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Abstract 

This report dissects the analysis of annual performance of a cluster of wind turbine generators operated by Suzlon Energy 
Limited to troubleshoot shortfalls in the predicted generation of individual machines for the fiscal year of 2011-12. The first 
phase involved an estimation of the annual energy production using wind resource assessment on the commercial software Wind 
Atlas, Analysis and Application Program (WAsP). Comparison of the Annual Energy Production (AEP) with direct extrapolation 
of monthly generation to centum machine and grid availability highlighted negative inconsistency between the two in the case of 
five machines. Detailed study of their data histories indicated the reason to be coarse extrapolation and generation curtailment, 
although the latter is a minor contributor. The second phase consists of quantification of these losses for the concerned machines 
using statistical extrapolation and a variety of data approaches. A qualitative comparison of the methods is presented based on 
accuracy and utility. It is concluded that correlation of average hub-height wind velocities with the concerned machine’s 
generation yields the most reliable and professionally useful results. Also, the advantages and shortcomings of the other methods 
have been discussed. 
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1. Introduction 

Power generation from wind has emerged as a major sector in the energy market expanding at annual rates of 25 
to 35% [1]. It has seen large-scale investment and government support catalyzing its exponential growth from a 
research field in the 1950s to a full-fledged industry in the present age. Wind power companies now compete on a 
global level for energy market shares, and, along with technology development, focus with equal commitment on 
building a strong customer base. A dominantly major source of customer satisfaction in the wind industry is the 
generation of the product: the wind turbine generators (WTGs). Their performance is directly linked with the 
monetary benefit or loss to the customer. The two important factors that play a vital role in the performance of the 
site are the wind at site, and the machine availability (MA), i.e. the period for which a WTG will be capable of 
generation given the source of power exists.  

Out of the two factors, MA is what the WTG companies have control over. This is due to the fact that wind at site 
is a natural phenomenon and has a high degree of improbability and variance. The wind energy company must 
therefore strive to ensure high MA, failing which it may be liable to pay pre-determined penalty which results in loss 
of customer faith, or worse, loss of precious global market share.  In cases where the former does happen, it becomes 
necessary to accurately quantify energy losses due to unavailability of machines as it determines the value of 
monetary remuneration to the customer. 

This project studies the different techniques of calculating losses caused due to machine unavailability and grid 
unavailability, as well as other factors in order to determine the best suited method based on accuracy of results as 
well as practical utility. The core method relies on statistical correlation, with an array of data approaches for 
analysis parameters. In this study, sources of correlation are mast wind data at hub-height, and average nacelle wind 
data of the given cluster of turbines. The project also quantifies the values of various losses for concerned turbines. 

 
Nomenclature 

A  Rotor cross-sectional area (m2) 
Cp   Betz limit (-) 
E  Energy in wind over time t (J) 
Gact   Actual energy generation (kJ) 
Gexpected  Expected energy generation (kJ) 
i, j  Incremental variables 
Losscurtailed  Energy lost over given time interval due to curtailment (kJ) 
Lossgen  Total energy generation loss (kJ) 
NetLoss   Total energy loss calculated for annual period (kJ) 
T00x_Gen Actual energy generation for WTG ‘x’ (kJ) 
v  Wind speed (ms-1) 
y  Actual value of variable 
yf  Fitted value of variable 
ym  Average value variable 

  Extraction factor (-) 
  Air density (kgm-3) 

2. Site Description 

The WTG cluster under scrutiny is located in the Kuchchh region of Gujarat in India and is operated and 
maintained by Suzlon Energy Limited. It consists of ten wind turbine generators of model S82 (Rated capacity: 1.5 
MW) sited as shown is Figure 1. The mast shown in the figure is the source for the mast data. The proximity of the 
mast to the site is to be noted. The region of study is flat terrain, with a slope of 0.03 degrees, which equals a rise of 
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Fig. 1. Locations of cluster WTGs and mast 

5 meters over a kilometer. This justifies the use of mast data in our analysis [2]. No significant obstacles to wind 
flow are found in the region, and the roughness of local terrain is considered. 

3. Data Sources 

The data used in this project is obtained from Suzlon Energy Group’s Supervisory Control and Data Acquisition 
(SCADA) Monitoring Center (1-second data readings averaged over ten minutes) taken at the mast and each WTG 
for April 2011- March 2012. Mast data includes wind velocities and directions at 65m and 80m heights. WTG data 
includes the following parameters at hub height (80m): wind velocity, wind direction, power generation, pitch-
angles, yaw angle (calculated indirectly), rotor RPM and generator RPM [3]. Mast data validity was checked and 
necessary corrections made. A few noteworthy points are: 

 Mast data is missing from 17 Jan, 2012 (14:50) to 18 Jan, 2012 (00:00) 
 Gaps in turbine data logs exist for periods of machine breakdown and grid unavailability.  
 A few sets of data for T003 are missing in SCADA records (15248 to 19439). Hence the calculations for actual 

loss during this period have not been done. 

3.1. Methods for data completion 

 In order to obtain a complete data set, two methods are employed: 

3.1.1. Measure-Correlate-Predict (MCP) Method: 

 MCP Method involves scattering wind velocity measured at the WTG’s nacelle (henceforth ‘nacelle velocity’) 
against wind speed recorded at the hub height at mast. MATLAB is used to calculate the best fitting polynomial 
function relating nacelle velocity to mast velocity. Using this function, the missing velocities are calculated. This 
velocity set is used for calculation of power generation loss due to lack of both MA and Grid Availability (GA) as 
the mast data is available for almost the entire period of study. MCP is fairly valid in this study as the terrain is 
relatively undulating, and the distance between turbine and mast is within 10 km. MCP data is used in section 6.2. 
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Table 1. Comparison of WAsP Results and Actual Observed Power Generation 

WTG Gross Output 
(lakh units) 

Wake Losses 
(per cent) 

AEPG,M    
(lakh units) 

GA, MA 
Correction 

Estimated Output 
(lakh units) 

Actual Output 
(lakh units) 

T001 35.39 1.53 34.85 86% 30.0 29.2 
T002 35.62 2.65 34.68 84% 29.3 24.1 
T003 35.36 3.27 34.2 86% 29.5 26.2 
T004 34.88 6.63 32.56 86% 28.1 29.7 
T005 34.53 5.84 32.52 82% 26.7 22.7 
T006 34.51 8.99 31.41 87% 27.3 28.1 
T007 34.02 4.23 32.58 85% 27.6 29.3 
T008 34.24 3.93 32.89 87% 28.7 25.8 
T009 33.63 3.72 32.38 87% 28.3 26.9 
T010 34.00 1.44 33.51 87% 29.2 27.3 

3.1.2. Cluster Nacelle Velocity Average (CNVA): 

 In this method, nacelle velocity data of all WTGs in the cluster are averaged at every time instant to give a data 
collection that is exhaustive as far as machine availability is concerned. Sets without a reading indicate periods of 
lack of GA, which are 324 sets (0.61% of 52704). Hence, this data set is used for calculation of generation loss due 
to lack of MA only. Such calculations are of more practical importance to a wind turbine generator company, since 
all its remuneration is calculated in terms of MA shortfall. This is used in calculations in section 6.3. 

4. WAsP Results and Power Loss Identification 

4.1. WAsP 

Using mast and terrain data, and the WTG locations, WAsP is used to calculate the gross annual energy output 
for each WTG. WAsP incorporates wake modeling in its code, and hence wake losses are included in the calculation 
of the net output (AEPG,M) [4]. This is the predicted AEP that assumes centum machine and grid availability (Table 
1). Based on the monthly averaged grid and machine availability for every WTG, correction factors are applied to 
the AEPG,M to yield the predicted output corrected to grid and machine availability conditions (henceforth ‘estimated 
output’). A comparison of actual generation to the estimated output is shown in Table 1. It can be seen that machines 
T001, T002, T005, T008 and T010 show significant negative deviation from the estimated output and hence are 
selected for a detailed study. The next step is the determination of the reasons for underperformance of identified 
WTGs. Hence, a root cause analysis of shortcoming is carried out. 

4.2. Root Cause Analysis 

Upon inquiry at the Contract Management department, it was found that T008 and T010 had undergone 
commissioning in the month of March 2011, and were in stabilization mode for two months of the period of this 
study. As a result, the data recorded by the controller for this period is not an eligible reference for actual 
performance of these machines, and hence, T008 and T010 are excluded from this study. 

A look at the monthly MA data of the WTGs (Figure 2 (a): X-axis is in fiscal month order) indicates that WTGs 
T002, T003 and T005 all have relatively low values of MA during the high wind (HW) months of June, July, 
August and September. The theoretical limit of energy from wind of velocity v by a rotor of area A in time t is: 

 
E = 0.5ρCpAv3                     (1) 

Hence, the loss of power due to lack of MA and GA for a time period t in the HW season will be much more than 
the loss for the same t period in the low wind (LW) season [5]. 



 S.V. Joshi et al.  /  Energy Procedia   54  ( 2014 )  211 – 220 215

Fig. 2. (a) Machine Availability monthly variation for T002, T003 and T005, (b) WAsP-predicted and actual generation at centum MA and GA  

During calculation of power generation for centum MA and GA for T002, T003 and T005, it is seen that the net 
power generation falls much below WAsP predictions (Figure 2 (b)). This can be explained by the fact that the 
extrapolated data is of the LW period, and hence is not a correct base for estimating power generation for HW 
months. The same inference applies on a diurnal scale. Hence, the difference in estimated and extrapolated values of 
wind turbine generator performance arises due to coarse extrapolation. There is an uncertainty in extrapolation of 
power generation data on a monthly as well as daily basis. 

On plotting the pitch angles 1, 2 and 3 of the rotor blades of T002 versus the wind speed, a trend is noticed in the 
scatter. This trend indicates high pitching (greater pitch angles than standard) during higher wind speeds, indicating 
that the machine is being run at reduced power. This is known as power curtailment, and is carried out when (a) the 
grid cannot bear full power generation, and (b) when certain turbine component parameters (such as temperature) 
reach high values and are in danger of causing the turbine to trip. This factor is not included in the estimated wind 
power, and hence contributes to over-evaluated losses of power generation. Hence, root cause analysis identifies 
three major reasons for difference in estimated and actual power generation of the cluster: 

 Turbine being in its stabilization period, due to which the data from the WTG is not eligible for reference during 
calculation of power generation losses. 

 Coarse extrapolation of power generation data. Difference in generation during high wind and low wind is 
significant enough to cause a difference in actual and estimated generation. 

 Power curtailment of turbines. 

5. Statistical Correlation Technique 

This technique of prediction is based on determining the weightage of points (xi, yi) on the argand plane to find 
the best-fitting polynomial through that set. The conditions for the application of this technique are: 1. A sufficiently 
large, period-exhaustive, finite and verified data set, and 2. The existence of a pattern in the data set. The SCADA 
data satisfies the two basic conditions required for statistical correlation in the sense that it is a large, fairly 
consistent, finite data set over the period of interest of this study. The basic steps in statistical correlation are: 

 Identification of the independent variable x. The independent variable must be available in sufficiently large 
quantity. This, in our case, is the wind speed. Wind speed can be obtained from MCP as well as CNVA methods 
as described in section 3. 

 Choice of the dependent parameter y from available parameters such that: y = f(x) + c. 
 Obtaining the spatial distribution of y with x to carry out a weight analysis on the argand plane. 
 Expression of y as a polynomial function of x with respect to the best weightage accountability. 
 Calculation of yj at conditionally selected points xj. 
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Non-linear regression coefficient (R2) is calculated to determine the goodness of fit for y(x) for all statistical 
correlations proposed in this study [6]. It is calculated as follows: 

R2 = 1 - [ (yi-yfi)
2N

i=1 (yi-y)
2N

i=1 ]               (2) 

6. Power Loss Calculation 

6.1. Curtailment Losses 

Data analysis of the three quarantined WTGs for pitch angle variations with wind speed shows that curtailment 
exists for T002 only. A scatter plot of actual WTG power generation versus wind speed is plotted for sets excluding 
the sets where curtailment exists. Filter condition for this in MatLab code is set as: 

if ((T00x_Gen > 10) && (WindSpeed < 9.8) || ((1050 < T00x_Gen) || (T00x_Gen < 900))) 

 
y = - 0.07256x9 + 0.48027x8 - 0.20266x7 - 1.5435x6 - 5.6741x5 + 3.5955x4 + 7.9122x3 + 69.827x2 + 402.22x + 433.62 

                        (3) 

Using statistical correlation, a ninth-degree, centered-and-scaled data polynomial is calculated (Eqn. (3)) that 
relates actual T002 power generation to wind speed. It is to be noted from Figure 3(a) that this equation is valid only 
for points above 3.5 and below 12 m/s wind speeds. For speeds greater than 12 m/s, power generation of 1500 kW is 
assumed. 

Ge = y(xj)                 (4a) 

Losscurtailed = Ge - Gact(xj)               (4b) 

NetLosscurtailed,new = NetLosscurtailed,old - NetLosscurtailed                         (4c) 

Hence, a value is obtained for the annual generation loss due to curtailment for T002. This value is calculated to be 
0.33 Lakh units of electricity for 2011-12. This is a small fraction of the total generation losses of the WTG (7.15%) 
which are calculated in the forthcoming sections. 

 

 
Fig. 3. (a) Actual Power Generation for T002 versus Wind Speed showing fitted polynomial, (b) Plot of  versus Wind Speed for T002 
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6.2. Power Generation Losses due to Lack of MA + Lack of GA 

6.2.1. Extraction Factor Method (EFM) 
 
The core process in this method is to find the relationship between Ideal Power (IP; the maximum theoretical 

power limit) and the Actual Power (AP; recorded power generation) at that wind speed using all data points i where 
the power generation of that WTG exists. An extraction factor  is calculated as the ratio of IP to AP at all data 
points i. The filter condition for i in the MatLab code is: 

if((T00x_gen > 0) && (T00x_gen ~= NotANumber)) 

ƞi = 0.5ρACpvi
3 Gi                 (5) 

It is to be noted that, the value of  is higher at lower wind speeds. Hence a lower fraction of the IP is extracted at 
lower wind speeds. A scatter plot of the factor  versus wind speed is plotted for all i using MATLAB. From this 
scatter (Figure 3(b)), using statistical correlation, a characteristic polynomial is calculated for every quarantined 
turbine. This polynomial is then used to predict  at all points j where power generation is less than or equal to zero 
or if we have a lack of GA. The velocity set used is the one obtained via MCPM. Using this j we find power 
generation loss Gj. By summing up the losses (Gj) over all j points, the estimated power lost is calculated. Shown 
here is the process for T002. Appropriate scaling of points is done according to equation (6a). 
 

x = (vj-6.7681) 2.2486               (6a) 

ƞj =  -0.0080342x5 + 0.10635x4 - 0.38775x3 + 0.3666x2 + 0.053408x + 1.2653                      (6b) 

Lossgenj
 = 0.5ρACpvj

3 Gj               (6c) 

NetLossgen,new = NetLossgen,old + NetLossgen                          (6d) 

 
It must be noted, that the polynomial obtained is valid only for velocities between 4 and 12 m/s. For velocities 

greater than 12 m/s, rated generation of 1500 kW is assumed, and the power generation for wind speeds below 4 m/s 
is taken as zero according to turbine model definition. 

6.2.2. Monthly Correlation Method (MCM) 
 
The MCM correlates wind speed with WTG power generation distinctly for each month. For a month n, data 

points i are identified where power generation exists (T00x_Geni > 0) and a scatter plot of power generation 
versus wind speed of these i is generated. From this, a statistically weighted relation is derived such that: 

Gexpected = f(v)                  (7) 

Using (7), loss of power generation is calculated using MCP data for points j where (T00x_Geni <= 0): 

Lossgenj
= f vj                (8a) 

NetLossgen,new = NetLossgen,old + NetLossgen                           (8b) 

Another major difference between this and the other method is that this is done on a monthly basis to obtain a 
temporally more versatile relation between power and wind speed. It is found that monthly calculation brings a 
significant change in the calculation from the annual trend. 
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6.3. Power Generation Loss due to Lack of MA 

6.3.1. Turbine Specific Power Curve Method (TSPCM) 
 
In this method, a scatter plot between power generation versus wind speed is created for a WTG for every point i 

where power generation exists. From this, a statistically weighted relation is derived such that: 

Gexpected = f(v)                       (9) 

Using (10a, 10b), loss of power generation is calculated using CNVA data for points j where (T00x_Genj <= 0) 
as follows: 

Lossgenj
= f vj                (10a) 

NetLossgen,new = NetLossgen,old + NetLossgen                           (10b) 

In the present study, the following WTG-specific forms of (9) are obtained (plotted in Fig. 4). 
yT002= - 0.16584x8 + 1.2634x7 - 0.06920x6 - 13.491x5 + 6.2171x4 + 18.953x3 + 65.686x2 + 398.62x + 415.7                          
                 (11a) 

yT003 = - 0.00017735x8 + 0.014105x7 - 0.45578x6 + 7.805x5 - 77.098x4 + 443.34x3 - 1382.3x2 + 1941.8x + 467.3 
               (11b) 

 yT005 = - 0.14884x8 + 1.1499x7 - 0.075434x6 - 13.563x5 + 10.249x4 + 21.907x3 + 47.132x2 + 363.62x + 424.5    
               (11c) 

6.3.2. Rated Power Curve Method (RPCM) 
 
In this method, the relation between WTG power generation and wind speed is obtained directly from the WTG 

Power Curve adapted to the density of the site. This curve, for this particular site, is given by: 

x = (vi - 11.95) 4.6909               (12a) 

  y = - 4.4x10 - 20.1x9 + 42.8x8 + 159.8x7 - 175x6 - 473.1x5 + 436.4x4 + 582.9x3 - 775.3x2 + 246.8x + 1483.3 
               (12b) 

This density adaptation is done by WAsP. Power loss calculation is done in a manner similar to TSPCM (10a, b) 
using CNVA wind data. 

Fig. 4. Power Curves for RPCM (Power Generation in kW, Wind Speed in ms-1) 
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7. Results and Discussion 

 
Fig. 5. Left: Actual (red) versus WAsP (blue) annual generation for centum MA and GA obtained using coarse extrapolation (top), EFM 

(middle) and MCM (bottom) | Right: Actual (green) versus WAsP (blue) annual generation for centum GA obtained using coarse 
extrapolation(top), TSPC (middle) and Reference Power Curve (PC) method. 

 
A study of the results indicates that for most cases, the gap in predicted and extrapolated data sets was reduced to 

below 10 percent. The results obtained using the aforementioned methods are validated through statistical 
correlation. In particular, the following observations and conclusions are important: 
 Since data for T003 was incomplete for almost a month, the error in its prediction exists for all methods. 
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Table 2. Comparison of WAsP Results and Actual Observed Power Generation 

Extraction Factor Method  Turbine Specific Power Curve Method 

WTG  MA, GA 
Losses 
(lakh units) 

WAsP Losses 
(per cent) 

Deviation    
(lakh 
units) 

R  WTG MA, GA 
Losses 
(lakh units) 

WasP Losses 
(per cent) 

Deviation 
(lakh 
units) 

R 

T002 4.6287 31.2 -7.3% 0.9450  T002 4.2830 30.7 -6.6% 0.9541 
T003 2.0049 30.8 -9.1% 0.9222  T003 1.0847 30.5 -11.6% 0.9527 
T005 10.3230 29.3 11.3% 0.9702  T005 4.9515 28.7 -3.5% 0.9470 

 
Monthly Correlation Method  Rated Power Curve Method 

WTG  MA, GA 
Losses 
(lakh units) 

WAsP Losses 
(per cent) 

Deviation    
(lakh 
units) 

R  WTG MA, GA 
Losses 
(lakh units) 

WasP Losses 
(per cent) 

Deviation 
(lakh 
units) 

R 

T002 3.4918 31.2 -11.8% 0.8047  T002 3.3258 30.7 -10.0% 0.9513 
T003 2.3537 30.8 -7.9% 0.8309  T003 1.2777 30.5 -11.5% 0.9586 
T005 6.9633 29.3 1.5% 0.8038  T005 4.3775 28.7 -5.8% 0.9530 

 
 The Extraction Factor method, although effective for a distributed lack of MA, underperforms for T005 which 

has a case of acute lack of MA in the HW season. Hence, over-prediction for HW seasons is a drawback of the 
EFM. 

 The MCM provides very good results for temporally concentrated lack of MA, as is shown in the case of T005. 
Hence, it can be a great tool for analysis of turbines that have high lack of MA in specific time intervals. 

 Out of all methods analyzed, the TSPCM gives the best and the most consistent results over the different 
scenarios provided by T002, T03 and T005. Except for T003, which has HW data missing, the TSPCM 
manages to bring down the error in calculation of actual generation losses well below 10%. The polynomial 
curve constructed shows high value of R2, indicating a goodness of fit. Also, the TSPCM calculates generation 
losses due to lack of MA, which is of more utility to a WTG company. 
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