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Abstract: In recent times, the application of enabling technologies such as digital shearography
combined with deep learning approaches in the smart quality assessment of tires, which leads to
intelligent tire manufacturing practices with automated defects detection. Digital shearography is
a prominent approach that can be employed for identifying the defects in tires, usually not visible
to human eyes. In this research, the bubble defects in tire shearography images are detected using
a unique ensemble hybrid amalgamation of the convolutional neural networks/ConvNets with
high-performance Faster Region-based convolutional neural networks. It can be noticed that the
routine of region-proposal generation along with object detection is accomplished using the ConvNets.
Primarily, the sliding window based ConvNets are utilized in the proposed model for dividing the
input shearography images into regions, in order to identify the bubble defects. Subsequently, this is
followed by implementing the Faster Region-based ConvNets for identifying the bubble defects in
the tire shearography images and further, it also helps to minimize the false-positive ratio (sometimes
referred to as the false alarm ratio). Moreover, it is evident from the experimental results that the
proposed hybrid model offers a cent percent detection of bubble defects in the tire shearography
images. Also, it can be witnessed that the false-positive ratio gets minimized to 18 percent.

Keywords: intelligent tire manufacturing; digital shearography; faster region-based CNN; tire bubble
defects; tire quality assessment

1. Introduction

Industry 4.0 is the novel digital technology meant for industries, and this paradigm enables
the communication, collection, and analysis of data through machines, thereby allowing quicker,
more agile, and efficient processes for making superior quality goods with minimal expenditure.
Moreover, this digital industrial technology will assist in enhancing productivity, enabling industrial
development, and revamping the profile of the personnel involved, thereby nurturing changes in the
competence of business organizations and states. Further, this paradigm will foster superior efficiencies
and will modify the conventional production associations between the suppliers, manufacturers,
and clients and also the communication amongst humans and machines. Besides, due to the phenomenal
growth in technology and agile expansion of Industry 4.0, several manufacturing firms have embraced
automation, thereby replacing labor-intensive tasks in conventional production units [1]. Also, it can
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be observed that enabling technologies for smart tire quality assessment for realizing intelligent
tire manufacturing has been gaining prominence to address challenges such as automated tire
defects detection.

Generally, it can be witnessed that in the modern-day scenario, there is a humongous and swift
growth in the gadgets, equipment, and devices connected to the internet. These devices, gadgets,
and equipment have profound computing characteristics, and at the same time, they are exceedingly
performance-oriented [2]. Due to all these facts, the concept of deep learning has evolved into a newer
dimension, and it plays a significant part in processing and recognizing images, speech, and video,
and so on. Furthermore, the implementation of a deep learning paradigm for automation in conventional
manufacturing units significantly minimizes the usage of physical labor, and it also enhances the overall
competence and efficacy of these units. Digital shearography is a laser-based measuring approach that
relies on the processing of digital data, interferometry, and phase-shifting paradigm [3–5].

A shearography system was developed by applying a spatial light modulator for controlling the
amount of shearing and the direction of the phase light automatically and accurately. The system
eliminates the nonlinear random error and enhances the efficiency of testing [6]. A system was
developed using shearography to examine the exterior heatproof covering of a cylinder, and defect
detection was done using an artificial intelligence-based recognition algorithm for deep learning,
namely Faster R-CNN, which detects the bounding defects [7]. A model was developed using a deep
convolutional neural network for the detection of defects captured in the X-ray images. Moreover,
the fully convolutional network was selected for the pixel-wise prediction of defect location and
segmentation [8]. A binary classification model was established using a convolutional neural network
to classify the defects in pipes into two classes, such as minor defects and major defects, and the case
study was conducted from 256 shearography images [9]. An algorithm was developed based on deep
learning for the classification of defects in tires using the proposed multi-column convolutional neural
network (CNN) by integrating several CNNs [10].

Our research primarily focuses on the deep learning-based bubble defects detection in tire
shearography images, which plays a significant role in the automation of the tire manufacturing
industries. Figure 1 portrays the digital shearography set-up for capturing tire shearography images
utilizing a digital computer.

The tire manufacturing process includes five substantial stages compounding, mixing, shaping,
and vulcanizing, testing. Further, in the course of tire production, there is a chance for the bubble
defects to appear in the tires, as the air might not be entirely removed from the tires.

Consequently, when the car is driven at high speed, such defective tires seem to suffer a greater
chance of bursting, hence this scenario might place the human lives at risk. Therefore, in order to
overcome this issue, the tire manufacturing units ensure that the tire is tested successfully by using
several quality control mechanisms, prior to its dispatch and delivery. During the testing process,
detecting the bubble defects that are present internally within the tires, turns out to be a substantial
task. Moreover, the bubble defects in the four different shearography images are portrayed in Figure 2.
The operator identifies the bubble detects in the shearography images and assesses whether the size of
the bubble is passable. Nevertheless, the quality of inspection significantly relies on the experience
and expertise of the operator. As a result, the bubble defect detection process might need substantial
human expertise. Besides, the lassitude of the operator might lead to poor judgment and discrepancies
in detecting the defects.
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Figure 1. Digital shearography set-up for capturing tire shearography images. 

Since 2012, there has been rapid progress in the convolutional neural networks-based research 
on image, visual, and computer-vision-based tasks [11,12]. The approach presented in the 
preliminary study [13] establishes two CNN architectures for tire bubble-defects diagnosis. 
Although, the scheme presented in [13] provides a precise identification of the bubble defects, 
however, the false alarm ratio, also known as the false positive ratio—more than twenty percent—is 
significant. The Faster R-CNN comprises two networks, primarily for generating the region 
proposals it makes use of a region proposal network (RPN) and secondly, a network that utilizes 
these region proposals for detecting the bubble defects [14].  

The key contributions of this work are summarized as follows: 

• The substantial contribution of this work lies in improving the architecture established 
earlier in [13] for effectively realizing intelligent tire manufacturing with automated 
defects detection. 

• A Faster Region-based convolutional neural networks (R-CNN) is combined along with 
the architecture described in [13] for minimizing the false positive ratio. 

• Further, this significant modification to the CNN architecture helps in minimizing the 
labor cost involved in the tire manufacturing industry. 

• The results of the proposed hybrid model indicate that this approach asserts a hundred 
percent detection of bubble defects in the tire shearography images.  

• From the results, it can be perceived that the false alarm ratio can be minimized to 18 
percent. 
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Figure 1. Digital shearography set-up for capturing tire shearography images.

Since 2012, there has been rapid progress in the convolutional neural networks-based research on
image, visual, and computer-vision-based tasks [11,12]. The approach presented in the preliminary
study [13] establishes two CNN architectures for tire bubble-defects diagnosis. Although, the scheme
presented in [13] provides a precise identification of the bubble defects, however, the false alarm
ratio, also known as the false positive ratio—more than twenty percent—is significant. The Faster
R-CNN comprises two networks, primarily for generating the region proposals it makes use of a region
proposal network (RPN) and secondly, a network that utilizes these region proposals for detecting the
bubble defects [14].

The key contributions of this work are summarized as follows:

• The substantial contribution of this work lies in improving the architecture established earlier
in [13] for effectively realizing intelligent tire manufacturing with automated defects detection.

• A Faster Region-based convolutional neural networks (R-CNN) is combined along with the
architecture described in [13] for minimizing the false positive ratio.

• Further, this significant modification to the CNN architecture helps in minimizing the labor cost
involved in the tire manufacturing industry.

• The results of the proposed hybrid model indicate that this approach asserts a hundred percent
detection of bubble defects in the tire shearography images.

• From the results, it can be perceived that the false alarm ratio can be minimized to 18 percent.
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2.1. Faster Region-Based Convolutional Neural Networks 

A model referred to as Regions with CNN features (R-CNN), which is a scalable object 
detection approach that enhances the mean average precision, was established by the research in 
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Figure 2. Shearography images of tires, where (a,b) portray bubble defects present in the shearography
images of the tire treads, and (c,d) illustrate bubble defects present in the shearography images of the
tire sidewalls.

2. Materials and Methods

A two-stage hybrid model for detecting bubble defects in tires is proposed in this work. The primary
stage includes a CNN architecture for diagnosing tire bubble-defects, and the second stage makes use
of a Faster Region-based ConvNets architecture for minimizing the false positive or the false alarm
ratio (FAR). A flow diagram of the proposed two-stage ensemble hybrid model is portrayed in Figure 3.

2.1. Faster Region-Based Convolutional Neural Networks

A model referred to as Regions with CNN features (R-CNN), which is a scalable object detection
approach that enhances the mean average precision, was established by the research in [15]. In the
research desscribed in [16], another improved version of the R-CNN model known as the Fast R-CNN
was deployed with various novelties for enhancing the training and testing speed at the same time
augmenting the accuracy of detection. Further, the work presented in [17] established a Faster R-CNN
that introduced an RPN which shares the convolutional features of the full image with the network
responsible for detection; hence, this ensures that the region proposals are achieved at a low cost. It can
be observed that the RPN approach is deployed instead of the Selective Search (SS) technique [18] in the
case of Faster R-CNN/ Faster Region-based ConvNets. Further, this method considerably reduces the
time-period necessary for extracting the candidate regions and also for increasing the overall efficiency.
Figure 4 illustrates the architectural model of the Faster R-CNN network.

The Faster R-CNN network with a ZF-net exhibits the detection results with an accuracy of
59.9% for the PASCAL VOC 2007 test set [19–21]. Besides, for the same test set, the Faster R-CNN
network with VGG16 architecture accomplishes the detection results with 73.2% accuracy [19–21].
Henceforth, it can be observed that the Faster R-CNN with VGG16 architecture achieves superior
accuracy, which makes it the most sought after approach. Moreover, this technique is utilized in this
research to enhance the detection accuracy of the tire bubble defects. In Figure 5, the architectural
model of the fully convolutional region proposal network [22] is depicted.

Figure 5 portrays the fact that the fully convolutional region proposal network applies a 3 × 3
window over the feature maps received from the ConvNets. Subsequently, for assessing the candidate
regions, we make use of the anchors with various areas and ratios. Additionally, the chosen candidate
expanses are placed into the 256-dimensional trajectory, and further, they are passed on as the inputs to
the box regression layer (reg) and a box-class layer (cls). For each proposal, the outcome of the box-class
layer approximates the target object or the non-target object probabilities. Consequently, a positive
label will be allocated for an anchor with an Intersection-over Union (IoU) overlay proportion more
significant than the value 0.7 in comparison to some ground truth box. Besides, the negative label
will be allocated for the non-positive anchor with an Intersection-over Union proportion lesser than
0.3 for the remaining ground truth boxes. It can be clearly noted that the anchors which are neither
positive nor negative have no role in the training for accomplishing the target. In the box regression
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layer, the positive sample co-ordinates achieved by the box-class layer are modified to suit the ground
truth’s bounding box aptly.

2.2. Image Enhancement

The classification capability and competence of the convolutional neural networks rely heavily
on the two vital parameters, namely, the quality and quantity of the training samples. Nevertheless,
the arduous task for this research is the identification of speckle patterns encompassing the bubble
defects. In order to overcome this issue; hence, the blocks from the speckle patters encompassing the
bubble defects were randomly chosen. Also, the chosen data were rotated horizontally and vertically,
and then the resultant dataset helps in achieving the essential dataset required for the training process.
The imperfect bubble blocks were detached physically. In this way, this research could achieve about
ten times the training data. Hence, this approach makes sure that the patterns of the tire bubble defects
were adequate for the training process.
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2.3. Classification of the Bubble Defects in Tires

It can be noticed from [13] that two convolutional neural network architectures were established for
diagnosing the bubble-defects available in the treads and sidewalls of the tires. Though this approach
accurately classifies the tire bubble-defects, nevertheless, the FAR seems marginally more significant
than 20 percentage. Thus, our work enhances the approach in [13] by incorporating a Faster-RCNN
network for reducing the false alarm ratio. The modified hybrid Faster Region-Based Convolutional
Neural Networks architecture is illustrated in Figure 6. The various components of the proposed hybrid
model are presented in Table 1. In the CNN, the hyper-parameters settings for tire tread are learning
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rate = 0.01, epoch = 30,000, batch size = 40, gamma = 0.001, power = 0.75, and momentum = 0.9.
The hyper-parameters settings for tire sidewall are learning rate = 0.00001, epoch = 18,000, batch size = 18,
gamma = 0.001, power = 0.75, and momentum = 0.9. In the Faster-RCNN, the learning rate, step size,
and momentum are set as 0.00001, 50,000, and 0.9, respectively, for both tire tread and tire sidewall.
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Figure 6. (a) The proposed hybrid Faster Region-Based ConvNets architecture for diagnosing the
bubble-defects in treads and (b) The proposed hybrid Faster Region-Based ConvNets architecture for
diagnosing the bubble-defects in sidewalls of tires.

Table 1. The various components of the proposed hybrid model.

Convolutional Neural Networks

(a) Tread of Tires (b) Sidewall of Tires

ConvNet3-16
ConvNet3-16

ConvNet3-16
ConvNet3-16

Max-pooling process
ConvNet3-32
ConvNet3-32

ConvNet3-32
ConvNet3-32

Max-pooling process

ConvNet3-64
ConvNet3-64

ConvNet3-64
ConvNet3-64
ConvNet3-64

Max-pooling process
ConvNet3-128
ConvNet3-128
ConvNet3-128

ConvNet3-128
ConvNet3-128
ConvNet3-128
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Table 1. Cont.

Max-pooling process
Fully Connected-1000
Fully Connected-1000

Fully Connected-2
Softargmax function

Faster Region-based Convolutional Neural Networks
ConvNet3-64
ConvNet3-64

Max-pooling Process
ConvNet3-128
ConvNet3-128

Max-pooling Process
ConvNet3-256
ConvNet3-256
ConvNet3-256

Max-pooling Process
ConvNet3-256
ConvNet3-256
ConvNet3-256
ConvNet3-512
ConvNet3-512
ConvNet3-512
ConvNet3-512

Reshape process
Soft-max function
Reshape process

Proposal
ROI pooling layer

Full-connection

Bbox_pred Softmax function
Cls_prob

2.4. The Sliding Window Phase

In this work, the original shearography image had a size of 1360 × 1024 pixels. In order to facilitate
bubble defect detection, the shearography tire images are fragmented into a variety of blocks via
the sliding window phase. Subsequently, it is evident that the location of the tire bubble defects is
not known; consecutive sliding windows with 50% overlapping regions for the extraction of speckle
patterns are used to avoid fragmenting the bubble defects and causing erroneous results.

The overlapping threshold has been selected to poise the time-period required for processing
and also for the efficient detection of bubble defects. The abstract depiction of the sliding window
indicating the overlap is presented in Figure 7.
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Further, this research establishes a classifier that performs the process of detection of bubble
defects in treads and sidewalls of tires, which is presented in Section 2.3. Moreover, the sliding window
described in Section 2.4 is used to check the segmented block images sequentially for bubble defects.
If the classifier classifies a block as containing bubbles, the Faster R-CNN is used to determine if
the result is a false positive. If the resultant image is not false positive, then in the original image,
the respective location of the block is encircled. As a result, this image is passed on to the professional
operators for assessing the quality of the tires and also for removing the defective piece. Furthermore,
this devised semi-automated assessment process offers cost-leadership when compared with the
traditional manual inspection and also improves the reliability of the inspection process.

3. Results

In this work, the diagnosis of bubble defects in tires established in [13] and the Faster Region-based
Convolutional Neural Networks approach is amalgamated for obtaining 100% detection of defects and
also aiding in reducing the false alarm ratio. The evaluation metrics, such as the accuracy, sensitivity,
and specificity, are used for assessing the performance of the proposed hybrid model. These metrics
are computed using the following expressions:

Accuracy = (TP + TN)/(P + N) (1)

Sensitivity = TP/P (2)

Speci f icity = TN/N (3)

where TP stands for true positive, it represents the amount of diagnosed bubble patterns, which really
possesses the bubble defects, and FP stands for false-positive and, it indicates the amount of not bubble
patterns, which are wrongly diagnosed as bubble defects. True negative (TN) illustrates the amount of
not bubble patterns, which are diagnosed as not bubble defects. Positives (P) represents the real bubble
defects and negatives (N) denotes the not bubble defects. Among the evaluation metrics, sensitivity is
the most necessary measure for achieving the complete detection of bubble defects.

Moreover, a tire company provided the shearography images deployed in this research. Usually,
the tire bubble defects were physically delineated with the assistance of experienced professionals.
The amount of training images and blocks are clearly organized in Table 2. Further, it is evident that
for the training process, the tire manufacturer supplied the 325 tire shearography images with bubble
defects. Subsequently, the image enhancement approach is deployed for imitating 8596 and 5052 blocks
from 223 tire tread images and 102 tire sidewall images containing bubble defects. Additionally, Table 3
indicates the test dataset, it comprises of 541 tire shearography images deprived of bubble defects and
256 tire shearography images having bubble defects.

Table 2. Training Dataset Details.

Tire Treads Tire Sidewalls

No. of Images No. of Blocks No. of Images No. of Blocks

Shearography without bubble 1409 8811 1545 10514
Shearography with bubbles 223 8596 102 5052

Table 3. Testing Dataset Details.

Tire Treads Tire Sidewalls

No. of Images No. of Images

Shearography without bubble 262 279
Shearography with bubbles 136 120
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An area with bubble defects is expected to be smaller than the area of the default anchor of the
Faster R-CNN. Therefore, in this work, the anchor’s ratio and scale are adjusted according to the area
of the bubble defects. Table 4 shows the ratio and scale adjustment of the anchors. Twelve anchor
configurations are used for candidate regions in the marking of bubbles.

Table 4. Anchors Configuration.

Original Proposed Ensemble Hybrid Model

Ratios [0.5,1,2] [0.3,0.4,0.5,0.75]
Scale [8,16,32] [8,16,32]

The proposed hybrid model has been compared with various classifiers including the Support
Vector Machine (SVM) [23], Random Forest Model [24], Haar-like AdaBoost Method [25], Chang’s
method [13], and the integrated model comprising of SVM, Random Forest Model, AdaBoost method.
Besides, the proposed model was compared with these methods for verifying its performance. Table 5
illustrates the diagnosis of bubble-defects in treads of tire shearography images for several existing
methods in comparison with the proposed ensemble hybrid model in terms of the evaluation metrics
such as accuracy, sensitivity, and specificity. Additionally, Table 6 depicts the diagnosis of bubble-defects
in sidewalls of tire shearography images for numerous prevailing approaches in comparison with
the proposed ensemble hybrid model in terms of the assessment metrics such as accuracy, sensitivity,
and specificity. Further, it can be witnessed from these tables that the work in [13] and the presented
ensemble hybrid approach achieve 100 percent sensitivity, by successfully identifying each and every
bubble-defect. Also, it can be observed that the presented ensemble hybrid approach surpasses all
other existing approaches in terms of specificity. However, the presented ensemble hybrid approach
requires a processing time of approximately 7 seconds/image, whereas the approach established in [13]
takes only a processing-time of roughly 6 seconds/image. Nevertheless, the presented ensemble hybrid
model is superior in other means and also in terms of specificity, when compared with the other
existing approaches.

Figure 8a–d illustrate the shearography images or the speckle patterns acquired using digital
shearography, and Figure 8e–h depict the detection of bubble defects in tires using the proposed
hybrid Faster Region-based convolutional neural networks model. Figure 8e–h indicate the fact that all
bubble defects in tires have been detected successfully. Figure 9a–d depict the false positive or the false
alarm inspection results in [13], where the shearography images do not have bubble defects; however,
they get misrepresented as possessing the bubble defects. Figure 9e–h illustrate the assessment results
of the hybrid Faster Region-based convolutional neural networks model using the same set of input
images. It can be witnessed in Figure 9e–h that the shearography images have no bubble defects.
Besides, it reveals the fact that the proposed hybrid Faster Region-based convolutional neural networks
model effectively reduces the false-positive ratio or the false alarm rate.

Table 5. Diagnosis of Bubble-defects in Treads of Tire Shearography Images.

Measurement
Methods Accuracy (%) Sensitivity (%) Specificity (%)

Support Vector Machine [23] 55.53 92.65 36.26
Random-Forest Model [24] 59.3 96.32 40.08

Haar-like Ada-Boost Method [25] 62.81 97.06 45.04
Integrated Model comprising of Support Vector Machine,

Random-Forest Model, Ada-Boost Method 79.15 96.32 70.23

Chang’s method [13] 87.94 100 81.68
Proposed Hybrid Faster Region-based Convolutional Neural

Networks Model 89.16 100 83.09
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Table 6. Diagnosis of Bubble-defects in Sidewalls of Tire Shearography Images.

Measurement
Methods Accuracy (%) Sensitivity (%) Specificity (%)

Support Vector Machine [23] 50.13 81.67 36.56
Random-Forest Model [24] 44.61 85.83 26.88

Haar-like Ada-Boost Method [25] 46.37 82.5 30.82
Integrated Model comprising of Support Vector Machine,

Random-Forest Model, Ada-Boost Method 61.9 85 51.97

Chang’s method [13] 85.46 100 79.21
Proposed Hybrid Faster Region-based Convolutional

Neural Networks Model 86.87 100 80.15
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Figure 9. Chang’s model misclassification results [13] and the Proposed Hybrid Faster Region-based
Convolutional Neural Networks Model. (a–d) diagnosis outcomes of tire bubble defects using Chang’s
model, (e–h) the Proposed Hybrid Faster Region-based Convolutional Neural Networks Model’s
bubble defects detection results.

4. Conclusions

In the tire manufacturing process, the diagnosis of bubble-defects in the treads and sidewalls
of shearography tire images represents a significant task. Therefore, enabling smart tire quality
assessment seems to be an essential way of realizing intelligent tire manufacturing practices that can
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ensure automated detection of defects. Further, an ensemble hybrid combination of the CNN with a
high-performance Faster Region-based ConvNets for classifying and diagnosing the bubble-defects
present in the tire shearography images. The proposed hybrid Faster Region-based convolutional
neural networks model reduces misjudgments caused by human errors and achieves high consistency
in the quality of bubble-defect detection. It is clearly evident from the results that in addition to
thoroughly diagnosing the bubble-defects in tires, the hybrid Faster Region-based convolutional neural
networks model decreases the false alarm ratio of not-bubble defects in tires from 20% to a rate of 18%.
Also, it has to be noted that this hybrid system model was deployed in a tire manufacturing unit, and it
produced efficient results in automatically diagnosing the bubble-defects in treads and sidewalls of
tires. In the future work, more advanced CNN enabled approaches can be implemented for automated
detection of defects [26–30], thus ensuring and realizing a sustainable tire manufacturing process.
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