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Abstract 
In this paper, an innovative approach is used to predict the rate of heat transfer of a wire-on-tube type heat exchanger by 
utilizing the support vector machine model. Heat exchangers have been a well-studied subject over the past decades. Various 
approaches have been used to determine the heat transfer rate of heat exchangers. To solve this algorithm, a computer program 
was developed using MATLAB software. This helped us formulate an equation for the total heat transfer which gave minimal 
error when compared to traditional techniques.  This model exhibits inherent advantages due to its use of the structural risk 
minimization principle in formulating cost functions and of quadratic programming during model optimization. A comparative 
study between the artificial neural network and the support vector machine approach is also illustrated. The paper then provides 
its conclusion. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the organizing and review committee of IConDM 2013. 
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1. Introduction 

Wire-on-tube heat exchangers are more often used by refrigerator manufacturers [1] (as condensers) mainly due to 
their simple construction, ruggedness and low cost. This type of heat exchanger consists of a single steel tube, bent 
into serpentine parallel passes carrying the fluid, mainly refrigerant and solid steel wires are attached to the tube to 
increase the surface area. . The exchanger, tested by Lee et al. [2], is presented in Fig. 1. [3]The solid wires are spot 
welded on to diametrically opposite sides of the tubes as shown in Fig. 1.The refrigerant enters the tube in a vapor 
state and leaves the condenser in a liquid state thereby undergoing a phase change. The heat transfer takes place 
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from the outer surfaces of the wires and tubes to the external environment either by free or by forced convection [4-
5]. Hence it is very important to find out the heat transfer rate for this type of heat exchanger. One of the models
used to predict the heat transfer rate of a wire-on-tube heat exchanger is the Artificial Neural Network model

development. To overcome these problems, we use another modeling technique called the Support Vector Machine
(SVM). SVMs were first developed by Vapnik in 1992[9]. It was originated from the concept of statistical learning
theory pioneered by Boser et al. in 1992. SVM is a machine learning technique that allows the combination of the
simplicity and the uniqueness of linear models with the possibility of a highly nonlinear, kernel based, pre-
processing into a possibly infinite dimensional extended feature space [10].This results in powerful models that can
be applied to classification and regression problems [11-14]. While quite simple, SVM estimates the regression 
using a set of linear functions that are defined in a high-dimensional space. They require the selection of two
structural parameters, the penalty term that is applied to margin slack values and, in the case of Support Vector
Regression (SVR), the tolerance threshold under which the errors are not penalized [10]. The objective of this
paper is to develop the required heat transfer rate equation (using SVM modeling technique) and to compare the
actual output and the output obtained from ANN modeling technique. These experiments and their comparative
results are discussed in the following sections, and finally the paper presents its conclusions.

Fig. 1 Wire-on-Tube Heat Exchanger

Nomenclature
A heat transfer surface area (m2)
D diameter (m)
G volumetric flow rate (m3/s)
L length (m)
m mass flow rate (kg/h)
q heat transfer rate (watt)
s spacing (m3)
T temperature ( C)
W width (m)
Subscripts
a air
cond condensation
emp empirical
i inlet
r refrigerant
T temperature
t tube
w wire
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2. Description of selected model 

2.1. Support Vector Machine 

SVM has been used successfully in many engineering applications such as heat transfer correlation for two 
phase flow in vertical pipes [15], prediction of Lake water level [16], forecasting power output of photo-voltaic 
systems based on weather conditions [17] and optimization of biogas production process in a wastewater treatment 
plant [18]. SVM is a general learning method developed from Statistical Learning Theory with better performance 
than many other routine methods. Statistical Learning Theory is based on a set of rigid theory foundation that 
provides a united frame in order to solve the problem of limited sample learning [16]. In this paper, the SVM 
model from Haykin (1999) is described in detail, with an assumption that most readers might not have been 
exposed to this model before. Fig. 2 shows the basic architecture of SVM model. It shows the input and output 
parameters along with the hidden nodes. In this SVM model, we make use of radial basis function in the generation 
of a generalized equation. The basic idea of SVM applied to regression prediction is described as follows [16]:                
Let us consider a non-linear regressive model in which the dependence of scalar on a vector is described by  

( )d f x v                    (1) 
where both the non-linear function (.)f  and the statistics of the additive noise v  are unknown. This additive 
noise is statistically independent of the input vector. 
All the information we have is a set of training data 1{( , )}N

i i ix d   
where ix  = sample value of the input vector x  and id  = corresponding value of the target output d . 

 
Fig. 2 Architecture of SVM 

 

The problem is to provide an estimate of the dependence of d  on x . In performing nonlinear regression we 

map the input vector x  into a high-dimensional feature space in which we then perform linear regression. Let x  

denote the vector drawn from the input space, assumed to be of dimension 0m . Let 1
1{ ( )}m

j jx  denote the set of 

nonlinear transformations from the input space to the feature space: 1m =dimension of the featured space, which is 

determined by the number of support vectors (a subset of input vectors). The architecture of SVM is shown in Fig. 

2, where 

( , ) ( ) ( )T
i iK x x x x , 11,2,..,i m                (1) 
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It is assumed that ( )j is defined a priori for all j . Given such a set of nonlinear transformations, we may

define an estimate of d , denoted by y as follows

1

1

m

j j
i

y w x b( )j j (2)

where 1
1{ }m

j j} defines a set of linear weights connecting the feature space to the outer space; and b bias. We

may simply matters by writing

1

0
( )

m

j j
i

y w x(j j (3a)

( )Ty w x( (3b)

where it is assumed that 0( ) 1 for all x , so that 0w0 denotes the bias b . Equation (3) defines the regression

equation computed in the feature space in terms of linear weights of the machine. The quantity ( )j represents

the input supplied to the weights jwj through the feature space where

10 1 2( ) ( ), ( ), ( ),.., ( )
10 1 21

T

m11
) ( ), ( ), ( ),.., () ( ), ( ), ( ),.., (0 1 211 (4a)

And  
10 1 2,..,1 21

T

mw w w w0 1 21 ,..,1 211 mw (4b)

The optimal regression function is obtained by minimizing the empirical risk 

1

1 )
N

emp s i i
i

R L d y1 (emp s i( ,,
N

(5)

Subject to the inequality

(6)                

where 0c constant and )L d y( ,,L is called the -insensitive loss function, originally proposed by Vapnik 

(1995, 1998) and described in Haykin (1999) as follows

|
0

d y for d y||
L d y,

otherwise
L          (7)
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where =prescribed parameter. The loss function is equal to the absolute value of the deviation minus if the

discrepancy between the predicted and actual value is less than and is equal to zero otherwise. The above

constrained optimization problem may be reformulated by introducing two sets of nonnegative slack variables

1

N
i i

and 
1

N
i i

representing upper and lower constraints on the outputs of the system, defined as follows

)T
i i i( )d w x(T
i ( (8)

'(T
i i i)w x d( )T

i) (9)

0i 1,2,..,i N1,2,.., (10)            

' 0i 1,2,..,i N1,2,.., (11)

The constrained optimization problem may therefore be viewed as equivalent to that of minimizing the cost
functional 

'

1

1( , , )
2

N
T

i i i)
i

c w w, ) i i), (12)

Subject to the constraints of Eq. (8 11)

Incorporation of the term 
1
2

Tw w in the cost functional dispenses with the need for the inequality constraints of 

Eq. (6). The constant in Eq. (12) (Lagrangian function) is constructed from both the objective function and the

corresponding constraints as follows

' ' ' ' ' ' ' '

1 1 1 1

1( , , , , , , ) ( ) ( )
2

N N N N1 ''
i i i i i i i i i i i ii i ( ) ( )( ) (

2i i i i1 1 11 1

,J w ' ' ' ' '( , , , , , , ) ( ) (, , , , , , ) ( ) (' ' ' ' '' '1 '''( )( ) '''( ) (( )( ) (, , , , , )                

(13)

where i and '
i Lagrange multipliers. The last term on the right-hand side of Eq. (13), involving i and '

i is

included to ensure that the optimality constraints on the Lagrange multipliers i and '
i assume variable forms.

The requirement is to minimize ' ' '( , , , , , , )' ' 'J (  with respect to the weights vector w and slack variables

and ' ; it must also be maximized with respect to and ' as well as to and ' . The partial derivatives of 

Lagrangian function with respect to those variables have to vanish for optimality, producing the following results
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'

1
( )

N

i i i
i

w x                                               

(14) i iC                            (15) 

And ' '
i iC                        (16) 

The optimization of ' ' '( , , , , , , )J w  just described is the fundamental problem in nonlinear regression. 

We may obtain the corresponding dual problem after substituting Eq. (14 - 16) In Eq. (13), which can be written in 

the convex functional form after some simplification as follows 

' ' ' ' '
1
11 1

1( , ) ,
2

N N

i Ni i i i i i i i i j j i j
j Ni i

Q d K x x    

                       (17) 

where ,i jK x x  inner-product kernel defined as follows 

, ( ) ( )T
i j i jK x x x x                      (18)   

The solution to that constrained optimization problem is thus obtained by maximizing '( , )Q  with respect to 

the Lagrange multipliers  and '  subject to a new set of constraints described below that incorporates the 

constant C  included in the definition of the function '( , , )w  in Eq.(12). 

We may now state the dual problem for nonlinear regression using SVM as follows: 

Given the training sample{ , }i ix d , find the Lagrange multipliers i and '
i  that maximize the objective function 

in Eq.(17) subject to the following constraints: 

'

1
0

N

i i
i

 and 

0 i C 1,2,..,i N  

and '0 i C 1,2,..,i N  

where C  user-specified constant. The constraint in Eq.(1) arises from optimization of the Lagrangian with 

respect to the bias 0b w  for 0( ) 1x . Thus, having obtained the optimum values of i and '
i  , we may then 

use Eq.(14) to determine the optimum value of the weight vector w for a prescribed map ( )x  . The data points 
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for which '
i i  define the support vectors for the machine, and the approximating regression function is given 

by 

'

1
( , )

N

i i i
i

y K x x                       (19)   

2

( )( )( , ) exp{ }
2

T
i i

i
x x x xK x x                      (20) 

the two parameters  and C  must be selected by user, and the choices of  and C  control the complexity of the 

regression. 

3. Collection of data 

As far as, air flow in wire-on-tube type heat exchanger is concerned; it can be classified into the following three 
categories based on how each part contacts air flow: 
 All cross (AC): the air passes through both the tubes and the wires. 

 Wire cross (WC): the air passes through the wires, whereas it passes along the tubes. 

 Tube cross (TC): the air passes through the tubes, whereas it passes along the wires. 

The experiments were conducted for single layer samples of wire-on-tube type heat exchanger. The 
mathematical background, the procedures for training and testing the ANNs, and an account of its history can be 
found in the book by Simon Haykin [19-22].Test conditions and results are given in Table 1. In developing the 
SVMs model, the available data set is divided into 2, one to be used for training of the network (73.8% of the data), 
and the rest for testing the performance [20]. The training process is carried out by comparing the output from the 
network to the given data. The data is then normalized between 0-1 for further calculation. 

 
Table 1. Training data set for the SVM model 

Test 
no. 

Flow 
Direction 

AT 
 

At 
 

Aw 
 

Dt 
 

Dw 
 

Lt * 
 

Lw 
 

Ga 
 

mr 
 

Tai 
 

Tri 
 

Trcond 
 

q 
 

1 AC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.901 3.96 29.4 63.1 36.8 88.6 

2 AC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.553 3.99 29.5 63.4 36.8 76.0 

3 AC 0.32 0.16 0.16 4.76 1.53 10.9 158 0.924 3.99 29.6 63.5 36.7 52.1 

4 TC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.920 3.98 29.4 64.8 36.7 79.9 

5 TC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.408 3.97 29.7 64.6 36.8 70.0 

6 TC 0.32 0.16 0.16 4.76 1.53 10.9 158 0.924 3.95 29.4 64.7 36.8 55.0 

7 WC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.939 3.99 29.7 63.2 36.8 77.9 

8 WC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.212 3.99 29.8 63.1 36.8 58.9 

9 WC 0.32 0.16 0.16 4.76 1.53 10.9 158 0.897 4.03 29.7 63.3 36.8 50.6 

10 AC 0.30 0.10 0.20 4.76 1.53 06.8 142 1.920 3.93 29.6 63.9 36.8 87.4 

11 AC 0.30 0.10 0.20 4.76 1.53 06.8 142 1.510 3.96 29.8 63.9 36.8 74.7 

12 AC 0.30 0.10 0.20 4.76 1.53 06.8 142 0.790 3.89 29.7 63.9 36.8 52.0 

13 AC 0.39 0.13 0.26 4.76 1.53 08.8 142 1.910 4.04 29.6 65.9 36.8 95.9 

14 AC 0.39 0.13 0.26 4.76 1.53 08.8 142 0.907 4.01 29.8 66.1 36.8 61.3 
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Table 2. Testing data set for the SVM model

Test 
no.

Flow
Direction

AT At Aw Dt Dw Lt * Lw Ga mrm Tai Tri Trcond q

1 AC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.210 3.97 29.6 63.4 36.8 64.4

2 TC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.692 3.94 29.5 64.7 36.8 76.7

3 WC 0.32 0.16 0.16 4.76 1.53 10.9 158 1.551 3.95 29.4 63.1 36.7 66.9

4 AC 0.30 0.10 0.20 4.76 1.53 06.8 142 1.250 3.99 29.6 64.0 36.7 69.1

5 AC 0.39 0.13 0.26 4.76 1.53 08.8 142 1.207 4.00 29.7 65.9 36.8 70.9

4. Performance of Training and Testing Data
The graphs (Fig 3) plotted below depict the performance of the training and the testing data using Radial Basis 
Function (RBF).  The value of coefficient of Correlation (R) is found out to be 0.9995 and 0.9997 for the training 
data and testing data respectively. The graph (Fig. 4) plotted between the beta values and the training data set is
drawn below. The Table 3 illustrates the values of the beta and the corresponding values of heat transfer rate (q).
These figures are later on used in the results and discussion.

Fig. 3. (a) Performance of training data using RBF; (b) Performance of testing data using RBF

Table 3. Predicted Heat Transfer and Beta values

1 0.8479 88.19447 8 0 59.22059
2 -0.3069 76.40741 9 -0.0826 51.0077
3 -0.0192 52.50713 10 0.6903 86.99402
4 0.5817 79.49234 11 0.2263 74.2919
5 0.4101 69.59429 12 -0.0982 52.40747
6 -0.158 55.40633 13 0.9556 95.4923
7 0.3364 77.49008 14 0.1033 60.89216
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Fig. 4 Beta values for Training Data Set Fig. 5. Comparison between ANN and SVM

5. Results and Discussion
In the design of the system we took the prescribed parameter =0.009, the user specified constant C 200 and 
=0.5. The selection of these constants helped us design a system with a Coefficient of Correlation(R) = 0.9997 for 
testing data and R=0.9995 for the training data as shown in Fig 3. Overfitting is present if the difference in the
value of R in case of training and testing data is very large. Since the value of R is almost the same in both training 
as well as testing performance, we can say that our model is not prone to overfitting and thus is a good model. Also
a system with

ing
=1 is a perfect system hence our system with

ot p
=0.9997 close to being perfect. The performance

of the training and the testing data are shown in the graphs above. The straight line proves that our system is a
good one and is close to the predicted value of the heat transfer rate.  The bar chart (Fig. 5) plotted between %
relative error and the type of neural network depicts that the relative error in case of SVM is much lesser when 
compared to ANN. A significant advantage of SVMs is that whilst ANNs can suffer from multiple local minima,
the solution to an SVM is global and unique. SVMs generate an equation which can be used for further 
calculations whereas in case of ANNs, it does not generate any sort of equation. The equation in this case is

14
*

1

( )( )exp{ }( )( )
0.5

T)()(
i i

i

)()()()()()()()()()(q (21)

6. Comparison

Table 4 below lays out the different values of the heat transfer calculated by ANN and SVM model respectively
and compares the value with the actual heat transfer value that has been determined by experimental techniques.
Table 5 on the other hand calculates the percentage relative error. The histogram (Fig. 5) plotted thereafter
compares the relative errors calculated from the ANN and SVM modeling techniques.

Table 4 Comparison between ANN and SVM Table 5  Percentage Relative Error

 Test no-
flow 
direction

q (kcal/h)
(experimental 
results)

q (kcal/h) 
(ANN 
result)

q (kcal/h)
(SVM
results)

3-AC 64.40 61.88 64.5107

6-TC 76.70 76.71 76.5893

10-WC 66.90 71.97 66.78989

15-AC 69.10 68.74 68.98913

18-AC 70.90 76.53 70.78985

Test no-flow
direction

ANN vs. Q SVM vs.
Q

3-AC 3.91 0.1719

6-TC 0.02 0.1443

10-WC 7.59 0.1646

15-AC 0.53 0.1604

18-AC 7.94 0.1554
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7. Conclusion 

This above article describes SVM modelling approach towards the determination of the rate of heat transfer in 

case of a wire-on-tube type of heat exchanger. A comparison between the two different types of modelling 

techniques SVM and ANN is illustrated. As seen in the results table, the relative error in the prediction of heat 

transfer rate is higher in the ANN modelling technique. Thus the SVM modelling approach gives us a better 

performance and a more accurate result. The developed equation can thereby be used by the user for the prediction 

of the rate of heat transfer in a wire-on-tube type of heat exchanger. 
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