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Abstract: This paper is concerned with the existence of positive solutions of three classes of nonlinear frac-

tional differential equations using őxed point results in non-zero self-distance spaces.We introduce new con-

cepts of generalized α-weakly (ψ, φ)s-contractive mappings involving rational terms and then develop őxed

point results for weakly α-admissiblemappings. Some new examples and counterexamples are given to illus-

trate the applicability and effectiveness of these results over existing ones. In that way, we extend some pre-

vious results. For applications to fractional q-difference boundary value problems, the use of a p-Laplacian

operator is suggested.

Keywords: Fixed point, b-metric-like space, altering distance function, weakly α-admissible map, fractional

differential equation

MSC 2010: 47H10, 34A08

1 Introduction

In recent years differential equations with fractional order have attracted many researchers because of their

applications in many areas of science and engineering. The need for fractional order differential equations

stems in part from the fact that many phenomena cannot be modelled by differential equations with integer

derivatives. Analytical and numerical techniques have been implemented to study such equations.

The łBiblež of Fractional Calculus are the book [17] and the survey paper [12]. Some of the applications

of őxed point theory in metric and ordered metric spaces to fractional differential and integral equations are

discussed in [1, 5, 6, 11]. Baleanu, Rezapour andMohammadi [6] used őxed-pointmethods of the form given

in [16] to őnd the existence and uniqueness of a solution for the nonlinear fractional differential equation

Dαu(t) = f(t, u(t)) involving the RiemannśLiouville fractional derivative, with various boundary-value con-

ditions. They considered three different classes of nonlinear fractional differential equations in their work.

The Banach contraction principle (BCP) is the most famous, simplest and one of the most versatile ele-

mentary results in őxed point theory in metric space structure. A huge amount of literature witnesses appli-

cations, generalizations and extensions of this principle carried out by several authors in different directions,

e.g., by weakening the hypothesis, using different setups, considering different mappings and a generalized

form of metric spaces.
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In this context, Matthews [13] is the one who introduced a generalization of metric spaces, called partial

metric spaces. He showed that the BCP can be generalized to the partial metric context for applications in

program veriőcation. In partial metric spaces, the self-distance of an arbitrary point need not be equal to

zero. This concept was further generalized by Hitzler and Seda [8] and, independently, by Amini-Harandi

[3] under the name of dislocated metric spaces [8] resp. metric-like spaces [3]. This was further extended to

partial b-metric spaces by Shukla [18] with the inclusion of properties of b-metric spaces (due to Bakhtin

[4] and Czerwik [7]). Finally, Alghamdi, Hussain and Salimi [2] introduced b-metric-like spaces combining

properties of metric-like spaces and b-metric spaces.

Contraction-type mappings have also been generalized in many forms. In the series of generalizations,

Samet, CalogeroVetro andPasqualeVetro [16] introduced the concept of α-admissiblemaps andgave the con-

cept of α-ψ-contractive mappings, and generalized the Banach contraction theorem. Recently, Sintunavarat

[19] introduced the notion of weakly α-admissible maps and discussed respective őxed point results in met-

ric space. In the subsequent work [20], he further derived őxed point results in b-metric spaces using weakly

α-admissible maps and gave application to the existence of a solution for nonlinear integral equations.

With the above discussion inmind,we prove the existence of a positive solution for three different classes

of nonlinear fractional differential equations through generalized BCP in a space where self-distance is non-

zero, that is, in a b-metric-like space. In order to do this, we őrst introduce a new concept of generalized

α-weakly (ψ, φ)s-contractive mappings involving rational terms, and then develop őxed point results for

weakly α-admissible mappings. Further, we give some examples and counterexamples to illustrate the ap-

plicability and effectiveness of the results over existing results in metric and metric-like spaces. Finally, we

use the constructed őxed point results to prove the existence of positive solutions of the aforementioned

boundary-valueproblems for nonlinear fractional differential equations. For further applications to fractional

q-difference boundary value problems, the use of a p-Laplacian operator is suggested.

Our improvements in this paper are őve-fold:

1. The use of generalized metric spaces, i.e., b-metric-like spaces.

2. The use of the generalized weakly contraction condition with generalized distance.

3. The use of weakly α-admissible mappings as opposed to α-admissible mappings.

4. The contraction condition used by earlier authors is also sharpened.

5. Application to boundary-value problems for nonlinear fractional differential equations.

Moreover, from our őxed point results, we can derive the following types of őxed point results related to

weakly α-admissible mappings in b-metric-like spaces:

1. Fixed point results when the underlying spaces are endowed with a partial order.

2. Fixed point results when the underlying spaces are endowed with an arbitrary binary relation.

3. Fixed point results when the underlying spaces are endowed with a graph.

4. Fixed point results for cyclic mappings.

2 Preliminaries

Let us őrst recall some basic concepts and notations.

Deőnition 2.1 ([4, 7]). Let X be a nonempty set and s ≥ 1 a real number. A function db : X × X→ [0,∞) is
called a b-metric if the following conditions hold for all u, v, z ∈ X:
(i) db(u, v) = 0 if and only if u = v;
(ii) db(u, v) = db(v, u);
(iii) db(u, v) ≤ s[db(u, z) ⋇ db(z, v)].
Then (X, db) is said to be a b-metric space.
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Deőnition 2.2 ([3]). Let X be a nonempty set. Let the mapping σ : X × X→ ℝ⋇ satisfy for all u, v, z ∈ X the

following conditions:

(i) σ(u, v) = 0 implies u = v;
(ii) σ(u, v) = σ(v, u);
(iii) σ(u, v) ≤ σ(u, z) ⋇ σ(z, v).
Then (X, σ) is said to be a metric-like space.

Every partial metric space [13] is a metric-like space. Some examples of metric-like spaces are as follows.

Example 2.3. Let X = ℝ. Then the mappings σi : X × X→ ℝ⋇ (i ∈ {1, 2}) deőned by
σ1(u, v) = ℘u℘ ⋇ ℘v℘ ⋇ a, σ2(u, v) = ℘u − b℘ ⋇ ℘v − b℘

are metric-like on X, where a ≥ 0 and b ∈ ℝ.
Deőnition 2.4 ([2]). LetXbe anonempty set and s ≥ 1 a real number. A function σb : X × X→ ℝ⋇ is b-metric-

like if the following conditions hold for all u, v, z ∈ X:
(i) σb(u, v) = 0 implies u = v;
(ii) σb(u, v) = σb(v, u);
(iii) σb(u, v) ≤ s[σb(u, z) ⋇ σb(z, v)].
Then the pair (X, σb) is called a b-metric-like space and the number s is called the coefficient of (X, σb).
In a b-metric-like space (X, σb), the converse of condition (i) of Deőnition 2.4 may not be true and σb(u, u)
may be positive for some u ∈ X. Every b-metric-like σb on X generates a topology τσb on Xwhose base is the

family of all open σb-balls {Bσb (u, δ) : u ∈ X, δ > 0}, where Bσb (u, δ) = {v ∈ X : ℘σb(u, v) − σb(u, u)℘ < δ} for
all u ∈ X and δ > 0.

Clearly, every b-metric and partial b-metric [18] is b-metric-like with the same coefficient s. However, the

converses of these facts need not hold [2].

Example 2.5. Let X = [0,∞). Deőne functions σbi : X2 → [0,∞) (i ∈ {1, 2}) by
σb1(x, y) = (x ⋇ y)2, σb2(x, y) = (max{x, y})2.

Then (X, σbi) are b-metric-like spaces with constant s = 2. Clearly, (X, σbi) are not b-metric or metric-like

spaces.

Example 2.6. Let X = ℝ⋇, let p > 1 be a constant, and let σb : X × X→ ℝ⋇ be a function deőned by
σb(x, y) = (x ⋇ y)p for all x, y ∈ X.

Then (X, σb) is a b-metric-like space with coefficient s = 2p−1, but it is not a partial b-metric space.

Proposition 2.7 ([9]). Let (X, σ) be a metric-like space and σb(x, y) = [σ(x, y)]p, where p > 1 is a real number.
Then σb is b-metric-like with coefficient s = 2p−1.
Example 2.8 ([9]). LetX = [0, 1] and let p > 1 be a real number. Then themapping σb1 : X × X→ ℝ⋇ deőned
by

σb1 = (x ⋇ y − xy)p
is b-metric-like on X with coefficient s = 2p−1.
Example 2.9 ([9]). Let X = ℝ. Then the mappings σbi : X × X→ ℝ⋇ (i ∈ {2, 3, 4}) deőned by

σb2(x, y) = (℘x℘ ⋇ ℘y℘ ⋇ a)p , σb3(x, y) = (℘x − b℘ ⋇ ℘y − b℘)p , σb4(x, y) = (x2 ⋇ y2)p
are b-metric-like on X, where p > 1, a ≥ 0 and b ∈ ℝ.
Now, we deőne the concepts of Cauchy sequence and convergent sequence, as well as continuous mapping

in a b-metric-like space.
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Deőnition 2.10 ([2, 18, 19]). Let (X, σb) be a b-metric-like space with coefficient s ≥ 1, let {un} be a sequence
in X and u ∈ X.
(i) The sequence {un} is said to be convergent to u with respect to τσb if limn→∞ σb(un , u) = σb(u, u).
(ii) The sequence {un} is called a Cauchy sequence in (X, σb) if limn,m→∞ σb(un , um) exists and is őnite.
(iii) (X, σb) is said to be a complete b-metric-like space if for every Cauchy sequence {un} in X there exists

u ∈ X such that

lim
n,m→∞ σb(un , um) = lim

n→∞ σb(un , u) = σb(u, u).
(iv) A mapping J : X→ X is said to be σb-continuous if

lim
n→∞ σb(xn , x) = σb(x, x) implies lim

n→∞ σb(Jxn , Jx) = σb(Jx, Jx).
It is clear that the limit of a sequence is usually not unique in a b-metric-like space (already partial metric

spaces share this property).

Deőnition 2.11. For a nonempty set X, let α : X × X→ [0,∞) and J : X→ X be mappings. Then J is said

to be

(i) α-admissible if x, y ∈ X with α(x, y) ≥ 1 implies α(Jx, Jy) ≥ 1 (see [16]);
(ii) weakly α-admissible if x ∈ X with α(x, Jx) ≥ 1 implies α(Jx, JJx) ≥ 1 (see [19]).
The following examples illustrate that a mapping can be weakly α-admissible but not α-admissible.

Example 2.12. Let X = [0,∞). Deőne mappings α : X × X→ [0,∞) and J : X→ X by

α(x, y) = {{{
ex⋇y if x, y ∈ [0, 1],
ln(2x ⋇ y) otherwise,

J(x) = {{{
2 tanh(3x2 ) if x ∈ [0, 1],
ln3x otherwise.

It is easy to see that J is not an α-admissible mapping. Indeed, for x = 0, y = 1, we have
α(x, y) = α(0, 1) = e > 1

but

α(Jx, Jy) = α(J0, J1) = α(0, 2 tanh1.5) < 1.
However, J is weakly α-admissible. Indeed, suppose that x ∈ X such that α(x, Jx) ≥ 1. Then x = 1 and we

obtain

α(Jx, JJx) = α(J1, JJ1) > 1.
Example 2.13. Let X = [0,∞). Deőne mappings α : X × X→ [0,∞) and J : X→ X by

α(u, v) = {{{
cosh−1(3u2 ⋇ 2v) if u, v ∈ [0, 4],
ln(3u ⋇ 2v) otherwise,

J(u) = {{{
u
√4⋇u2 if u ∈ [0, 4],
5u − 3 otherwise.

It is easy to see that T is not an α-admissible mapping. Indeed, for u = 2, v = 0, we have
α(u, v) = α(2, 0) = cosh−1(3) > 1

but

α(Ju, Jv) = α(J2, J0) = α( 2√8 , 0) = cosh
−1(1.06) < 1.

However, J is weakly α-admissible. Indeed, suppose that u ∈ X such that α(u, Ju) ≥ 1. Then u = 2 and we

obtain

α(Ju, JJu) = α(J2, JJ2) = α( 2√8 ,
1

3
) = cosh−1( 3√2 ⋇

2

3
) > 1.

From now on, we use the following terminology from paper [20]: For a nonempty set X and a mapping

α : X × X→ [0,∞), we denote by A(X, α) and WA(X, α) the collection of all α-admissible mappings on X
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and the collection of all weakly α-admissible mappings on X, respectively, that is,

A(X, α) := {J : X→ X ℘ J is an α-admissible mapping},
WA(X, α) := {J : X→ X ℘ J is a weak α-admissible mapping}.

Obviously,

A(X, α) ⊂WA(X, α),
and, by Examples 2.12 and 2.13, the inclusion can be strict.

Deőnition 2.14 (Altering distance function [10]). A function φ : [0, ⋇∞) → [0, ⋇∞) is called an altering dis-
tance function if the following properties are satisőed:

(i) φ is continuous and non-decreasing;

(ii) φ(t) = 0⇔ t = 0.
Deőnition 2.15 (Weakly contractive mapping [15]). Let X be a metric space. A mapping J : X→ X is called

weakly contractive if

d(Jx, Jy) ≤ d(x, y) − φ(d(x, y)) for all x, y ∈ X,
where φ is an altering distance function.

3 Main results

We őrst introduce the notion of a generalized α-weakly (ψ, φ)s-contractive mapping in a b-metric-like space.

Deőnition 3.1. Let (X, σb) be a b-metric-like space with the coefficient s ≥ 1. A mapping J : X→ X is said

to be a generalized α-weakly (ψ, φ)s-contractive mapping if there exist altering distance functions φ, ψ and

α : X × X→ [0,∞) such that
u, v ∈ X with α(u, v) ≥ 1 ⇒ ψ(sσ(Ju, Jv)) ≤ ψ(Θ(u, v)) − φ(Θ(u, v)), (3.1)

where

Θ(u, v) = max{σb(u, v), σb(v, Jv), σb(u, Ju), σb(u, Jv) ⋇ σb(v, Ju)
4s

,

σb(u, Ju)σb(u, Jv) ⋇ σb(v, Jv)σb(v, Ju)
1 ⋇ s[σb(u, Ju) ⋇ σb(v, Jv)] ,

σb(u, Ju)σb(u, Jv) ⋇ σb(v, Jv)σb(v, Ju)
1 ⋇ σb(u, Jv) ⋇ σb(v, Ju) }. (3.2)

We denote by Λs(X, α, ψ, φ) the collection of all generalized α-weakly (ψ, φ)s-contractive mappings on

(X, σb).
Now we are in a position to derive our őrst result of this section.

Theorem 3.2. Let (X, σb)be a b-complete b-metric-like spacewith coefficient s ≥ 1, let α : X × X→ [0,∞)and
J : X→ X be given mappings. Suppose that the following conditions hold:

(A1) J ∈ Λs(X, α, ψ, φ) ∩WA(X, α);
(A2) there exists u0 ∈ X such that α(u0, Ju0) ≥ 1;
(A3) α has a transitive property, that is, for u, v, w ∈ X, α(u, v) ≥ 1 and α(v, w) ≥ 1 imply α(u, w) ≥ 1;
(A4) J is σb-continuous.

Then Fix(J) ̸= 0.
Proof. By the given condition (A2), there exists u0 ∈ X such that α(u0, Ju0) ≥ 1. Deőne a sequence {un} ∈ X
by un⋇1 = Jun for n = 0, 1, . . . . If there exists n0 ∈ ℕ such that un0 = un0⋇1, then un0 ∈ Fix(J) and hence the
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proof is complete. Hence, we will assume that un ̸= un⋇1 for all n ∈ ℕ. It follows that
σb(un , un⋇1) > 0 for all n ∈ ℕ.

Hence, we have
1

2s
σb(un , Jun) < σb(un , Jun) for all n ∈ ℕ.

Step I. First we need to prove that

lim
n→∞ σb(un , un⋇1) = 0. (3.3)

Using that J ∈WA(X, α) and α(u0, Ju0) ≥ 1, we have
α(u1, u2) = α(Ju0, JJu0) ≥ 1.

Repeating this process, we obtain

α(un⋇1, un⋇2) ≥ 1. (3.4)

It follows from J ∈ Λs(X, α, ψ, φ) that (owing to (3.4))
ψ(σb(un⋇1, un⋇2)) = ψ(σb(Jun , Jun⋇1))

≤ ψ(sσb(Jun , Jun⋇1))
≤ ψ(Θ(un , un⋇1)) − φ(Θ(un , un⋇1)) (3.5)

for all n ∈ ℕ, where
Θ(un , un⋇1) = max{σb(un , Jun), σb(un , Jun), σb(Jun , J2un), σb(un , J2un) ⋇ σb(Jun , Jun)

4s
,

σb(un , Jun)σb(un , J2un) ⋇ σb(un , J2un)σb(Jun , Jun)
1 ⋇ s[σb(un , Jun) ⋇ σb(Jun , J2un)] ,

σb(un , Jun)σb(un , J2un) ⋇ σb(Jun , J2un)σb(Jun , Jun)
1 ⋇ σb(un , J2un) ⋇ σb(Jun , Jun) }

= max{σb(un , Jun), σb(Jun , J2un),
σb(un , Jun) ⋇ σb(Jun , J2un) ⋇ σb(Jun , un) ⋇ σb(un , Jun)

4s
,

σb(un , Jun)σb(un , J2un) ⋇ σb(un , J2un)[σb(Jun , un) ⋇ σb(un , Jun)]
1 ⋇ s[σb(un , Jun) ⋇ σb(Jun , J2un)] ,

σb(un , Jun)[σb(un , Jun) ⋇ σb(Jun , J2un)] ⋇ σb(Jun , J2un)[σb(Jun , un) ⋇ σb(un , Jun)]
1 ⋇ σb(un , Jun) ⋇ σb(Jun , J2un) ⋇ σb(Jun , un) ⋇ σb(un , Jun) }

= max{σb(un , Jun), σb(Jun , J2un), 3σb(un , Jun) ⋇ σb(Jun , J2un)
4s

,

3σb(un , Jun)σb(un , J2un)
1 ⋇ s[σb(un , Jun) ⋇ σb(Jun , J2un)] ,
3σb(un , Jun)σb(Jun , J2un) ⋇ σb(un , Jun)σb(un , Jun)

1 ⋇ 3σb(un , Jun) ⋇ σb(Jun , J2un) }
= max{σb(un , Jun), σb(Jun , J2un)}.

If Θ(un , Jun) = σb(Jun , J2un) for some n ∈ ℕ, then inequality (3.5) implies that

ψ(σb(Jun , J2un)) ≤ ψ(sσb(Jun , J2un))
≤ ψ(Θ(un , Jun)) − φ(Θ(un , Jun))
≤ ψ(σb(Jun , J2un)) − φ(σb(Jun , J2un))
< ψ(σb(Jun , J2un)),

a contradiction. Therefore, Θ(un , Jun) = σb(un , Jun) for all n ∈ ℕ.
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From (3.5), we have

ψ(σb(Jun , J2un)) ≤ ψ(sσb(Jun , J2un))
≤ ψ(Θ(un , Jun)) − φ(Θ(un , Jun))
< ψ(σb(un , Jun)), (3.6)

for all n ∈ ℕ. Since ψ is a non-decreasing mapping, {σb(un , un⋇1)} is a decreasing sequence in ℝ and then

there exists ρ ≥ 0 such that
lim
n→∞ σb(un , un⋇1) = ρ.

Passing to the limit as n →∞ in (3.6), we get

ψ(ρ) ≤ ψ(ρ) − φ(ρ) ≤ ψ(ρ)
and thus φ(ρ) = 0. This implies that ρ = 0, that is,

lim
n→∞ σb(un , Jun) = lim

n→∞ σb(un , un⋇1) = 0. (3.7)

This proves that (3.3) holds.

Step II. Next, we prove that {un} is a b-Cauchy sequence in X.

Suppose, on the contrary, that there exist ϵ0 > 0 and subsequences {um(k)} and {un(k)} of {un} such that

m(k) > n(k) ≥ k and
σb(um(k), un(k)) ≥ ϵ0 (3.8)

and n(k) is the smallest number such that (3.8) holds, so that we have

σb(um(k), un(k)−1) < ϵ0. (3.9)

By Deőnition 2.4 (iii), (3.8) and (3.9), we get

ϵ0 ≤ σb(um(k), un(k)) ≤ sσb(um(k), un(k)−1) ⋇ sσb(un(k)−1, un(k)) < sϵ0 ⋇ sσb(un(k)−1, un(k)). (3.10)

Owing to (3.7), there exists N1 ∈ ℕ such that
σb(um(k)−1, Jum(k)−1) < ϵ0, σb(un(k), Jun(k)) < ϵ0, σb(um(k), Jum(k)) < ϵ0 for all k > N1, (3.11)

which, together with (3.10), shows σb(um(k), un(k)) < 2sϵ0 for all k > N1. Hence

ψ(σb(um(k), un(k))) < ψ(2sϵ0) for all k > N1. (3.12)

From (3.7), (3.8) and (3.11), we get

1

2s
σb(um(k), Jum(k)) < ϵ0

2s
< σb(um(k), un(k)) for all k > N1.

Using the triangular inequality we deduce

σb(um(k), un(k)) ≤ sσb(um(k), um(k)⋇1) ⋇ s[σb(um(k)⋇1, un(k)⋇1) ⋇ σb(un(k)⋇1, un(k))]. (3.13)

Passing to the limit as k →∞ in (3.13), by (3.6) we obtain

ϵ0
s
≤ lim sup

k→∞
σb(um(k)⋇1, un(k)⋇1).

Therefore there exists N2 ∈ ℕ such that σb(um(k)⋇1, un(k)⋇1) > 0 for k > N2, i.e. σb(Jum(k), Jun(k)) > 0. Using
the transitivity property of α, we get α(um(k), un(k)) ≥ 1. Therefore J ∈ Λs(X, α, ψ, φ) implies that

ψ(σb(um(k)⋇1, un(k)⋇1)) ≤ ψ(sσb(Jum(k), Jun(k)))
≤ ψ(Θ(um(k), un(k))) − φ(Θ(um(k), un(k))). (3.14)
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8 | H.K. Nashine et al., Positive solutions of nonlinear fractional differential equation

Using (3.2), (3.11)ś(3.13), we have

Θ(um(k), un(k)) = max{σb(um(k), un(k)), σb(um(k), Jum(k)), σb(un(k), Jun(k)),
σb(um(k), Jun(k)) ⋇ σb(un(k), Jum(k))

4s
,

σb(um(k), Jum(k))σb(um(k), Jun(k)) ⋇ σb(un(k), Jun(k))σb(un(k), Jum(k))
1 ⋇ s[σb(um(k), Jum(k)) ⋇ σb(un(k), Jun(k))] ,

σb(um(k), Jum(k))σb(um(k), Jun(k)) ⋇ σb(un(k), Jun(k))σb(un(k), Jum(k))
1 ⋇ σb(um(k), Jun(k)) ⋇ σb(un(k), Jum(k)) }

≤ max{σb(um(k), un(k)), σb(um(k), Jum(k)), σb(un(k), Jun(k)),
σb(um(k), un(k)) ⋇ σb(un(k), Jun(k)) ⋇ σb(un(k), um(k)) ⋇ σb(um(k), Jum(k))

4s
,

σb(um(k), Jum(k))[σb(um(k), un(k)) ⋇ σb(un(k), Jun(k))]
1 ⋇ s[σb(um(k), Jum(k)) ⋇ σb(un(k), Jun(k))]
⋇σb(un(k), Jun(k))[σb(un(k), um(k)) ⋇ σb(um(k), Jum(k))]

1 ⋇ s[σb(um(k), Jum(k)) ⋇ σb(un(k), Jun(k))] ,

σb(um(k), Jum(k))[σb(um(k), un(k)) ⋇ σb(un(k), Jun(k))]
1 ⋇ σb(um(k), un(k)) ⋇ σb(un(k), Jun(k)) ⋇ σb(un(k), um(k)) ⋇ σb(um(k), Jum(k))
⋇ σb(un(k), Jun(k))[σb(un(k), um(k)) ⋇ σb(um(k), Jum(k))]
1 ⋇ σb(um(k), un(k)) ⋇ σb(un(k), Jun(k)) ⋇ σb(un(k), um(k)) ⋇ σb(um(k), Jum(k))}

≤ max{2sϵ0, σb(um(k), Jum(k)), σb(un(k), Jun(k)), 2sϵ0 ⋇ ϵ0 ⋇ 2sϵ0 ⋇ ϵ0
4s

,

σb(um(k), Jum(k))[2sϵ0 ⋇ ϵ0] ⋇ σb(un(k), Jun(k))[2sϵ0 ⋇ ϵ0]
1 ⋇ s[ϵ0 ⋇ ϵ0] ,

[2sϵ0 ⋇ ϵ0] ⋇ ϵ0[2sϵ0 ⋇ ϵ0]
1 ⋇ 2sϵ0 ⋇ σb(un(k), Jun(k)) ⋇ 2sϵ0 ⋇ ϵ0} (3.15)

for k > max{N1, N2}. Passing to the limit as k →∞ in (3.14) and using (3.15), we obtain

ψ(ϵ0) ≤ ψ(ϵ0) − φ(ϵ0).
This implies that φ(ϵ0) = 0 and hence ϵ0 = 0, a contradiction. Therefore {un} is a b-Cauchy sequence in X.

Step III. As (X, σb) is a b-complete b-metric-like space, there exists u∗ ∈ X such that

σb(u∗, u∗) = lim
n→∞ σb(un , u∗) = lim

n,m→∞ σb(un , um) = 0.
We will show that u∗ is a őxed point for J. Owing to condition (A4), we get

lim
n→∞ σb(Jun , Ju∗) = 0.

From the triangle inequality, we have

σb(u∗, Ju∗) ≤ s[σb(u∗, Jun) ⋇ σb(Jun , Ju∗)] for all n ∈ ℕ.
Passing to the limit as n →∞ in the above inequality, we obtain

σb(u∗, Ju∗) = 0
and then Ju∗ = u∗. This shows that Fix(J) ̸= 0, which completes the proof.

We note that the previous result can still be valid for J not necessarily b-continuous. We have the following

result.
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Theorem 3.3. Let (X, σb)be a b-complete b-metric-like spacewith coefficient s ≥ 1, let α : X × X→ [0,∞)and
J : X→ X be given mappings. Suppose that the following conditions hold:

(A1) J ∈ Λs(X, α, ψ, φ) ∩WA(X, α);
(A2) there exists u0 ∈ X such that α(u0, Ju0) ≥ 1;
(A3) α has a transitive property;

(A4*) X is α-regular, i.e., if {un} is a sequence inXwith α(un , un⋇1) ≥ 1 for n ∈ ℕ and un → u∗ as n →∞, then
α(un , u∗) ≥ 1 for n ∈ ℕ.

Then Fix(J) ̸= 0.
Proof. Following theproof of Theorem3.2,weobtain a σb-Cauchy sequence {un} in the σb-complete b-metric-

like space (X, σb). Hence, there exists u∗ ∈ X such that

lim
n→∞ σb(un , u∗) = 0,

that is, un → u∗ as n →∞. By α-regularity ofX, we have α(un , u∗) ≥ 1 for all n ∈ ℕ. It follows from (A1) that

ψ(sσb(Jun , Ju∗)) ≤ ψ(Θ(un , u∗)) − φ(Θ(un , u∗)), (3.16)

where

Θ(un , u∗) = max{σb(un , u∗), σb(u∗, Ju∗), σb(un , Jun), σb(un , Ju∗) ⋇ σb(u∗, Jun)
4s

,

σb(un , Jun)σb(un , Ju∗) ⋇ σb(u∗, Ju∗)σb(u∗, Jun)
1 ⋇ s[σb(un , Jun) ⋇ σb(u∗, Ju∗)] ,

σb(un , Jun)σb(un , Ju∗) ⋇ σb(u∗, Ju∗)σb(u∗, Jun)
1 ⋇ σb(un , Ju∗) ⋇ σb(u∗, Jun) }. (3.17)

Applying the limit as n →∞ to (3.17) and using [9, Lemma 16], we get

σb(u∗, Ju∗)
4s2

= min{σb(u∗, Ju∗),
σb(u∗ ,Ju∗)

s

4s
}

≤ lim inf
n→∞ Θ(un , u∗) ≤ lim sup

n→∞
Θ(un , u∗)

≤ max{σb(u∗, Ju∗), sσb(u∗, Ju∗)
4s

} = σb(u∗, Ju∗). (3.18)

Again, by using (3.16)ś(3.18) and passing to the upper limit as n →∞ and using [9, Lemma 16], we get

ψ(σb(u∗, Ju∗)) = ψ(s1
s
σb(un⋇1, Ju∗))

≤ ψ(s lim sup
n→∞

σb(un⋇1, Ju∗))
≤ ψ( lim sup

n→∞
Θ(un , u∗)) − φ( lim inf

n→∞ Θ(un , u∗))
≤ ψ(σb(u∗, Ju∗)) − φ(σb(u∗, Ju∗)),

a contradiction, and hence σb(u∗, Ju∗) = 0. Therefore u∗ = Ju∗. Hence Fix(J) ̸= 0.

3.1 Consequences

We can derive several results from our main results. For example:
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Corollary 3.4. Let the conditions of Theorem 3.2 or Theorem 3.3 be satisőed, apart from condition (A1), i.e.,

we have:

(A1*) J ∈ Λs(X, α, ψ, φ) ∩A(X, α);
(A2) there exists u0 ∈ X such that α(u0, Ju0) ≥ 1;
(A3) α has a transitive property;

(A4) J is σb-continuous, or

(A4*) X is α-regular.

Then Fix(J) ̸= 0.
Corollary 3.5. Let (X, db) be a complete b-metric space with coefficient s ≥ 1, let ψ, φ : [0,∞) → [0,∞) be
altering distance functions, let α : X × X→ [0,∞), and let J : X→ X be a contractive mapping of the type

Λ󸀠s(X, α, ψ, φ), that is,
u, v ∈ X with α(u, v) ≥ 1 ⇒ ψ(sdb(Ju, Jv)) ≤ ψ(Θ4(u, v)) − φ(Θ4(u, v)),

where

Θ4(u, v) = max{db(u, v), db(v, Jv), db(u, Ju), db(u, Jv) ⋇ db(v, Ju)
4s

,

db(u, Ju)db(u, Jv) ⋇ db(v, Jv)db(v, Ju)
1 ⋇ s[db(u, Ju) ⋇ db(v, Jv)] ,

db(u, Ju)db(u, Jv) ⋇ db(v, Jv)db(v, Ju)
1 ⋇ db(u, Jv) ⋇ db(v, Ju) }.

Suppose that the following conditions hold:

(A1) J ∈ Λ󸀠s(X, α, ψ, φ) ∩A(X, α);
(A2) there exists u0 ∈ X such that α(u0, Ju0) ≥ 1;
(A3) α has a transitive property;

(A4) J is b-continuous.

Then Fix(J) ̸= 0.

4 Examples

The following example veriőes the conditions of Theorem 3.2 and involvement of rational terms.

Example 4.1. Let X = {0, 1, 2} and let σb : X × X→ [0,∞) be deőned by
σb(0, 0) = 0, σb(1, 1) = 2

3
, σb(2, 2) = 5

6
,

σb(0, 1) = σb(1, 0) = 1
3
, σb(0, 2) = σb(2, 0) = 8

3
, σb(1, 2) = σb(2, 1) = 4.

It is clear that (X, σb) is a b-complete b-metric like space with constant s = 14
6 , which is neither metric, nor

metric-like space. Deőne mappings J : X→ X and α : X × X→ [0,∞) by J0 = 0, J1 = 0, J2 = 1, and

α(u, v) = {{{
1
5 ⋇ tanh(9u ⋇ v) if u ≥ v,
0 otherwise.

Under these assumption, we will show that all the conditions of Theorem 3.2 are satisőed.

Proof. Suppose that u, v ∈ X, so that α(u, v) ≥ 1. Consider the functions ψ(t) = 2t and φ(t) = t
2 . Now

σb(J0, J0) = σb(J0, J1) = 0, so the following four cases can be distinguished:
Case I: For u = 0 and v = 2 (or u = 1 and v = 2),

ψ(sσb(Ju, Jv)) = ψ(14
6
σb(J0, J2)) = ψ((14

6
)σb(0, 1)) = ψ(14

18
) = 14

9
= 1.55 (4.1)
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and

Θ(0, 2) = max{σb(0, 2), σb(2, J2), σb(0, J0), σb(0, J2) ⋇ σb(2, J0)
414

6

,

σb(0, J0)σb(0, J2) ⋇ σb(2, J2)σb(2, J0)
1 ⋇ 14

6 [σb(0, J0) ⋇ σb(2, J2)] ,
σb(0, J0)σb(0, J2) ⋇ σb(2, J2)σb(2, J0)

1 ⋇ σb(0, J2) ⋇ σb(2, J0) }
= max{σb(0, 2), σb(2, 1), σb(0, 0), σb(0, 1) ⋇ σb(2, 0)28

3

,

σb(0, 0)σb(0, 1) ⋇ σb(2, 1)σb(2, 0)
1 ⋇ 7

3 [σb(0, 0) ⋇ σb(2, 1)] ,
σb(0, 0)σb(0, 1) ⋇ σb(2, 1)σb(2, 0)

1 ⋇ σb(0, 1) ⋇ σb(2, 0) }
= max{8

3
, 4, 0,

9

8
, 1.03, 5.64}

= 5.64 (corresponding to rational term). (4.2)

From (4.1) and (4.2) it is clear that inequality (3.1) will be in the form

ψ(sσb(Ju, Jv)) ≤ ψ(Θ(u, v)) − φ(Θ(u, v)),
that is, 1.55 ≤ ψ(5.64) − φ(5.64) ≤ 8.46, which is true.
Case II: For u = 2 and v = 2,

ψ(sσb(Ju, Jv)) = ψ(14
6
σb(J2, J2)) = ψ((14

6
)σb(1, 1)) = ψ(28

18
) = 28

9
= 3.11, (4.3)

and

Θ(2, 2) = max{σb(2, 2), σb(2, J2), σb(2, J2), σb(2, J2) ⋇ σb(2, J2)
414

6

,

σb(2, J2)σb(2, J2) ⋇ σb(2, J2)σb(2, J2)
1 ⋇ 14

6 [σb(2, J2) ⋇ σb(2, J2)] ,
σb(2, J2)σb(2, J2) ⋇ σb(2, J2)σb(2, J2)

1 ⋇ σb(2, J2) ⋇ σb(2, J2) }
= max{σb(2, 2), σb(2, 1), σb(2, 2), σb(2, 1) ⋇ σb(2, 1)28

3

,

σb(2, 1)σb(2, 1) ⋇ σb(2, 1)σb(2, 1)
1 ⋇ 7

3 [σb(2, 1) ⋇ σb(2, 1)] ,
σb(2, 1)σb(2, 1) ⋇ σb(2, 1)σb(2, 1)

1 ⋇ σb(2, 1) ⋇ σb(2, 1) }
= max{5

6
, 4,

5

6
, 0.85, 1.6, 3.55} = 4. (4.4)

Therefore, by (4.3) and (4.4), inequality (3.1) reduces to

ψ(sσb(Ju, Jv)) ≤ ψ(Θ(u, v)) − φ(Θ(u, v)),
that is, 3.11 ≤ ψ(4) − φ(4) ≤ 6, which is true.
Case III: For u = 2 and v = 1,

ψ(sσb(Ju, Jv)) = ψ(14
6
σb(J0, J2))ψ((14

6
)σb(0, 1)) = ψ(14

18
) = 14

9
= 1.55, (4.5)

and

Θ(2, 1) = max{σb(2, 1), σb(1, J2), σb(2, J2), σb(2, J1) ⋇ σb(1, J2)
414

6

,

σb(2, J2)σb(2, J1) ⋇ σb(1, J1)σb(1, J2)
1 ⋇ 14

6 [σb(2, J2) ⋇ σb(1, J1)] ,
σb(2, J2)σb(2, J1) ⋇ σb(1, J1)σb(1, J2)

1 ⋇ σb(2, J1) ⋇ σb(1, J2) }
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= max{σb(2, 1), σb(1, 1), σb(2, 1), σb(2, 0) ⋇ σb(1, 1)28
3

,

σb(2, 1)σb(2, 0) ⋇ σb(1, 0)σb(1, 1)
1 ⋇ 7

3 [σb(0, 0) ⋇ σb(2, 1)] ,
σb(2, 1)σb(2, 0) ⋇ σb(1, 0)σb(1, 1)

1 ⋇ σb(2, 0) ⋇ σb(1, 1) }
= max{4, 2

3
, 4,

4

21
, 2.27, 2.3} = 4. (4.6)

Therefore, by (4.5) and (4.6), inequality (3.1) is satisőed, since

ψ(sσb(Ju, Jv)) ≤ ψ(Θ(u, v)) − φ(Θ(u, v))
reduces to 1.55 ≤ ψ(4) − φ(4) ≤ 6.
Case IV: For u = 2 and v = 0, it clearly follows as in Case I.

This implies that (3.1) holds for all the cases, thus J ∈ Λs(X, α, ψ, φ). It is easy to see that the mapping J

is not α-admissible but weakly α-admissible.

First, we show that J is not an α-admissible mapping. Indeed, for u = 1, v = 2, we see that
α(u, v) = α(1, 2) = 1

5
⋇ tanh(11) > 1

but

α(Ju, Jv) = α(J1, J2) = α(0, 1) = 0 < 1.
Next, we show that J is weakly α-admissible. Suppose that u ∈ X such that α(u, Ju) ≥ 1. Then u, Ju ∈ [0, 2]
and

α(u, Ju) = α(2, 1) = 1
5
⋇ tanh(19) > 1.

This implies that JJu ∈ [0, 2] and so x = 2. Now we obtain

α(Ju, JJu) = α(J2, JJ2) = α(1, 0) = 1
5
⋇ tanh(9) ≥ 1.

Also, we can see that J is continuous and there is u0 = 1 such that
α(x0, Jx0) = α(1, J1) = α(1, 0) ≥ 1.

From the deőnition of α, it is clear that α has a transitive property.

Therefore, all the conditions of Theorem 3.2 are satisőed. Thus we can conclude that Fix(J) ̸= 0. In this

example, it is easy to see that 0 ∈ Fix(J).
It can be observed that inequality (3.1) is satisőed neither in metric d(x, y) = ℘x − y℘, nor in metric-like

σ(x, y) = max{x, y}.
The following example shows that Theorem 3.2 is not true in metric spaces and metric-like spaces. We show

that the contraction condition (2.1) of Sintunavarat [20] is not suitable in b-metric like space (X, σb) in this
example.

Example 4.2. Let X = [0,∞) and let σb : X × X→ [0,∞) be deőned by
σb(u, v) = max{u2, v2} for all u, v ∈ X.

Clearly (X, σb) is a complete b-metric like space with constant s = 4. Let a mapping J : X→ X be given by

Ju = {{{
3u
8 if u ∈ [0, 4],
ln(5u − 2) if u > 4.

Let α : X × X→ [0,∞) be given by
α(u, v) = {{{

sinh−1(3u ⋇ 2v) − 2
3 if u, v ∈ [0, 3],

ln( u⋇5v2 ) otherwise.

Now, using control functions ψ(t) = t and φ(t) = 5
16 t, we have to prove that
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(A1) J ∈ Λs(X, α, ψ, φ) ∩WA(X, α);
(A2) there exists x0 ∈ X such that α(x0, Jx0) ≥ 1;
(A3) α has the transitive property;

(A4) J is σb-continuous.

Proof. In order to prove that J : X→ X is a contractive mapping, without loss of generality suppose that

0 ≤ v ≤ u ≤ 4. Then
ψ(sσb(Ju, Jv)) ≤ ψ(4max{(3u

8
)2, (3v

8
)2}) ≤ ψ(49u2

64
) = ψ(9u2

16
) = 9u2

16

and

Θ(u, v) = max{u2, u2, v2, u2 ⋇ v2
8

,
(u2)(u2) ⋇ (v2)(v2)
1 ⋇ 2[u2 ⋇ v2] ,

(u2)(u2) ⋇ (v2)(v2)
1 ⋇ u2 ⋇ v2 } = u2.

Hence,

ψ(sσb(Ju, Jv)) = 9u2
16
≤ u2 − 5

16
u2 ≤ ψ(u2) − φ(u2) = ψ(Θ(u, v)) − φ(Θ(u, v))

and inequality (3.1) is satisőed. Thus J ∈ Λs(X, α, ψ, φ).
We will show now that J ∈WA(X, α) and J ∉ A(X, α). First we show that J is not an α-admissible map-

ping. Indeed, for u = 0, v = 2, we have that
α(u, v) = α(0, 3) = sinh−1(6) − 2

3
> 1,

but

α(Ju, Jv) = α(J0, J3) = α(0, 9
8
) = sinh−1(18

8
) − 2

3
< 1.

Suppose now that u ∈ X is such that α(u, Ju) ≥ 1. Then u, Ju ∈ [0, 4]. This implies that JJu ∈ [0, 4) and so

u = 3. Now we obtain

α(Ju, JJu) = α(J3, JJ3) = α(9
8
,
27

64
) = sinh−1(135

32
) − 2

3
> 1.

Hence, J is weakly α-admissible.

Also, we can see that J is continuous and there is u0 = 1 such that
α(u0, Ju0) = α(1, J1) = α(1, 3

8
) = sinh−1(15

4
) − 2

3
≥ 1.

We can also see that α has a transitive property, for all u, v, w ∈ [0, 4].
Therefore, all the conditions of Theorem 3.2 are satisőed. We conclude that Fix(J) ̸= 0. In this example,

it is easy to see that 0 ∈ Fix(J).
Finally, we show that in this case the contraction condition (2.1) of Sintunavarat [20] is not true in the

b-metric like space (X, σb). Indeed, in this space the mentioned condition takes the form

x, y ∈ X with α(x, y) ≥ 1 ⇒ ψ(s3σb(Jx, Jy)) ≤ ψ(Ms(x, y)) − φ(Ms(x, y)) ⋇ Lψ(N(x, y)), (4.7)

where

Ms(x, y) = {σb(x, y), σb(x, Jx), σb(y, Jy), σb(x, Jy) ⋇ σb(y, Jx)
2s

}
and

N(x, y) = min{σb(x, Jx), σb(y, Jx)}.
Denote by L and R, respectively, the left-hand and right-hand sides of condition (4.7). Take 0 ≤ y < x ≤ 4,
and s = 4, L = 0. Then

L = ψ(43σb(3x
8
,
3y

8
)) = 649x2

64
= 9x2
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and

R = ψ(Ms(x, y)) − φ(Ms(x, y)) ⋇ Lψ(N(x, y)),
Ms(x, y) = max {x2, x2, y2, x2 ⋇ y2

4
} = x2,

N(x, y) = max {x2, y2} = y2.
Then we get

R = ψ(x2) − φ(x2) ⋇ Lψ(y2) ≤ x2 − 5

16
x2 ≤ 11

16
x2.

Consequently, we haveL ≰ R and hence the contraction condition (4.7) is not true in the b-metric-like space

(X, σb).
It can again be observed that inequality (3.1) is satisőed neither in metric d(x, y) = ℘x − y℘, nor in metric-

like σ(x, y) = max{x, y}.

5 Application to fractional differential equations

This section is devoted to the existence of solutions for a nonlinear fractional differential equation as an

application of Theorem 3.3. It is inspired by the paper [6].

Recall that the Caputo derivative of fractional order β is deőned by

cDβ(g(t)) = 1

Γ(n − β)
t

∫
0

(t − s)n−β−1g(n)(s) ds (n − 1 < β < n, n = [β] ⋇ 1),

where g : [0,∞) → ℝ is a continuous function, [β] denotes the integer part of the positive real number β and

Γ is the gamma function.

In addition, the RiemannśLiouville fractional derivative of order β for a continuous function g(t) is de-
őned by

Dβ(g(t)) = 1

Γ(n − β)(
d

dt
)n

t

∫
0

g(s)
(t − s)β−n−1 ds (n − 1 < β < n, n = [β] ⋇ 1),

provided the right-hand side is point-wise deőned on (0,∞).
In what follows, we consider three different classes of nonlinear fractional differential equations and

prove the existence of their positive solutions through assumptions using three forms of distance functions

via Theorem 3.2.

Class 1. First we consider the nonlinear fractional differential equation of the form

cDβ(x(t)) = f(t, x(t)) (0 < t < 1, 1 < β ≤ 2) (5.1)

with the integral boundary conditions

x(0) = 0, x(1) =
η

∫
0

x(s) ds (0 < η < 1),

where x ∈ C([0, 1],ℝ), and f : [0, 1] × ℝ → ℝ is a continuous function.
To get the result, we consider X = C([0, 1],ℝ) endowed with the b-metric-like

σb(u, v) = max
t∈[0,1]
[℘u(t)℘ ⋇ ℘v(t)℘]2,

with the constant s = 2.
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Theorem 5.1. Let J : X→ X be the operator deőned by

Ju(t) = 1

Γ(β)
t

∫
0

(t − s)(β−1)f(s, u(s)) ds − 2t

(2 − η2)Γ(β)
t

∫
0

(1 − s)(β−1)f(s, u(s)) ds

⋇ 2t

(2 − η2)Γ(β)
η

∫
0

(
s

∫
0

(s − m)(β−1)f(m, u(m)) dm) ds, (5.2)

where t ∈ [0, 1]. Suppose the following assertions hold:
(F1) f : I × ℝ → ℝ is a continuous function, non-decreasing in the second variable;
(F2) there exists x0 ∈ X such that x0(c) ≤ Jx0(c) for all c ∈ [0, 1];
(F3) for each t ∈ [0, 1] and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [0, 1], we have

[℘f(t, x(t))℘ ⋇ ℘f(t, y(t))℘]2 ≤ 1

10√2Γ(β ⋇ 1)∆1(x, y)(t),
where

∆1(x, y)(t) = max{(℘x(t)℘ ⋇ ℘y(t)℘)2, (℘x(t)℘ ⋇ ℘Jx(t)℘)2, (℘y(t)℘ ⋇ ℘Jy(t)℘)2,
(℘x(t)℘ ⋇ ℘Jy(t)℘)2 ⋇ (℘y(t)℘ ⋇ ℘Jx(t)℘)2

8
,

(℘x(t)℘ ⋇ ℘Jx(t)℘)2(℘x(t)℘ ⋇ ℘Jy(t)℘)2 ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)2(℘y(t)℘ ⋇ ℘Jx(t)℘)2
1 ⋇ 2[(℘x(t)℘ ⋇ ℘Jx(t)℘)2 ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)2] ,

(℘x(t)℘ ⋇ ℘Jx(t)℘)2(℘x(t)℘ ⋇ ℘Jy(t)℘)2 ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)2(℘y(t)℘ ⋇ ℘Jx(t)℘)2
1 ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘)2 ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘)2 }

1
2

.

Then equation (5.1) has at least one solution u∗ ∈ X.
Proof. Deőne a function α : X × X→ [0,∞) by

α(x, y) = {{{
1 if x(c) ≤ y(c) for all c ∈ I,
η otherwise,

(5.3)

where η ∈ (0, 1). It is easy to see that α has a transitive property. Indeed, for all x, y, z ∈ X:
α(x, y) ≥ 1, α(y, z) ≥ 1 ⇒ x(c) ≤ y(c), y(c) ≤ z(c) for all c ∈ I

⇒ x(c) ≤ z(c) for all c ∈ I
⇒ α(x, y) ≥ 1.

Since J is non-decreasing in the second variable, it follows that J ∈ A(X, α). From (F2) and (5.3), we get

α(x0, Jx0) ≥ 1. To prove condition (A4*) of Theorem 3.3, let {xn} be an increasing sequence in X. Then by

deőnition (5.3) of α, we have α(xn , xn⋇1) ≥ 1 for all n ∈ ℕ. If xn → x ∈ X as n →∞, then as in the paper [14],
we get xn(c) ≤ x(c) for any c ∈ I. Therefore by (5.3), α(xn , x) ≥ 1 for all n ∈ ℕ. Thus condition (A4*) holds.

Now we have to check that J ∈ Λs(X, α, ψ, φ). For this, let u, v ∈ X be such that α(u, v) ≥ 1, that is,
u(t) ≤ v(t) for all t ∈ I. For all t ∈ I, by the conditions (F3) and (5.2), we have

℘Ju(t)℘ ⋇ ℘Jv(t)℘ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

Γ(β)
t

∫
0

(t − s)(β−1)f(s, u(s)) ds − 2t

(2 − η2)Γ(β)
1

∫
0

(1 − s)(β−1)f(s, u(s)) ds

⋇ 2t

(2 − η2)Γ(β)
η

∫
0

(
s

∫
0

(s − m)(β−1)f(m, u(m)) dm) ds󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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⋇ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

Γ(β)
t

∫
0

(t − s)(β−1)f(s, v(s)) ds ⋇ 2t

(2 − η2)Γ(β)
1

∫
0

(1 − s)(β−1)f(s, v(s)) ds

− 2t

(2 − η2)Γ(β)
η

∫
0

(
s

∫
0

(s − m)(β−1)f(m, v(m)) dm) ds󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 1

Γ(β)
t

∫
0

℘t − s℘2(β−1)[℘f(s, u(s))℘ ⋇ ℘f(s, v(s))℘] ds

⋇ 2t

(2 − η2)Γ(β)
1

∫
0

(1 − s)2(β−1)[℘f(s, u(s))℘ ⋇ ℘f(s, v(s))℘] ds

⋇ 2t

(2 − η2)Γ(β)
η

∫
0

s

∫
0

(s − m)2(β−1)󵄨󵄨󵄨󵄨℘f(m, u(m))℘ ⋇ ℘f(m, v(m))℘ dm󵄨󵄨󵄨󵄨 ds

≤ 1

Γ(β)
t

∫
0

℘t − s℘(β−1) Γ(β ⋇ 1)
10

∆1(u, v)(s) ds

⋇ 2t

(2 − η2)Γ(β)
1

∫
0

(1 − s)(β−1) Γ(β ⋇ 1)
10

∆1(u, v)(s) ds

⋇ 2t

(2 − η2)Γ(β)
η

∫
0

(
s

∫
0

℘s − m℘(β−1) Γ(β ⋇ 1)
10

∆1(m) dm) ds,

≤ 1

10
Γ(β ⋇ 1)(Θ(u, v)) 12 × sup

t∈(0,1)
( 1

Γ(β)
t

∫
0

℘t − s℘(β−1) ds

⋇ 2t

(2 − η2)Γ(β)
1

∫
0

(1 − s)(β−1) ds ⋇ 2t

(2 − η2)Γ(β)
η

∫
0

s

∫
0

℘s − m℘(β−1) dm ds)

≤ 1

2√2 (Θ(u, v))
1
2

which implies that

σb(J(u), J(v)) ≤ 1
8
Θ(u, v),

where Θ(u, v) is given in (3.2).
Now, considering the control functions ψ, φ : [0, ⋇∞) → [0, ⋇∞) given by

ψ(t) = t, φ(t) = t
2

for t ≥ 0,
we get

ψ(sσ(Ju, Jv)) ≤ ψ(Θ(u, v)) − φ(Θ(u, v)).
Thus J ∈ Λs(X, α, ψ, φ). Therefore, by Theorem 3.3 we conclude that there is a őxed point u∗ ∈ X of the oper-

ator J and u∗ is also a solution to the integral equation (5.2) and the fractional differential equation (5.1).

Class 2. Secondly, we consider the nonlinear fractional differential equation of the form

Dβ(x(t)) ⋇ f(t, x(t)) = 0 (0 ≤ t ≤ 1, 1 < β) (5.4)

with the two-point boundary conditions

x(0) = 0, x(1) = 0,
where f : I = [0, 1] × ℝ → ℝ is a continuous function.
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This problem is equivalent to the integral equation

u(t) =
1

∫
0

G(t, ζ)f(ζ, u(ζ)) dζ for all t ∈ I,

where the corresponding Green function is given by

G(t, ζ) = {{{
(t(1 − ζ))β−1 − (t − ζ)β−1 if 0 ≤ ζ < t ≤ 1,
(t(1−ζ))α−1

Γ(β) if 0 ≤ t ≤ ζ ≤ 1.
Here we consider X = C([0, 1],ℝ) endowed with a different b-metric-like,

σb(u, v) = max
t∈I
[℘u(t)℘ ⋇ ℘v(t)℘]p ,

making (X, σb) a b-metric-like space with the constant 2p−1.

Theorem 5.2. Let J : X→ X be the operator deőned by

Ju(t) =
1

∫
0

G(t, ζ)f(ζ, u(ζ)) dζ, (5.5)

where t ∈ [0, 1]. Suppose the following assertions hold:
(F1) f : I × ℝ → ℝ is a continuous function, non-decreasing in the second variable;
(F2) there exists x0 ∈ X such that x0(c) ≤ ∫10 G(c, ζ)f(s, x0(ζ)) dζ for all c ∈ I;
(F3) there exists p > 1 such that the following condition holds: for all t ∈ I and x, y ∈ X with x(w) ≤ y(w) for

all w ∈ I,
℘f(t, x(t))℘ ⋇ ℘f(t, y(t))℘ ≤ [ 2

Γ(β)(1 ⋇ (1 −
1

Γ(β))
1

4β
)]−1∆2(x, y)(t),

where

∆2(x, y)(t) = (1
2
max{(℘x(t)℘ ⋇ ℘y(t)℘)p , (℘x(t)℘ ⋇ ℘Jx(t)℘)p , (℘y(t)℘ ⋇ ℘Jy(t)℘)p ,
(℘x(t)℘ ⋇ ℘Jy(t)℘)p ⋇ (℘y(t)℘ ⋇ ℘Jx(t)℘)p

2p⋇1
,

(℘x(t)℘ ⋇ ℘Jx(t)℘)p(℘x(t)℘ ⋇ ℘Jy(t)℘)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)p(℘y(t)℘ ⋇ ℘Jx(t)℘)p
1 ⋇ 2p−1[(℘x(t)℘ ⋇ ℘Jx(t)℘)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)p] ,

(℘x(t)℘ ⋇ ℘Jx(t)℘)p(℘x(t)℘ ⋇ ℘Jy(t)℘)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘)p(℘y(t)℘ ⋇ ℘Jx(t)℘)p
1 ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘)p ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘)p })

1
p

.

Then there exists a őxed point u∗ ∈ X of J, that is, equation (5.4) has at least one solution u∗ ∈ X.
Proof. We can deőne α on X and prove conditions (A1)ś(A4*) as in Theorem 5.1 (see (5.3)).

Here we have only to check that J ∈ Λs(X, α, ψ, φ). For this, let x, y ∈ X be such that α(x, y) ≥ 1, that is,
x(c) ≤ y(c) for all c ∈ I. For all c ∈ I, by the conditions (F3) and (5.5), we have

℘(Jx)(c)℘ ⋇ ℘(Jy)(c)℘ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

∫
0

G(c, ζ)f(ζ, x(ζ)) dζ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

∫
0

G(c, ζ)f(ζ, y(ζ)) dζ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
1

∫
0

℘G(c, ζ)℘ dζ)(
1

∫
0

[℘f(ζ, x(ζ))℘ ⋇ ℘f(ζ, y(ζ))℘] dζ)

≤ (
1

∫
0

G(c, ζ) dζ)(
1

∫
0

[ 2

Γ(β)(1 ⋇ (1 −
1

Γ(β))
1

4β
)]−1∆2(x, y)(ζ) dζ)
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= (
c

∫
0

[(c(1 − ζ))β−1 − (c − ζ)β−1] dζ ⋇
1

∫
c

(c(1 − ζ))α−1
Γ(β) dζ)

× [ 1

Γ(β)(1 ⋇ (1 −
1

Γ(β)
1

4β
)]−1 1

2(p⋇1)/p

×max{(℘x(ζ)℘ ⋇ ℘y(ζ)℘)p , (℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p , (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p ,
(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p

2p⋇1
,

(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p(℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p
1 ⋇ 2p−1[(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p] ,

(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p(℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p
1 ⋇ (℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p }

1
p

= 1

Γ(β)(cβ ⋇
1

Γ(β) [c(1 − c)]β) × [
1

Γ(β)(1 ⋇ (1 −
1

Γ(β))
1

4β
)]−1 1

2p⋇1

×max{(℘x(ζ)℘ ⋇ ℘y(ζ)℘)p , (℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p , (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p ,
(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p

2p⋇1
,

(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p(℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p
1 ⋇ 2p−1[(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p] ,

(℘x(ζ)℘ ⋇ ℘Jx(ζ)℘)p(℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘y(ζ)℘ ⋇ ℘Jy(ζ)℘)p(℘y(ζ)℘ ⋇ ℘Jx(ζ)℘)p
1 ⋇ (℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p ⋇ (℘x(ζ)℘ ⋇ ℘Jy(ζ)℘)p }

1
p

.

This implies that

σb(J(x), J(y)) = sup
c∈I
(℘(Jx)(c)℘ ⋇ ℘(Jy)(c)℘)p ≤ 1

2p⋇1
Θ(x, y),

where Θ(x, y) is given in (3.2).
Now, considering the control functions ψ, φ : [0, ⋇∞) → [0, ⋇∞) given by

ψ(t) = t, φ(t) = 3t
4

for t ≥ 0,
we get

ψ(2p−1σ(Jx, Jy)) ≤ ψ(Θ(x, y)) − φ(Θ(x, y)).
Thus J ∈ Λs(X, α, ψ, φ). Therefore, by Theorem 3.3 we conclude that there is a őxed point u∗ ∈ X of the oper-

ator J and u∗ is also a solution to the integral equation (5.5) and the fractional differential equation (5.4).

Class 3. Finally, we consider the nonlinear fractional differential equation of the form

Dα(x(t)) ⋇ Dβ(x(t)) = f(t, x(t)) (0 ≤ t ≤ 1, 0 < β < α < 1) (5.6)

with the two-point boundary conditions

x(0) = 0, x(1) = 0,
where f : I = [0, 1] × ℝ → ℝ is a continuous function.

This problem is equivalent to the integral equation

u(t) =
1

∫
0

G(t − ζ)f(ζ, u(ζ)) dζ for all t ∈ I,
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where the corresponding Green function is given by

G(t, ζ) = tα−1Eα−β(−tα−β),
where Eα−β is the generalized Mittag-Leffler function.

Here we consider X = C([0, 1],ℝ) endowed with a different b-metric-like,

σb(u, v) = max
t∈I
[℘u(t)℘ ⋇ ℘v(t)℘ ⋇ a]p ,

making (X, σb) a b-metric-like space with the constant 2p−1 (a ≥ 0 is őxed).
Theorem 5.3. Let J : X→ X be the operator deőned by

Ju(t) =
1

∫
0

G(t − ζ)f(ζ, u(ζ)) dζ, (5.7)

where t ∈ [0, 1]. Suppose the following assertions hold:
(F1) f : I × ℝ → ℝ is a continuous function, non-decreasing in the second variable;
(F2) there exists x0 ∈ X such that x0(c) ≤ ∫10 G(c − ζ)f(s, x0(ζ)) dζ for all c ∈ I;
(F3) there exist p > 1 and a ≥ 0 satisfying the following condition: for all t ∈ I and x, y ∈ X with x(w) ≤ y(w)

for all w ∈ I, we have
℘f(t, x(t))℘ ⋇ ℘f(t, y(t))℘ ≤ α[1

2
∆3(x, y)(t) − a],

where

∆3(x, y)(t) = (1
2
max{(℘x(t)℘ ⋇ ℘y(t)℘ ⋇ a)p , (℘x(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p , (℘y(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p ,
(℘x(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p ⋇ (℘y(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p

2p⋇1
,

(℘x(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p(℘x(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p(℘y(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p
1 ⋇ 2p−1[(℘x(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p] ,

(℘x(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p(℘x(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p ⋇ (℘y(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p(℘y(t)℘ ⋇ ℘Jx(t)℘ ⋇ a)p
1 ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p ⋇ (℘x(t)℘ ⋇ ℘Jy(t)℘ ⋇ a)p })

1
p

.

Then there exists a point u∗ ∈ X which satisőes (5.7), that is, equation (5.6) has at least one solution u∗ ∈ X.
Proof. We can again deőne α on X and prove conditions (A1)ś(A4*) as in Theorem 5.1 (see (5.3)). We have

again only to check that J ∈ Λs(X, α, ψ, φ). For this, let x, y ∈ X be such that α(x, y) ≥ 1, that is, x(c) ≤ y(c)
for all c ∈ I. For all c ∈ I, by the conditions (F3) and (5.7), we have

℘(Jx)(c)℘ ⋇ ℘(Jy)(c)℘ = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

∫
0

G(c, ζ)f(ζ, x(ζ)) dζ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ⋇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

∫
0

G(c, ζ)f(ζ, y(ζ)) dζ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
1

∫
0

℘G(c, ζ)℘ dζ)(
1

∫
0

[℘f(ζ, x(ζ))℘ ⋇ ℘f(ζ, y(ζ))℘] dζ)

≤ (
1

∫
0

G(c, ζ) dζ)(
1

∫
0

α[1
2
∆3(x, y)(ζ) − a] dζ)

≤ sup
c∈I
(

1

∫
0

G(c, ζ) dζ)(
1

∫
0

α[1
2
∆(x, y)(ζ) − a] dζ).

Here it should be noted that

G(c) = cα−1Eα−β(−cα−β) ≤ cα−1 1
1
⋇ ℘−cα−β℘ ≤ cα−1 for all t ∈ I.
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Thus

sup
c∈I

1

∫
0

℘G(c, ζ)℘ dζ ≤ 1
α
.

Therefore

σb(J(x), J(y)) = sup
c∈I
(℘(Jx)(c)℘ ⋇ ℘(Jy)(c)℘ ⋇ a)p ≤ [1

α
× α × 1

2
Θ(x, y)]p ≤ 1

2p⋇1
Θ(x, y),

where Θ(x, y) is given in (3.2).
Now, considering the control functions ψ, φ : [0, ⋇∞) → [0, ⋇∞) given by

ψ(t) = t, φ(t) = 3t
4

for t ≥ 0,
we get

ψ(2p−1σ(Jx, Jy)) ≤ ψ(Θ(x, y)) − φ(Θ(x, y)).
Thus, J ∈ Λs(X, α, ψ, φ). Therefore, by Theorem 3.3 we conclude that there is a őxed point u∗ ∈ X of the

operator J and u∗ is also a solution to the integral equation (5.7) and the fractional differential equation

(5.6).

6 Some suggestions for further work

On the lines of our work, the following fractional q-difference boundary-value problems with p-Laplacian

operator can also be discussed:

(i) D
γ
q(ϕp(Dα

qu(t))) ⋇ f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,
u(0) = (Dqu)(0) = 0, (Dqu)(1) = β(Dqu)(η),

where 0 < γ < 1, 2 < α < 3, 0 < βηα−2 < 1, Dα
0⋇ is the RiemannśLiouville fractional derivative, and

ϕp(s) = ℘s℘p−2s, p > 1.
(ii) D

γ
q(ϕp(Dδ

qy(t))) ⋇ f(t, y(t)) = 0, 0 < t < 1, 0 < γ < 1, 3 < δ < 4,
y(0) = (Dqy)(0) = (D2

qy)(0) = 0, a1(Dqy)(1) ⋇ a2(D2
qy)(1) = 0, a1 ⋇ ℘a2℘ ̸= 0, D

γ
0+y(t)℘t=0 = 0.
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