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Abstract

Protein misfolding has been implicated in a large number of diseases, which are now grouped under the name of
Protein conformational disorders (PCDs). Few examples of diseases that fall in this group are Alzheimer’s disease,
Parkinson’s disease and Huntington’s disease. All these disorders are characterized by sets of protein that misfold
and aggregate in specific tissues. In order to identify and develop possible routes of therapeutic strategies, scientists
have discovered several modifiers for these fatal diseases. These modifiers, primarily identified using models
systems, include heat shock proteins, components of UPS pathway and autophagy, transcription factors, detoxifying
enzymes, several RNA binding proteins, and RNA species, among other examples. These reviews will focus
primarily on cellular processes that are affected in Polyglutamine disorders.
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Introduction
Expansion of CAG trinucleotide repeat sequences has been

associated with a number of inherited human disorders [1-3]. These
neurodegenerative diseases include Huntington’s disease (HD),
Spinocerebellar ataxias, type 1 (SCA-1), type 2 (SCA-2), type 3 (SCA-3,
also known as Machado-Joseph disease), type 6 (SCA-6), type 7
(SCA-7), Dentatorubropallidoluysian atrophy (DRPLA) and
Spinobulbar muscular atrophy (SBMA) [4-9]. With the exception of
SBMA, all these neurodegenerative diseases are inherited in an
autosomal dominant manner. The CAG repeat expansion occurs in the
translated region of the gene that encodes a stretch of polyglutamines.
In SCA-2, SCA-3, HD, and SBMA, repeats are found in the first exon,
while those in the SCA-1, SCA-7 and DRPLA are located in the eighth,
third and fifth exons, respectively [2,4-6,8-10]. The expansion of CAG
repeats in all these cases has been classified as “dynamic mutation” in
which the repeat number changes during intergenerational
transmission. Polyglutamine expansion disorders are characterized by
“genetic anticipation”, i.e. there is a progressively earlier onset and
increased severity in successive generations in a family [11-13].
Anticipation has a sex bias and is most pronounced on paternal
transmission [14]. A common feature of these diseases is that they
become clinically evident only late in life. These diseases are also
characterized by selective vulnerability of neurons despite widespread
expression of the diseased protein in brain and other tissues [15]. It is
important to note that the genes causing these diseases show no
homology to each other, except in the highly polymorphic CAG tract
but pathogenicity results when the CAG tract in the disease causing
allele expands beyond a threshold of 35-40 CAG repeats [16-20]
(Figure 1).

Figure 1: Mechanism of cellular pathogenesis in Poly-Q expansion
diseases. a) Normal cell showing normal transcription and protein
turnover. b) Diseased cell expressing expanded hunting tin protein
that undergoes proteolytic cleavage and interacts with
transcriptional and Proteasomal machinery inside the cell. This
aberrant interaction leads to transcriptional dysregulation and
proteasomal blockage. (Image adapted from Jhang Ho Cha, Trends
in Neurosciences, 2000).

Aggregates and PolyQ Toxicity
A morphological feature that characterizes these polyQ expansion

disorders is the presence of intracellular aggregates in neurons of
affected patients, in vitro cell culture studies and also in mouse and fly
models [21-25]. These aggregates are truncated polyglutamine
fragments. Aggregates are found both in cytoplasm and nucleus and
are often referred to as cytoplasmic and nuclear inclusion bodies,
respectively. Whether inclusion bodies are pathogenic or are protective
to a cell is still debated [14,26]. But their presence in neuronal cells that
later undergo degeneration and death intrinsically links them to
pathogenecity [21-23]. Furthermore studies have shown that mice
expressing full length huntingtin [27] and mice expressing ataxin-1
lacking the self association domain of the protein develop specific
neuronal loss characteristic of the disease in the absence of aggregates
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[17]. Thus aggregates may not be required for neuronal loss but may be
representative markers of neurotoxicity.

Cellular Processes Affected in Polyglutamine Diseases
All the CAG-repeat diseases share common features like adult onset,

progressive neurodegeneration, generational anticipation and a
remarkable threshold-expansion length which suggests that these
diseases may share a common pathogenetic mechanism [14]. Genetic
data suggests new gain of function acquired by these expanded
proteins to be important in manifestation of the disease phenotype
[19].

As discussed below, studies in cell culture and in model organisms
have implicated several cellular processes to be affected in these
diseases [28].

Transcription
The possibility that the mutant polyQ proteins may affect nuclear

functions arose when it was noted that nuclear localization of the
protein increases toxicity. Transcriptional dysregultion may be a
primary pathogenic process affected in polyglutamine diseases
[17,29-31]. Many transcription factors contain glutamine rich regions.
Other proteins that contain significant polyglutamine stretches include
transcriptionally active molecules like N-Oct-3 (a nervous system
specific POU domain transcription factor) [32,33], TATA binding
protein (TBP), a transcriptional co-activator with intrinsic histone
acetyltransferase activity, [34-36], CREB-binding protein (CBP), a
transcriptional co-activator with histone acetylase function [37,38] etc.
Interaction of polyQ aggregates with transcriptional factors can be
mediated via the polyglutamine-tract present in the other proteins.
Several studies have shown that nuclear inclusions of mutant Htt
contain transcriptional co-activators such as CBP, an acetyl transferase
(AT) etc. [38]. CBP and other histone acetyl transferases act as co-
activators of transcription by modifying histones and other proteins to
increase transcription. Whether sequestration of transcriptional factors
is relevant to neuropathology in vivo was examined in Drosophila
models. Using Drosophila model of Huntington’s disease, a direct
relevance of reduced acetylation activity and/or enhanced
deacetylation was established. Histone deacetylases (HDACs) work in
concert with histone acetyl transferases (HATs) to modify chromatin
and regulate transcription [39]. In Drosophila model of Huntington’s
disease, genetic reduction of Sin 3A co-repressor activity or
introducing inhibitors of histone deacetylases like SAHA have been
shown to rescue the neurodegenerative phenotype associated with
Huntington’s disease [38]. Following the promising finding in
Drosophila, the therapeutic potential of SAHA (Suberoylanilide
hydroxamic acid) and another HDAC inhibitor, phenylbutyrate was
tested in HD transgenic mouse models. Two mice models, R6/2 and
HD-N171-82Q, expressing truncated portions of Htt was used in the
study [40,41]. SAHA dramatically improved the motor impairment in
R6/2 mice and phenylbutyrate revealed an overall improvement in the
condition of HD-N171-82Q transgenic mice which showed decreased
striatal atrophy [40,41] .These study validated this class of compounds
as HD therapeutics [41].

Further work with a poly-Q Drosophila model showed complete
rescue of neurodegenerative phenotype by over expression of a
endogeneous Drosophila CBP (dCBP) [42]. Rescue of phenotype was
also associated with eradication of polyglutamine aggregates, recovery
of histone acetylation level and normalization of transcription profile

[42]. It is important to note that this was the first report of rescue of
neurodegenerative phenotype which was associated with lessening of
burden of mutant polyQ aggregates in cells. This finding is in contrast
to other findings where previously known suppressors of
polyglutamine toxicity such as Drosophila heat shock protein 70
(dHSP70), Drosophila heat shock protein Hdj1 (dHDJ1), Drosophila
tetratrico repeat protein (dTPR2) and Drosophila myeloid leukemia
factor (dMLF) rescued phenotype but did not have any effect on
formation of aggregates in diseased cells [24,43,44]. Thus the
transcriptional dysregulation seems to be an important component of
pathogenesis in polyglutmine induced neurodegeneration.

Protein folding and turnover
The mutational mechanism associated with the neurodegenerative

diseases is a dominant toxic gain of function attained by the expanded
proteins rather than loss of function [14]. The different CAG repeat
disease proteins do not share any homology except in the
polyglutamine tract. PolyQ expansion confers a dominant toxic
property on the protein that leads to neuronal dysfunction and
degeneration [16,18-20]. Evidence suggests that polyglutamine
expansion increases the probability that the protein will attain an
abnormal conformation. In vitro studies have shown that PolyQ self
associates to form amyloid like fibrils and several studies in diseased
tissue, transfected cells and in animal models have demonstrated
expanded polyQ protein to form intracellular inclusions [45-47]. These
inclusion bodies have been shown to be associated with various
molecular chaperones and proteasome components [14]. The
association of inclusion bodies with proteasome components impairs
the function of Ubiquitin-Proteasome system (UPS) [48,49]. Since the
UPS normally controls the quality of proteins by degradation, a
blockage of UPS might result in accumulation of misfolded proteins
that are produced during normal protein turnover. Thus it appears that
cells recognize aggregated disease protein as abnormal protein and
recruitment of chaperone and proteasome to the inclusion bodies is for
refolding and or degradation of the mutant protein [14]. Recently, it
has been reported ataxin 3 physically interacts with VCP and regulates
proteasomal degradation of substartes derived from ER [50]. Ataxin-3,
is a 42 Kda cytoplasmic protein and expansion of poly-Q repeat in
ataxin -3 causes the most common form of autosomal dominant SCA,
also known as SCA-3 or Machado-Joseph disease [51]. Using a
Drosophila melanogaster model of SCA 3, it was shown that over-
expression of molecular chaperones results in suppression of the
neurotoxicity associated with these diseases [52,53].

Concluding Remarks
Understanding the molecular basis of neurological diseases will help

us to find drugs that can prevent or to some extent delay the onset of
these fatal disorders. With the advent of animal models it has been
possible to establish the sequence of pathological changes that
characterizes these diseases. Transgenic mice expressing diseased genes
have allowed studies of the early phenotypic changes as patient
material for such a kind of analysis is seldom available. These animal
models also provide an opportunity to test several potential therapies,
which can be aimed to block or slow down the progressive neuro-
pathological phenotype [14,52].
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Therapeutic Strategies/Future Directions
As described in the sections above, transcriptional dysregulation is

the primary cause of pathogenesis in Drosophila and mouse models of
Huntington`s disease. Mutant huntingtin has been shown to disrupt
the activity of transcriptional factors with acetyltransferase activity.
HDAC inhibitos like suberoylanilide hydroxamic acid, sodium
butyrate, and phenylbutyrate have been shown to rescue
neurodegenerative phenotype in various animal models of HD diseases
[40,41,53,54]. Activation of cellular protein clearance pathway helps to
target the misfolded/aggregated disease protein. Geldenamycin and
Geranylgeranyla that stimulates the production of molecular
chaperone, Hsp70, has been a focus of therapeutic strategy for several
years [55]. Interestingly, mTOR inhibitior rapamycin that stimulates
autophagy and helps in clearance of aggregated proteins has been
proved to beneficial in cell, Drosophila and mouse model of poly Q
expanded diseases [56].
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