-Signal2_ ON 0.7 20.34 20.35 1
Groupl-Device2-Signal2_ OFF  Groupl-Device2-Signal4_ON 0.3 51.08 5111 1
Groupl-Device2-Signal2_.ON  Groupl-Device2-Signal4_ON 1 15.07 15.13 1
Groupl-Device2-Signal4_OFF Groupl-Device2-Signal2_OFF 1 8.44 8.45 1
Groupl-Device2-Signal4_ ON  Groupl-Device2-Signal4_OFF 1 20.45°  60.02" 2051 6015 0.3" 0.7"

*Two transition times and their corresponding transition time probabilities.

Number of Average Maximum
Hash value . Number of L o . f d
£ transition transition occurrences transition transition Time cour}t_er or secon
° times time time transition time
Null Null Null Null Null
T
Transition 5 2 Counter Time Pointer Time
counter _| —>| 20.51 Counter 60.15 Counter counter
| A
Null Null Null Null Nul .
Time counter for first
K transition time
Transition 3 1 Counter Time 15.13 Counters for calculating transition
counter . a2,
time probabilities
i Time
Transition 1 1 Counter counter 20.35
Null Null Null Null Null
. Time
Transition 2 1 Counter counter 51.11
Transition 4 1 Counter Time 8.45 Time counters in “average transition time”
counter .
column are used for calculating the average
transition times of the transitions
Null Null Null Null Null

FI1GURE 10: Index hash table: hash table representation of signal-state I/O models.

(unsigned) 32 bits (which means the default size of the hash
value of a transition is 64 bits). Actually, PLAT decides the
size of the hash values and the seed value of the hash function
in such a way; thus no hash code collision occurs (at the
time of preprocessing the PLC program symbol list). This
ensures that no faults can be missed due to the hash code
collision. Second column of the index hash table stores the
number of transition times. In the third and fourth column,
a set of counters are maintained for calculating the transition
probabilities and the average transition times, respectively. In
the fifth column, maximum transition times of the transitions
are stored; thus transition time errors can be identified. If
a transition has more than one maximum transition time,
then they are stored through a pointer to an array, and
counters are maintained in that array so that transition time
probabilities and average transition times can be calculated
(time counter for calculating the average transition time is
not needed for the first transition time; see Figure 10 also).
In Figure 10, some example insertions of the transition rules
from Table 2 are shown (for clarity, the row numbers of

Table 2 instead of actual transition names are shown). The
structure of index hash table’s fifth column is similar to the
data structure of Figure 9(b) and used for the same reason.
Here we could eliminate pointers in the index hash table by
converting the fifth column into the sequential structure as
done in Figure 8. However, we have not done this because a
very small number of transitions will have multiple transition
times and, for these, the number of times will not be high.
Hence, pointer access would not be reduced much. If we wish
to convert the fifth column of the index hash table into a
sequential structure, then we have to build it separately from
the other four columns (as done in Figure 8(b)). This will
cause significant increment in the number of cache misses
for poor locality of reference that pointer access elimination
cannot compensate (this effect is shown in our experimental
section and this structure is referred to in that section as
“sequential index hash table”).

After creating the index hash table, PLAT also creates
another two hash tables, the “device hash table” and the
“group hash table” (shown in Figures 11(a) and 11(b), resp.);



Computational Intelligence and Neuroscience

16
Device name Starting signal Current signal- Appearance
hash value name hash value state name time
Null Null Null Null
. Starting- Groupl-Device2-
- t
Groupl-Device2 Signal-12 Signal2-OFF !
Null Null Null Null
. Starting- Null Null
Groupl-Devicel Signal-11 u u
. Starting-
Groupl-Device3 Signal-13 Null Null
Null Null Null Null
e Starting-
Group2-Devicel Signal-21 Null Null
. Starting-
Groupl-Device4 Signal-14 Null Null

Group name Current signal- Appearance
hash value state name time
Null Null Null
Gt | Crgupl Dot 2
Null Null Null
Group3 Null Null
Group2 Null Null
Null Null Null

()

(b)

FIGURE 11: Device and group hash table structures. (a) Device hash table: hash table structure for storing signal-state information of devices.
(b) Group hash table: hash table structure for storing signal-state information of groups.

thus rapid searching for faults and behavioural anomalies in
the index hash table becomes possible during query database
processing. Actually, in the index hash table, we store all
possible transitions of all the groups and the devices. Now,
in order to find a transition for a group or a device, we
must store its current signal-state until its next signal-state
appears in the query database. For that reason, PLAT creates
these two hash tables. In the first and second columns of the
device hash table, hash values of the device names and the
starting signal names are stored (recall from Section 2.3.1 that
a device is represented by its starting signal in the signal-
state I/O model of its group). Similarly, the first column of
the group hash table stores the hash values of all the group
names (the MurmurHash2 hash function [40] is used for all
the hashing and the (default) size of the hash values is 32 bits).
The last two columns of device hash table (third and fourth
column) and group hash table (second and third column) are
filled with null values. These columns will be used during
the query database processing phase. After completion, these
three hash tables are saved into the file system for future use.
We now discuss the hash table collision resistance mechanism
taken by PLAT. In the hash tables of Figures 10 and 11, we
map 64-bit or 32-bit (unique) hash codes into small number
of hash buckets to get the corresponding position; and this
may produce many hash table collisions. Several collision
resolution strategies have been introduced in the literatures
such as chaining, linear probing, and double hashing [25]. In
our hash table structures, each key has several corresponding
values and continually accessing those key-values through
a pointer would be highly expensive in case of chaining

approach. Hence, we use double hashing as our collision
resolution technique. In double hashing, it is expected that it
will produce much less probe sequences than linear probing,
which will indeed make it much faster than linear probing
[25, 42, 43]. In literature it is often argued that, in practice,
linear probing is a better choice than double hashing due to
more effective use of cache memory [42]. Actually, in the
literature, most of the time linear probing has an advantage
over double hashing because (i) uniform data distribution is
used which gives it fewer probing sequences (generally not
true in our case) and (ii) the hash table records are very small
(therefore, a single cache line contains many records) and,
hence, linear probing takes advantage of more cache hits [42].
As can be seen from our hash table structures, the record
length is quite large and, therefore, very few records can
be fit into a single cache line. Hence, linear probing cannot
take advantage of more cache hits that could compensate
the performance penalty caused by a high number of probe
sequences. We use double hashing function of C# 2.0 [44]
for this purpose because it can be computed very fast and we
have seen in practice that it gives very few probe sequences.
This hash table based effective indexing of the signal-state
I/O models becomes possible only because of our device-
group based control process modelling approach (note that
a hash table lookup or a hash table insertion operation has on
average constant time complexity [25]).

2.6. Fault and Behavioural Anomaly Detection Procedure. In
this section, we discuss the procedure used by PLAT to
identify the faults and behavioural anomalies in detail. Recall
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from Section 2.3 that if from the query database we find any
transition that is not present in the signal-state I/O models (or
in the index hash table), then we can conclude that fault has
taken place in the control process. Similarly, if any subsystem
or group stops producing the log data records for a very
long period of time, then also we can conclude that a fault
has occurred in the control process (identified by using the
timer counters, one for each group). Please note that a fault
cannot remain unidentified in this process because a system
cannot generate the exact same transition sequences of the
devices and groups (as in the index hash table) after the
occurrence of a fault (in other words, a fault will eventually be
detected since the observed faulty behaviour will eventually
be distinguishable from the fault-free behaviour) [11, 12,
14]. If the transition time for a particular query transition
lies below a certain threshold (user-defined, usually very
small) of its corresponding maximum transition time, then
we conclude that it is a “correct” transition. Otherwise, it
signifies that a transition time error has occurred (the user-
defined time threshold value is set in such a way; thus it
assigns a larger threshold value to the transitions that have
high-valued transition times). If there exists more than one
maximum transition time (which implies multiple transition
times; see Figure 10), then the maximum transition time
instance that is most similar to the query transition time is
taken as the corresponding maximum transition time (by
which classification is done). The transition time property of
the transitions is verified for every transition found in the
query database. However, the other three properties, that is,
transition probability, average transition time, and transition
time probability are verified only when the system enters
the steady state. For simplicity, these properties are verified
periodically, after processing a large number of log data
records from the query database. We should also mention
that these three properties of the transitions are required
to be verified according to the order of their corresponding
transition positions in the complete transition sequence.
This is because the preceding transitions always have an
impact (especially in case of transition time behaviour) on the
succeeding transitions. Some behavioural anomalies (that do
not have significant impact on system operation) can remain
undetected in this process (see Section 2.3 for details). This is
because it is hard to set all the user-defined parameter values
precisely in all the cases. However, if we set the parameter
values reasonably, then the number of such undetectable
anomalies will not be so high in practice.

We now discuss the actual query database processing
mechanism of PLAT. In the query database processing phase,
PLAT first loads all the three hash tables (the index, device,
and group hash table) into memory and then it starts to
process each log data record of the query database. The
symbol name of each log data record is converted to the
signal-state name (as done before) and then is stored (along
with the time stamp) into the device hash table or group
hash table until the next signal-state of that device or group,
respectively, is found. The position of the signal-state name
in the device hash table (resp., group hash table) can easily
be found by hashing the device name (resp., group name)
of that signal-state and comparing it with the first column
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values of the device hash table (resp., group hash table).
Whether a signal-state belongs to the starting signal of the
device or not can easily be identified using the second
column of the device hash table. In Figure 11, an example
insertion of the first log data record from Figure 9(a) is
shown (suppose the log data records of Figure 9(a) form
the query database). After receiving the next signal-state,
the transition is searched into the first column of the index
hash table. If a device or group transition is not found in
the index hash table, that signifies fault has occurred in the
control process. Hence, PLAT reports this in the file system,
indicating between which signal-states the transition error
(or fault) has occurred. The device hash table and group hash
table are saved into the file system for the first identified
transition error to identify the complete control process state
after which a fault has occurred (this can be used by engineers
along with previously saved signal-state I/O models for fault
diagnosis). If the transition name is found in the index hash
table, then the transition time of that query transition is
compared with its corresponding maximum transition time
(stored in fifth column) to identify transition time errors.
We can calculate the transition time from the time stamp
of the previous signal-state stored in the fourth column of
the device hash table (resp., third column of the group hash
table). If a transition or transition time error has not occurred
then corresponding counters for calculating the average
transition time, transition, and transition time probability
in the index hash table are updated. After finishing this
search, the columns of the device hash table (resp., group
hash table) that store the previous signal-state information
(signal-state name and time stamp) of that device (resp.,
group) are updated by the current signal-state information.
This fault and transition time error searching procedure
is repeated for all log data records of the query database.
After processing a fixed number of log data records, PLAT
periodically checks if there are any significant changes that
have occurred in the average transition time, transition, and
transition time probability. This checking can be easily done
using the counters maintained in the index hash table and
the set of transition rules (signal-state I/O models) previously
reported by PLAT. It also examines periodically whether a
timer counter of any group (maintained separately in an
array, not shown for the sake of space) has got expired or
not (the counter-reset operation is performed whenever a
signal-state of its corresponding group is observed). If so,
then the last observed signal-state is reported to the file;
thus the engineers can easily identify after which signal-state
the manufacturing process has stopped its execution. All the
faults and behavioural anomalies found by PLAT are reported
to the file (referring the names of the associated signal-states)
for further analysis. It is easy to perceive from this discussion
that the error searching procedure of PLAT has on average
constant time complexity (because of the hash table searches).

From the above discussion, it is clear that PLAT is com-
pletely automated, does not require much domain knowl-
edge, and can operate within a small memory footprint [space
complexity is O(I(N + M)), where [(>1) is a small number
(depends on the manufacturing system), N is total number
of PLC I/O signals, and M is total number of devices]. So,
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FIGURE 12: The consequence of system alarm execution.

it can easily handle a large manufacturing system with a
reasonable computer configuration. It is easy to realize that
if the control process model is fully converged then PLAT
does not produce any false positives during fault searching.
The model convergence problem can largely be avoided if
the model is built on a large reference database. However,
sometimes the control process model cannot converge com-
pletely because of the system alarms. The system alarms are
used for handling irregular situations in a manufacturing
system (e.g., an overheated motor causes starting of the
coolant circulation). As this type of situation does not
occur frequently, its corresponding transition path may not
appear in the reference database. PLAT classifies such missing
“true” transitions as the invalid transitions (or faults). When
operations associated with a system alarm are executed, a
separate transition path gets generated in the signal-state I/O
model of its corresponding device. However, the execution
returns back to the normal transition path after some time
(see Figure 12). For this reason, PLAT does not halt its
execution immediately after identifying a fault. If the device
operation does not return back to the normal transition path
in between some user-defined time then PLAT decisively
concludes that fault has taken place in the control process
(this also helps to avoid several unimportant fault detections).
Otherwise, PLAT reports that transition path to the system
operator. If the system operator confirms it as a correct
transition path then PLAT incorporates it into the signal-state
I/0 model of its corresponding device. So, the control process
model building procedure of PLAT is not a one-time task, but
rather an ongoing procedure. In the next section, we provide
a detailed empirical evaluation of PLAT.

3. Experimental Study, Results, and Discussion

We have performed our experiments on both simulated
and real-world databases (all the databases are obtained
from UDMTEK Co., Ltd. [45]). All of our algorithms were
implemented in C++ and compiled using g++ 4.7.3 (no
special optimization flags were used).

3.1. Experiments with Small Simulated Databases. We have
tested PLAT for various small simulated (or virtual) man-
ufacturing systems in order to find its effectiveness (the
computer software simulation is done by using PLC Studio

software [46]). Among them, one small scenario is presented
in Figure 2. It works as follows: (i) a part is loaded to the
Part Loader and then it moves towards Robot 1 through rail
track; (ii) after reaching the end position, Robot 1 picks up the
part (first task) and then loads it to the Daecha (second task);
(iii) Daecha Clamp grips the part and Part Loader returns
back to its home position; (iv) after the Daecha Clamp is
closed, Robot 2 performs the sealing operation; (v) after the
sealing operation is completed, Daecha moves towards its
advanced position; (vi) when the Daecha is in its advanced
position, Daecha Clamp opens and the part is removed from
the system; (vii) then the Daecha returns back to its home
position; (viii) this group cycle starts again when another part
is set on the Part Loader (a simulation video of this virtual
system is provided in [47]). The signal-state I/O models of the
Daecha Clamp (called “DCLAMP”), Robot 1 (called “RBT1”),
and group found by PLAT are presented in Figures 13(a),
13(b), and 14, respectively. The objectives of the correspond-
ing control signals are given in Table 3 [in those figures, Part
Loader, Daecha, and Robot 2 are called “PrtLDR,” “DCHA,”
and “RBT2,” resp.]. For the interest of space, signal-state
I/O models of the Daecha and Robot 2 are not given (they
are similar to the signal-state I/O models of the Daecha
Clamp and Robot 1, resp.). In Figures 13 and 14, transition
properties are shown in TP [ATT, TTP; ATT, TTP] format
where TP, ATT, and TTP refer to the transition probability,
average transition time (given in seconds), and transition
time probability, respectively. The models are generated based
on a simulated database that contains log data records of
the twenty consecutive runs of the system (actually, this is
a virtual system and, hence, the state transitions occur very
quickly and the model convergence takes place within a
very few iterations). Some transitions in those figures have
multiple transition times (shown in green color). This is
because we presented the parts to the system with interval
of (approximately) 30 and 60 seconds (ten times each). The
transition time clusters are discarded if the support of a
cluster is less than 0.10 (as we have used very few training
records), and the clusters are merged if their centers has
distance less than 2 seconds. It is easy to see from Figures
13 and 14 that these models give an easy understandable
graphical representation of the control process behaviour to
operators. Moreover, detailed effects of the faults can easily
be found from these representations. We have thoroughly
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FIGURE 13: Signal-state I/O models. (a) Signal-state I/O model of Daecha Clamp. (b) Signal-state I/O model of Robot 1.

tested the fault detection accuracy of PLAT by making several
control signals (given in Table 3) faulty. In all cases, PLAT
is able to find accurately all the faults present in the system
in real time. The detection results of some of those faults
(related to the devices Part Loader, Daecha Clamp, and Robot
1) are given in Table 4. An example fault detection scenario
from this experiment is shown in [48], where we tested
PLAT by making PRT_CHK signal of the Part Loader device
faulty (also see Table 4, first row). As can be seen, PLAT can
detect the fault in real time before it propagates through the
system [a few examples of the inserted behavioural anomalies
and their corresponding detection results are also presented
in Table 4. However, they are given for exemplification
purposes only (actually, the transition execution or the
timing behaviour of a real-world manufacturing system is not
generally that very simple)].

3.2. Experiments with Real-World Large Databases. We ran
this experiment on a desktop computer with 3.20 GHz Intel i5
quad-cores CPU and 4 GB of DDR3 main memory, running
64-bit Ubuntu (version 13.04) as the operating system. The
processor has 6 MB of L3 cache shared by all of its cores. In
addition, each core has a private 32KB L1 instruction and
L1 data cache and 256 KB of L2 cache. We collected a log

database from a body-in-white (BIW) automotive manufac-
turing system (controlled by five PLCs) with approximately
4.32 million records for our experiments (among those,
approximately 3.32 million log data records were used for
model building and 1 million log data records were used for
searching faults and behavioural anomalies). The log database
was created by taking the log data records from 21,960 PLC
signals that operate a total of 1,620 devices (divided into six
groups). PLAT found in total 50,567 signal-state transition
rules while building the signal-state I/O models for the
devices and the groups. The parameter values set by us were
as follows: (i) the load factor of the hash tables was set to
0.6 (specifically, the closest prime number to that value); (ii)
for the CSk-means algorithm, we set the number of clusters
value k to 5 (in our case, transitions can have maximum of
two transition times); (iii) for the HAC algorithm, clusters
could only merge if their centers have distance less than 3
seconds; (iv) clusters are discarded if the support of a cluster
is less than 0.08 (see Algorithms 1, 2, and 3 for details). The
above defined parameter values are domain dependent but
can easily be set with a little domain knowledge and using
some empirical evaluations.

Although we used a high-configuration computer for our
experiments, our hash tables actually take in total less than
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TABLE 3: Description of signals: objectives of the control signals.
Signal name Type Description
OpSenl S input
poen ensormpy Identifies if left and right clamps are opened
OpSen2 Sensor input
DCLAMP CLOSE Output Notifies clamp closing operation
ClsSenl S input
soen ensot inpt Identifies if left and right clamps are closed
ClsSen2 Sensor input
OPEN Output Notifies clamp opening operation
HOME_POS Sensor input Identifies if robot is in its home position
READY Output Notifies robot is ready to start its work
PRT_PICK Output Notifies robot is picking up the part from the Part Loader
RUNNING Sensor input Identifies if robot is in running mode
RBTI 1ST_WORK_COMP Sensor input Identiﬁe.s if rf)bot picked up the part from the Part Loader (work
completion signal)
PRT_MOVE Output Robot is moving the part of Daecha
2ND_WORK_COMP Sensor input Identifies if robot placed the part on Daecha (work completion signal)
RET_HOME Output Notifies robot‘ is returning to its home position (will be ON until part
from Daecha is removed)
RBT1-HOME_POS Starting signal of Robot 1 Sensor signal that identifies if robot RBT1 is in its home position
PrLDR-RET Starting signal of Part Loader Seng}r signal that identifies if Part Loader PrtLDR is in its home
position
Group RBT2-HOME_POS Starting signal of Robot 2 Sensor signal that identifies if robot RBT2 is in its home position

DCLAMP-OpSenl  Starting signal of Daecha Clamp

DCHA-RET Starting signal of Daecha

Sensor signal that identifies if left clamp of Deacha Clamp DCLAMP
is opened

Sensor signal that identifies if Daecha DCHA is in its home position

20 MB of memory. In the control process model building
phase, PLAT is able to process 31,527 records per second.
Performance of PLAT for various hash table settings is shown
in Figure 15. As can be seen in that figure, PLAT can
process 107,128 records per second during query database
processing phase. Even though computers used in industries
have lower processing speed, this is a fairly high value
compared to log data records produced per second in the real-
world manufacturing industry. So, PLAT can easily detect
the control process faults (and transition time anomalies)
in real time. This was possible only because of the design
choices (such as device-group based process modelling and
hash table based model indexing) taken throughout this
paper (see Sections 2.3 and 2.5 for details). As can be seen
in Figure 15, if we replace the index hash table with the
sequential index hash table (see Section 2.5) then it decreases
the throughput by 895 records per second. We have observed
that this reduction is resulted because of 5.13% increment
in the number of cache misses. In the literature, because of
this caching effect, it is often argued that, in practice, linear
probing is a better choice than double hashing. However,
in our case linear probing cannot increase performance by
caching mainly because of the large hash table record length.
Please note that the (default) size of the index hash table
records is 168 bit (see Figure 10) and, hence, a very few
records can actually be fit into a single cache line (even in
a high-configuration computer). So, linear probing cannot
take advantage of more cache hits that could compensate

the performance penalty caused by a high number of probe
sequences (the same is also true for other hash tables). Recall
that most of the time, linear probing produces much longer
probe sequences than double hashing (see, e.g., [25, 43]). The
comparison results of Figures 15 and 16 also give enough
support for this conclusion. As can be seen from Figure 16, if
we use linear probing strategy in index hash table, it increases
the total probe length by 15.68% over double hashing; and,
for the device hash table, this increment is 12.87% (which are
quite high increments). However, linear probing is primarily
motivated to decrease the number of cache misses through
better locality of reference. We have observed that, in case
of index hash table, it reduces the cache misses by 13.09%
over double hashing; and, for device hash table, this reduction
is 12.53%. As we can see in Figure 15, if we use linear
probing strategy in the index hash table (resp., device hash
table), throughput decreases by 5,980 records (resp., 3,045
records) per second (which means quite high performance
degradation in both cases). This gives enough evidence that
linear probing cannot take advantage of more cache hits that
can compensate the performance penalty caused by high
probe sequences. So, in our case double hashing is indeed
a better choice than linear probing (as argued previously);
and all the design choices taken during the model indexing
phase (see Section 2.5 for details) are certainly appropriate.
We should mention that similar performance results are also
obtained for other manufacturing systems (the results from
two additional experiments are shown in the Appendix).
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FIGURE 14: Signal-state I/O model of the group.
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Performance results of the clustering algorithms are given
in Figure 17. The result is taken on 7,027 transitions of
different devices and groups with a total of (approximately)
0.48 million transition time instances (some of these tran-
sitions actually have single transition time, however, with
some anomalies). To give an equal platform for comparison,
we took data points (transition times) from the sorted data
points following the uniform distribution and passed them
as seed values to the (traditional) k-means algorithm to give
the seeds better distribution. In Figure 17, the number of runs
specifies the value of parameter ¢ in CSk-means algorithm
(see Algorithms 1 and 2 for details) and the term “local
optima close to global optima” refers the local optima within
distance of 0.6 seconds to global optima. Actually, for a large
percentage of clusters, both CSk-means algorithm (>62%)
and k-means algorithm were unable to find global optima.
However, the percentage of clusters for which local optima
close to global optima is not found, is approximately 74%
for k-means (not shown for the interest of space) and for
CSk-means algorithm, this reaches less than 4% for some
suitable values of parameter € (for ¢ > 16, see Figure 17).
The particular importance of our seed value distribution
technique lies here. Although, in our CSk-means algorithm,
we are not able to find global optima for a large fraction of
the time, we are able to bind the local optima very close to it
most of the time. Most of our transitions (around 65%) take
more than 4 minutes to execute and, therefore, the definition
of “close” (less than distance of 0.6 seconds) is in practice a
very strict bound. As can be seen from Figure 17, when HAC s
applied after CSk-means algorithm (restricted to two clusters;
also see Algorithms 1 and 3), the percentage of clusters for
which the local optima close to the global optima is not
found is further reduced and reaches zero for some values of
e > 2. Actually, we have set our seeding technique in such
a way that the clusters are built based on data points that
are “far away” from each other (see Section 2.4.2 for details).
In some situation where the clusters are not well separated,
CSk-means algorithm gets trapped in local optima. However,
it recovers in the subsequent run of HAC as those clusters
are merged (this becomes possible only because CSk-means
algorithm does not get trapped into poor local optima); and
our overall clustering algorithm of Algorithm 1 finds the
global optima or local optima that are very close to the
global optima. In case of HAC with k-means algorithm, the
percentage of clusters for which local optima close to global
optima is not found is around 16% (which is quite high; see
Figure 17). Moreover, most of them are actually very poor
local optima (even if we relax the definition of “close” to
“less than distance four,” the graph in Figure 17 will not
change much). This is because, in k-means algorithm, the
seed points are simply distributed over the range of data
points, and (unlike CSk-means algorithm) the distribution of
the data points or the distances between the seeds have not
been taken into consideration. For this reason, CSk-means
algorithm always outperforms k-means algorithm (note that
the result of Figure 17 is taken based on a large number of
transitions with varied actual transition times; also see the
appendix to get more details about the performance results of
the clustering algorithms). In Figure 17, the parameter € does
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FIGURE 17: Comparison results of clustering algorithms.

not have much effect on clustering quality (as stated earlier),
if it is not set too low (which means very less penalization of
lower-order numbers). If the value is not set too low (& < 3),
then our overall clustering algorithm finds solutions within a
distance of 0.6 seconds to the global optima in all the cases
(which is quite strict bound). Recall from Section 2.4.2 that
our goal for clustering is to choose a representative data point
and use it to perform classification of the time instances
(finding global optima is not really our concern). It is true
that if the solutions are far away from global optima, then
it can severely affect our transition time error classification
scheme. However, as can be seen from Figure 17, our overall
clustering algorithm finds solutions very close to the global
optima for all the transition times and, hence, does not create
an issue for our purpose. If we use a very low value of k in
CSk-means algorithm, then our overall clustering algorithm
can end up with some solutions not close to the global optima
(in some cases, “true” clusters can be lost due to outliers).
However, if we use a slightly higher value of k (as done in
the above case), then these issues are significantly mitigated
and, hence, a slightly higher value of k is recommended (we
strongly encourage the readers to take a look at the appendix
for more information).

The accuracy of identifying transition time errors (or any
other types of behavioural anomalies) is hard to determine
as it varies depending on system operator’s perspective. The
operators often set various ranges to identify how compactly
the system is working (mostly performed oftline). Anyhow,
we have tested PLAT on a synthetic database (with the
same set of signals and devices as stated above) in order
to find this in the laboratory environment. The database
was created by inserting transition time errors (1,500 errors
inserted, normally distributed within range of 1.0 to 2.5
seconds of “true” maximum transition times) randomly into
the original database [we have considered the maximum
value of an actual transition time cluster as the true maximum

transition time and simply assumed that a transition time
error occurs if any transition take 1 second more than its cor-
responding maximum transition time]. The same experiment
is also conducted for faults (150 software-simulated faults are
inserted into the database). The fault and transition time error
detection accuracy of PLAT is given in Table 5 (averaged over
five runs). As can be seen in that table, PLAT detects all the
faults present in the system accurately (actually, no faults can
remain unidentified in PLAT, as argued in Section 2.3); and,
in most of the cases (86% cases), PLAT is able to identify the
transition time error correctly (also see the appendix). It is
unable to find the remaining transition time errors mainly
because of merging of the “actual” transition time clusters.
As an example, consider the working procedure of stacker
device (a simulation video of the stacker device (similar to
the real one) is given in [49]). The stacker device works
as follows: (i) the stacker robot moves towards the left or
right direction and fixes the stacker clamp in an appropriate
position; thus the stacker arm can pick the right part from
its storage location; (ii) the stacker arm picks the part and
places it on the shuttle; (iii) then the stacker returns back to its
home position. As can be seen in [49], signal-state /O model
of the stacker device has multiple transition paths from its
starting signal-state node; and, for that reason, some of its
transitions actually have multiple transition times, depending
on which part the stacker device is processing. However, as
they do not vary much (<1 second, on average), the actual
transition time clusters are merged. For this reason, in case
of stacker device, PLAT is unable to locate some of the
transition time errors (the same occurs for the corresponding
transition time probabilities). It is hard to eliminate this kind
of inaccuracy for an automated tool without any domain
knowledge. However, even in this kind of situation, if the
transition time errors vary much (3.2 seconds for the above
experiment), PLAT can detect all the transition time errors
accurately [similar detection accuracy is also achieved in
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TABLE 5: Accuracy of the fault and behavioural anomaly detection procedure of PLAT.

Total number of
identified faults

Total number of
inserted faults

Accuracy of fault
identification

inserted transition

Total number of
identified
transition time
errors

Total number of Accuracy of
transition time

time errors error identification

150 150 100%

1500 1304 86.93%

case of the transition and transition time probability errors;
however, for the interest of space, we have omitted those
redundant results].

We have not compared PLAT with any other approaches
mentioned in Section 1 because, they are not intended to
identify the faults in real time from a large database; and
forcing them to achieve so will be highly unfair. In addition,
there is no straightforward way to accomplish that (see
Sections 1 and 2.3 for details).

4. Conclusion

In this paper, we presented an automated tool called PLAT
that can detect faults and behavioural anomalies associated
with PLC control processes in real time. Our experimental
section shows that PLAT is significantly fast, can process
more than 100 K log data records per second, and can easily
execute within a small memory footprint. From the structures
of hash tables and the working procedure of PLAT, it is
easy to perceive that the fault and behavioural anomaly
detection procedure of PLAT has linear space and constant
time complexity. Our experiments show that PLAT can
easily handle a large manufacturing system with a reasonable
computer configuration and can be installed in parallel to the
datalogging system in order to identify faults and behavioural
anomalies instantly. PLAT can accurately identify all the
faults present in the PLC signal log database. Some less
significant behavioural anomalies can remain unidentified;
however, the number of such anomalies will not be so
high in practice. PLAT can also handle informationally
centralized manufacturing systems efficiently. This becomes
possible because of our top-down hierarchical (or group-
device based) control process model structure. Future work
planned will be to

(i) refine the algorithms of PLAT so that it can identify
the root causes of the faults and behavioural anoma-
lies and can suggest corrective actions;

(ii) investigate models with predictive and preventive
fault finding features.

Appendix

Experiments with Two Additional Real-World
Large Databases

We acquired two log databases from two different BIW
automotive manufacturing systems for our experiments.
Brief details of those two databases are given in the following:

(i) The first database (called Database A) contains
approximately 3.70 million log data records. Among
those, approximately 2.70 million log data records
were used for model building and 1 million log
data records were used for searching faults and
behavioural anomalies. The log database was created
by taking the log data records from 14,467 PLC signals
that operate a total of 1,127 devices (divided into four
groups).

(ii) The second database (called Database B) contains
approximately 3.45 million log data records. Among
those, approximately 2.45 million log data records
were used for model building and 1 million log
data records were used for searching faults and
behavioural anomalies. This log database was created
by taking the log data records from 13,896 PLC signals
that operate a total of 973 devices (divided into four

groups).

While building the signal-state I/O models for the devices
and groups, PLAT found in total 33,394 and 31,976 signal-
state transition rules for Database A and Database B, respec-
tively [all the experimental settings are the same as specified
in Section 3.2 (Ist paragraph)]. In both cases, PLAT takes
in total less than 18 MB of memory. For Database A, the
performance result of PLAT for various hash table settings
is shown in Figure 18 and the comparison result of the probe
lengths (linear probing versus double hashing technique) is
given in Figure 19. For Database B, the performance result
of PLAT for various hash table settings is given in Figure 20
and the comparison result of the probe lengths is presented in
Figure 21. From the experimental results presented in Figures
18-21, we can draw the following conclusions:

(i) PLAT is significantly fast; it can process more than
125K log data records per second (which means
PLAT can effectively detect the control process faults
in real time).

(ii) In our case, the double hashing probing technique
always exhibits a much better performance compared
to the linear probing technique. If we use linear
probing strategy in our hash tables, it increases the
probe length up to 19.31 percent and decreases the
throughput up to 9,424 records per second (which is
quite high decrement).

(iii) If we replace the index hash table with the sequential
index hash table, it always decreases the throughput
of PLAT (not very much; it decreases the throughput
up to 474 records per second).
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FIGURE 23: Comparison results of clustering algorithms for Database B.

(iv) So, all the design choices taken during the hash table
structure and the control process model designing
phase (see Sections 2.3 and 2.5 for details) indeed
improve the performance of PLAT.

The rationale behind the above results is thoroughly
explained in Section 3.2 (2nd paragraph).

Performance results of the clustering algorithms for
Database A and Database B are given in Figures 22 and
23, respectively. For Database A, the performance result was
taken on 4,976 transitions with in total (approximately) 0.44

million transition time instances; and, for Database B, the
performance result was taken on 3,383 transitions with in
total (approximately) 0.28 million transition time instances.
The transitions can have maximum of three transition times
[all the other clustering parameter values and the experi-
mental settings are the same as specified in Section 3.2 (st
and 3rd paragraph)]. To summarize the presented results, the
following conclusions can be drawn:

(i) HAC with CSk-means algorithm always outperforms
HAC with k-means algorithm.
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TABLE 6: Accuracy of the fault and behavioural anomaly detection procedure of PLAT.

Total number of Total number of Accuracy of

Accuracy of . . . L
Total number of Total number of fault inserted identified transition time
inserted faults identified faults e transition time transition time error

identification . e

errors errors identification
Database A 150 150 100% 500 461 92.20%
Database B 150 150 100% 500 449 89.80%

(ii) If we set the number of clusters values k to 8, in very
few cases, CSk-means algorithm is not able to find
the local optima close to global optima (on average
approximately 8% and 3% of cases for Database A and
Database B, resp.). When HAC is applied after CSk-
means algorithm, the percentage of clusters for which
the local optima close to global optima is not found is
further reduced and reaches zero for both databases.
So, our clustering algorithm finds solutions very close
to the global optima for all the cases and, hence, does
not create an issue for our error classification purpose.

(iii) If we set the number of clusters values k to 7 (lower
value of k), in relatively large number of cases, CSk-
means algorithm is not able find the local optima close
to global optima (on average approximately 14% and
7% of cases for Database A and Database B, resp.).
Moreover, the clustering algorithm of Algorithm 1
ends up with some solutions not close to the global
optima (on average approximately 3% and 0.6% of
cases for Database A and Database B, resp.). This
is the reason why a slightly higher value of k is
recommended.

(iv) The parameter € does not have much effect on clus-
tering quality if it is not set too low (we recommend
to set the value of parameter e close to 20, as it always
exhibits a quite good performance result).

(v) We have observed that the average number of iter-
ations of CSk-means algorithm (2.17 iterations, on
average) is much lower than k-means algorithm (4.89
iterations, on average).

The definition of “local optima close to global optima”
and parameter € can be found in Section 3.2 (3rd paragraph)
and Algorithm 1, respectively. The rationale behind the above
results is thoroughly explained in Section 3.2 (3rd paragraph).

We have tested PLAT on some synthetic databases in
order to find its fault and transition time error identification
accuracy. The synthetic databases were created by inserting
the faults (150 software-simulated faults are inserted) and
the transition time errors (500 errors are inserted, normally
distributed within range of 1 to 3 seconds of maximum
transition times) randomly into the original databases [all
the other experimental settings are the same as discussed in
Section 3.2 (4th paragraph)]. The results of this experiment
are provided in Table 6 (averaged over five runs). Based on
the results presented, the following conclusions can be made:

(i) PLAT can accurately identify all the faults present in
the PLC signal log database (we have also empirically
found that the NDAAO automaton based approaches
[10-12] can detect all the faults present in the log
database).

(ii) Some less significant transition time errors can
remain unidentified; however, the number of such
anomalies will not be so high in practice (as can be
seen in Table 6, it is less than 11%).

Please note that in all the above cases, if the inserted
transition time errors vary much (>3.7 seconds) then PLAT
can detect all the transition time errors accurately.
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