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ABSTRACT 

The radiation effects on unsteady flow of a viscous incompressible fluid past an exponentially accelerated infinite 

isothermal vertical plate with uniform mass diffusion is considered in the presence of magnetic field and heat source. 

The governing partial differential equations are converted into a non-dimensional form and solved numerically by 

applying a Crank-Nicholson type of implicit finite difference method with a tri-diagonal matrix manipulation and an 

iterative procedure. The profiles of unsteady velocity, temperature and concentration are shown graphically for 

different values of thermo physical parameters. Also, the simulated values of the skin-friction coefficient, Nusselt 

number and Sherwood number are presented. This model finds applications in solar energy collection systems, 

geophysics and astrophysics, aero space and also in the design of high temperature chemical process systems. 
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1. INTRODUCTION 

Natural convection induced by the simultaneous 

action of buoyancy forces from thermal and mass 

diffusion is of considerable interest in many 

industrial applications such as geophysics, 

oceanography, drying processes and solidification of 

binary alloy. Eckert and Drake (1972) have done 

pioneering work on heat and mass transfer. Gebhart 

et al. (1998) studied the natural convection boundary 

layer flow due to simultaneous heat and mass transfer 

with various geometries. The effects of foreign 

masses, also known as diffusing species 

concentration, were studied under different 

conditions by Somers (1956), Mathers et al. (1957) 

and others either by integral method or by asymptotic 

analysis. But first systematic study of mass transfer 

effects on free convection flow past a semi-infinite 

plate was presented by Gebhart and Pera (1971). 

Soundalgekar and Ganesan (1981) studied transient 

free convective flow past a semi-infinite vertical flat 

plate with mass transfer by using Crank-Nicholson 

finite difference method. Gupta et al. (1979) studied 

free convection flow past a linearly accelerated 

vertical plate in the presence of viscous dissipative 

heat using perturbation method. Kafousias and Raptis 

(1981) extended this problem to include mass transfer 

effects subjected to variable suction or injection. Free 

convection effects on flow past an exponentially 

accelerated vertical plate was studied by Singh and 

Naveen Kumar (1984). Basant Kumar Jha et al. 

(1991) analyzed mass transfer effects on 

exponentially accelerated infinite vertical plate with 

constant heat flux and uniform mass diffusion.  

Recently Muthucumaraswamy et al. (2006) studied 

mass transfer effects on exponentially accelerated 

isothermal vertical plate.   

 

The study of flow problems, which involve the 

interaction of several phenomena, has a wide range of 

applications in the field of science and technology. 

One such study is related to the effects of MHD free 

convection flow, which plays an important role in 

agriculture, engineering and petroleum industries. 

The problem of free convection under the influence 

of magnetic field has attracted the interest of many 

researchers in view of its application in geophysics 

and astrophysics. Kim (2000) investigated unsteady 

MHD convective heat transfer past a semi-infinite 

vertical porous moving plate with variable suction by 

assuming that the free stream velocity follows the 

exponentially increasing small perturbation law. 

Gribben (1965) studied boundary layer flow over a 

semi-infinite vertical plate with an aligned magnetic 

field in the presence of a pressure gradient. He 

obtained solutions for large and small magnetic 

Prandtl numbers using the method of matched 

asymptotic expansion. Helmy studied 
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magnetohydrodynamic unsteady free convection flow 

past a vertical porous plate. Elbashbeshy (1997) 

studied heat and mass transfer along a vertical plate 

under the combined buoyancy effects of thermal and 

species diffusion, in the presence of the magnetic 

field. 

 

In many situations there may be an appreciable 

temperature difference between the surface and 

ambient fluid. These necessities the consideration of 

temperature dependent heat sources or sinks which 

may exert strong influence on the heat transfer 

characteristics. The study of heat generation or 

absorption in moving fluids is important in view of 

several physical problems, such as fluids under going 

exothermic or endothermic chemical reactions. 

Representative studies dealing with these effects have 

been reported by Vajravelu and Hadijinicolaou 

(1993) and Chamkha (1997). Pop and Soundalgekar 

(1962) studied unsteady free convection flow past an 

infinite plate with constant suction and heat source. 

Suneetha et al. (2011) investigated radiation and 

mass transfer effects on MHD free convective 

dissipative fluid in the presence of heat source/ sink. 

More recently Takhar et al. (1986) presented one of 

the most robust studies of thermal and concentration 

boundary layers with MHD effects for the case of a 

point sink. Sahoo et al. (2003) studied 

magnetohydrodynamic unsteady free convection flow 

past an infinite vertical plate with constant suction 

and heat sink.  

 

In space technology processes involving high 

temperature flows, the effects of radiation are of vital 

importance. Recent developments in hypersonic 

flights, missile re-entry, rocket combustion chambers, 

power plants for inter planetary flight and gas cooled 

nuclear reactors, have focused attention on thermal 

radiation as a mode of energy transfer, and 

emphasized the need for improved understanding of 

radiative transfer in these processes. Soundalgekar 

and Takhar (1993) considered the radiative free 

convective flow of an optically thin gray-gas past a 

semi-infinite vertical plate. Radiation effects on 

mixed convection along an isothermal vertical plate 

were studied by Hossain and Takhar (1996). Raptis 

and Perdikis (1999) studied the effects of thermal 

radiation and free convection flow past a moving 

vertical plate. Das et al. (1996) analyzed radiation 

effects on flow past an impulsively started infinite 

isothermal vertical plate. Muthucumaraswamy and 

Janakiraman (2006) studied MHD and radiation 

effects on moving isothermal vertical plate with 

variable mass diffusion. Ramachandra Prasad et al. 

(2006) analyzed the radiation effects on MHD free 

convection flow with mass transfer past a semi-

infinite vertical plate in the presence of heat 

source/sink. 

 

However, the interaction of radiation with mass 

transfer past an accelerated isothermal vertical plate 

with uniform mass diffusion in the presence of 

magnetic field and heat source has received little 

attention. Hence an attempt is made to analyze the 

radiation and mass transfer effects on hydromagnetic 

flow past an accelerated isothermal vertical with 

uniform mass diffusion in the presence of heat 

source. The equations of continuity, linear 

momentum, energy and diffusion, which govern the 

flow field, are solved by an implicit finite difference 

method of Crank-Nicolson type. The behavior of the 

velocity, temperature, concentration, skin-friction, 

Nusselt number and Sherwood number has been 

discussed for a range of physical parameters. 

2. MATHEMATICAL ANALYSIS 

An unsteady two-dimensional flow of a viscous 

incompressible electrically conducting and radiating 

fluid past an exponentially accelerated infinite 

isothermal vertical plate with uniform mass diffusion 

is considered. A temperature dependent heat source is 

assumed to be present in the flow. The fluid is 

assumed to be gray, absorbing-emitting but non-

scattering. Initially the fluid is assumed to be at rest 

and surrounds an infinite vertical plate with 

temperature T and concentrationC . The x-axis is 

taken along the plate in the vertically upward 

direction and the y-axis is taken normal to the plate.  

 

At time 0t   , the plate and fluid are at the same 

temperatureT and concentrationC . At time 0t   , 

the plate is exponentially accelerated with a velocity 

0

a tu u e
  in its own plane and the plate temperature 

and concentration are raised to wT  and wC   and are 

maintained constantly thereafter. A uniform magnetic 

field is applied in the direction perpendicular to the 

plate. The transverse applied magnetic field and 

magnetic Reynolds number are assumed to be such 

small, so that the induced magnetic field can be 

neglected. It is assumed that the concentration C of 

the diffusing species in the binary mixture is very less 

in comparison to the other chemical species, which 

are present, and hence the Soret and Dufour effects 

are negligible (Ramachandra Prasad et al. 2007).   

 

  
 

It is also assumed that there is no chemical reaction 

between the diffusing species and the fluid. Then, 

under the usual Boussinesq's approximation, in the 

absence of an input electric field, the governing 

boundary layer Eqs. are  

   
2 2

* 0

2

u u B
g T T g C C u

t y

  
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       
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Fig.1. Physical model and coordinate system 
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The initial and boundary conditions are  

0t   : 0u , T T , C C  for all y  

0t   : 0

a tu u e
  , wT T , wC C  at 0y   

 0u  ,T T , C C  as y      

 

 

(4) 

 

where u is the velocity component in x direction, 

t  - the time, g -the acceleration due to gravity,  - 

the volumetric coefficient of thermal expansion, * - 

the volumetric coefficient of expansion with 

concentration, T -the temperature of the fluid in the 

boundary layer, T - the free stream temperature far 

away from the plate,C  - the species concentration in 

the boundary layer, C - the free stream 

concentration far away from the plate,  - the 

kinematic viscosity,   - the electrical conductivity, 

0B  -  the magnetic induction,  - the density of the 

fluid, pc  - the specific heat at constant pressure, k - 

the thermal conductivity, rq - the radiation heat flux, 

Q0 -  the heat generation/absorption and D - the 

species diffusion coefficient.   

 

The local radiation for the case of an optically thin 

gray gas is expressed as 

 * 4 44rq
a T T

y
 


  


                                      (5) 

where *a is the absorption coefficient and  - the 

electric conductivity. It is assumed that the 

temperature differences with in the flow are 

sufficiently small, so that 4T  may be expressed as a 

linear function of the temperature. This is 

accomplished by expanding 4T  in a Taylor series 

about T  and neglecting the higher order terms, thus  

4 3 44 3T T T T                                  (6)                 

By using Eqs. (4) and (5), Eq. (2) reduces to 

 

 

2
* 3

2

0

16p
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c k a T T T
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Q T T

   


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  

 

 

   (7) 

On introducing the following non-dimensional 

quantities 
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The Eqs. (1), (7) and (4) reduce to 

 
2

2

U U
Gr Gm C MU

t Y
 

   
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        (9) 

 
2

2

1

Pr Pr

R

t Y

    
  

 
                            (10) 

2

2

1C C

t Sc Y

 


 
                                           (11) 

where Gr, Gm, M, Pr, R,   and Sc are thermal 

Grashof number, mass (solutal) Grashof number, 

magnetic parameter, Prandtl number, radiation 

parameter, the dimensionless heat 

generation/absorption coefficient and Schmidt 

number respectively. 

 

The corresponding initial and boundary conditions 

are  

 

0t  : 0U  , 0  , 0C    for all Y  

 0t  : atU e , 1  , 1C    at 0Y   

0U  , 0  , 0C  as Y     

 

(12) 

3. SOLUTION OF THE PROBLEM 

The governing Eqs. (9)-(11) represent coupled 

system of non-linear partial differential equations, 

which are solved numerically under the initial and 

boundary conditions (12) using Crank-Nicolson 

implicit finite difference  scheme, which is always 

unconditionally stable. To obtain the difference 

equations, the region of the flow is divided into a grid 

or mesh lines parallel to y and t axes.  

 

Solutions of difference equations are obtained at the 

intersection of these mesh lines called nodes. The 

values of the dependent variables C,  and U at the 

nodal points along the y=0 are given by  0,C t , 

 0,t and  0,U t , hence are known from the 

boundary conditions. y , t  are taken as the 

constant mesh sizes along y and t directions 

respectively. We need a scheme to find single values 

at next time level in terms of known values at an 

earlier time level.  

 

A forward difference approximation for the first 

order partial derivatives of C,   and U with respect 

to t and y and a central difference approximation for 

the second order partial derivatives of C,   and U 

with respect to y are used. 

 

The finite difference equations corresponding to Eqs. 

(9) - (11) are as follows 
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(15) 

The Eqs. (13), (14) and (15) can be written as  

1 1, 1 1 , 1 1 1, 1 1i j i j i jA U B U C U E        

2 1, 1 2 , 1 2 1, 1 2i j i j i jA B C E                         (16) 

3 1, 1 3 , 1 3 1, 1 3i j i j i jA C B C C C E                  
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Here the suffix i corresponds to y and j corresponds 

to t . Also 1j jt t t    and 1j jy y y   . 

Knowing the values of C,   and U at time t , we can 

calculate the values at a time t t   as follows. We 

substitute 1,2, , 1i M   in Eq. (15) which results 

in a tri-diagonal system of equations in unknown 

values of C. Using initial and boundary conditions, 

the system can be solved by Gauss elimination 

method. Thus C is known for all values of y at 

time t t  . Then knowing the values of C and 

applying the same procedure and using boundary 

conditions, we calculate   and U from Eqs.(14) and 

(13). This procedure is continued to obtain the 

solution till desired time t.  The steady-state solution 

is assumed to have been reached, when the absolute 

difference between the values of U as well as 

temperature   and concentration C at two 

consecutive time steps are less than 10-5 at all grid 

points. 

 

For the type of boundary layer flow under 

consideration, the skin-friction, heat transfer 

coefficient and mass transfer coefficient are very 

important. Knowing the velocity field, the skin-

friction at the vertical plate can be obtained, which in 

non-dimensional form is given by  

0

f

Y

U
c

Y 

    
                                          (17)  

Knowing the temperature field, the rate of heat 

transfer coefficient at the vertical plate can be 

obtained, which in non-dimensional form, in terms of 

the Nusselt number, is given by 

0Y

Nu
Y





    
                                                     (18)  

Knowing the concentration field, the rate of mass 

transfer coefficient at the vertical plate can be 

obtained, which in non-dimensional form, in terms of 

the Sherwood number, is given by 

0Y

C
Sh

Y 

    
                                                      (19) 

The derivatives involved in Eqs. (17), (18) and (19) 

are evaluated using five point approximation formula. 

4. RESULTS AND DISCUSSION 

In order to get a physical insight into the problem, 

numerical computations are carried out to illustrate 

the effects of different governing parameters upon the 
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nature of the flow and transport. The numerical 

values of the velocity, temperature, concentration, 

skin-friction, Nusselt number and Sherwood number 

are computed for different physical parameters like 

the exponent of the velocity of moving plate a , 

thermal Grashof number Gr, mass Grashof number 

Gm, magnetic parameter M, radiation parameter R, 

Prandtl number Pr, heat generation/absorption 

parameter , Schmidt number Sc and  time t. A 

representative set of numerical results is shown 

graphically in Figs. 2-12. Here the value of Pr is 

chosen as 0.71, which corresponds to air. The values 

of Sc are chosen such that they represent Helium 

(0.3), water vapour (0.6) and Ammonia (0.78). The 

other parameters are arbitrarily chosen. 
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Fig. 2. Velocity profiles for different values of Gr 

and Gm 
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Fig. 3. Velocity profiles for different values of M 

 

Figure 2 demonstrates the effects of different thermal 

Grashof number Gr and mass Grashof number Gm on 

the velocity. It is observed that the velocity increases 

with increasing values of the thermal Grashof number 

or mass Grashof number. The thermal Grashof 

number signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force. 

The mass (solutal) Grashof number defines the ratio 

of the species buoyancy force to the viscous 

hydrodynamic force. The flow is accelerated due to 

the enhancement in buoyancy force corresponding to 

an increase in the thermal Grashof number i.e., free 

convection effects. The positive values of Gr 

correspond to cooling of the plate by natural 

convection. Heat is therefore conducted away from 

the vertical plate into the fluid which increases the 

temperature and thereby enhances the buoyancy 

force.  

 

The effect of magnetic field parameter M on the 

velocity is shown in Fig. 3. The velocity decreases 

with an increase in the magnetic parameter. It is 

because that the application of transverse magnetic 

field will result a resistive type force (Lorentz force) 

similar to drag force which tends to resist the fluid 

flow and thus reducing its velocity. Also, the 

boundary layer thickness decreases with an increase 

in the magnetic parameter.  
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Fig. 4a. Velocity profiles for different values of R 
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Fig. 4b. Temperature profiles for different values of 

R 
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Fig. 5a. Velocity profiles for different values of Pr 
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Fig. 5b. Temperature profiles for different values of 

Pr 

 

The influence of the thermal radiation parameter R on 

the velocity and temperature are shown in Figs. 4a 

and 4b respectively. The radiation parameter R 
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defines the relative contribution of conduction heat 

transfer to thermal radiation transfer. It is obvious 

that an increase in the radiation parameter results in 

decreasing velocity and temperature within the 

boundary layer.  

 

Figures 5a and 5b show the effect of Pr on the 

transient velocity and temperature distributions. Both 

the velocity and temperature decrease as Pr increases. 

This is in agreement with the physical fact that the 

thermal boundary layer thickness decreases with 

increasing Pr.  
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Fig. 6a. Velocity profiles for different values of   
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Fig. 6b. Temperature profiles for different values of 

  
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Fig.7. Velocity profiles for different values of a 

 

The presence of a heat source in the boundary layer 

generates energy, which causes the temperature of the 

fluid to increase. This increase in temperature 

produces an increase in the flow field due to the 

buoyancy effect. These behaviors are evident from 

Figs. 6a and 6b. 

 

The behavior of velocity for different values of the 

exponent of the velocity of moving plate ‘ a ’ and t 

are presented in Figs. 7 and 8 respectively. It is 

observed that the velocity increases with increasing 

values of the exponent of the velocity of moving 

plate ‘ a ’. It is noticed that the velocity increases with 

increasing values of t .  
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Fig. 8. Velocity profiles for different values of t 
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Fig. 9a. Velocity profiles for different values of Sc 
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Fig. 9b. Concentration profiles for different values of 

Sc 

 

For different values of the Schmidt number Sc, the 

velocity and concentration profiles are plotted in 

Figs. 9a and 9b respectively. The Schmidt number Sc 

embodies the ratio of the momentum diffusivity to 

the mass (species) diffusivity. It physically relates the 

relative thickness of the hydrodynamic boundary 

layer and mass-transfer (concentration) boundary 

layer. As the Schmidt number increases the 

concentration decreases. This causes the 

concentration buoyancy effects to decrease yielding a 

reduction in the fluid velocity. The reductions in the 

velocity and concentration profiles are accompanied 

by simultaneous reductions in the velocity and 

concentration boundary layers, which is evident from 

Figs. 9a and 9b.  

 

The effects of various governing parameters on the 

skin-friction coefficient
fC , Nusselt number Nu  and 

the Sherwood number Sh  are shown in Tables 1, 2 

and 3. From these tables it is observed that the skin-
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friction increases as M or Gr or Gm or a  or t or R or 

Pr increases, while it decreases as increases. It is 

noticed that the Nusselt number increases in the 

presence of radiation or as Pr increases, while it 

decreases as increases. It is found that the 

Sherwood number increases as the Schmidt number 

increases. 

 

Table 1 Numerical values of the skin-friction 

coefficient fC for R = 1.0,   = 2.0, Pr 0.71  and 

0.6Sc  .                               

 

M  

 

Gr  

 

Gm  

 
a  

 
t  

 

fC  

1.0 

2.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

3.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

3.0 

2.0 

2.0 

0.5 

0.5 

0.5 

0.5 

1.0 

0.5 

 

0.2 

0.2 

0.2 

0.2 

0.2 

0.5 

 

1.85825 

1.96886 

2.06459 

1.81317 

2.08287 

2.20388 

 

Table 2 Numerical values of 

fC and Nu for 2.0Gr  , 2.0,Gm 

1.0, 0.2, 0.5M t a    and 0.6Sc  .  

  

R  

 

  

 

Pr  

 

fC  

 

Nu  

1.0 

2.0 

1.0 

1.0 

2.0 

2.0 

3.0 

2.0 

0.71 

0.71 

0.71 

1.0 

1.85825 

1.93250 

1.00996 

1.81217 

1.06156 

1.55025 

-0.13466 

0.68211 

 

Table 3 Numerical values of fC and Sh   

for 2.0Gr  , 2.0,Gm  1.0, 0.2, 0.5,M t a  

1.0,R  2.0  and Pr 0.71 . 
      

Sc  

 

fC  

 

Sh  

0.3 

0.6 

0.78 

1.43598 

1.44203 

1.44709 

1.83814 

1.84005 

1.84275 

5. CONCLUSIONS 

The interaction of radiation with mass transfer past an 

accelerated isothermal vertical plate with uniform 

mass diffusion in the presence of magnetic field and 

heat source has been studied. The effects of thermo 

physical parameters on velocity, temperature and 

concentration are analyzed and the following 

observations were noticed.  An increase in the 

radiation parameter results in decreasing velocity and 

temperature within the boundary layer. Increasing 

magnetic parameter decreases the velocity. With the 

increase of Pr, the velocity and temperature profiles 

decrease. The presence of heat source raises the 

temperature. The skin-friction increases as M or Gr 

or Gm or R or Pr increases, and it decreases as  

increases. The Nusselt number increases as R or Pr 

increases, and it decreases as   increases. 
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