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ABSTRACT

For successful transmission of massively sequenced images during 4K surveillance operations, a large amount of data transfer cost high bandwidth, 

latency, and delay of information transfer. Thus, there lies a need for real-time compression of this image sequences. In this study, we present a region-

specific approach for wavelet-based image compression to enable management of huge chunks of information flow by transforming Harr wavelets in 

hierarchical order.
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INTRODUCTION

Wavelets are mathematical tool that enables the hierarchical 

decomposition of functions because of which it has gain high popularity 

in image compression. Although there are several lossy compression 

schemes that have been proposed in the past studies, the wavelet 

transformation-based image compression schemes remain the 

most familiar one among the fellow researchers and have achieved 

several industrial applications [1]. The advantage of this approach 

is that irrespective of high compression ratios, it provides better 

picture enhancement and ensures the integrity of the image quality. 

It has already been established lossy compression method due to its 

characteristics to handle discontinuous data and gives higher peak 

signal to noise ratio values [2,3].

In the lossy compression scheme, the actual signal of the reconstructed 

data cannot be exactly recovered but can be approximated to it with a high 

level of resemblance [4]. The reason behind this is that much of its detail 

from the original signal is discarded while ensuring that the appearance 

of the signal vastly remains the same. For illustration, consider a scenario 

where the image of an object occupies several megabytes of the disk 

space [5]. After the application of lossy compression the minute details 

of the image will be discarded but overall the image size is greatly 

reduced [6]. This is useful in several of the areas such as television 

broadcasting, video conferencing, and information transmission where 

certain amount of errors is admissible in trade of increased bandwidth. 

Such methods include Fractal compression, transform coding, Fourier-

related transformation, discrete cosine transformation, and wavelet 

transformation [7-9]. In other compression schemes, such a lossless 

compression scheme the exact replica of the original data can be created. 

This is familiarly known as entropy encoding. It does not necessarily 

fetches high compression in data size and isnot truly useful in image 

compression scenario. It has wide applications in compression of legal 

or medical records. Such methods include entropy encoding, Huffman 

coding, Bit-plane coding, run-length coding, and Lempel–Ziv–Welch 

coding [10]. In this study, we propose a lossy compression scheme 

for image compression and compare the compressed data with the 

parameters such as peak signal to noise ratio, structural content, 

normalized absolute error to test the integrity, and preseverance of 

imagery quality.

METHODS

We employ the multiwavelet transformation to break down the given 

image to be compressed into a pyramid of features which is linked to 

one another in a logical manner. This will allow us to perform tree-

based searching and allocation for a given color scheme which will 

be independent from feature decomposition for both high- and low-

resolution image [11]. Therefore, the image can be broken into wavelets 

using the following functions as given below
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Where the indices j
o
,j,m,n are the non-negative integers, x and y are the 

pixels position at point P, M, and N are the real valued tensor coefficients, 

ϕ is the scaling function, and ψ is the wavelet function in corresponding 

scaling and wavelet function is given by Wϕ, W
i
ψ  The scaling coefficients 

from the given noisy image are at different resolution in a mammogram 

while the wavelet coefficients from the feature vector in the noise retrieval 

step; that the reason why different types of scanners are used in recording 

the mammogram which in turn is dependent on the optical density.

Here, the sequence of coefficients of a one-dimensional image is 

represented in the form of vector space V. Therefore, a one-pixel image 

can be represented as the function of a piece-wise constant over the 

interval [0.1). Thereby, for all such functions comprising an image is a 

subset of V. This allows us to write a two-pixel image over the interval 

[0.1/2) to [1/2.1). On continuing this pattern, the traversal of the whole 

image can be summed into 2j equal subintervals for Vj vector subspaces. 

Hence, the scaling functions of the wavelets can be written as
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This allows us to get the 2D signal for the discrete wavelet 

transformation from 1D signals by multiplying the two 1D functions, 

that is, φ(x,y) = φ(x)*φ(x) [12]. There exist three functions of wavelet 

corresponding to the scan details of vertical, horizontal, and diagonal 

directions, given as,

ψ φ ψ
1( ) ( )= ( ) ( )x y x y horizontal, / / 

ψ ψ φ
2( ) ( )= ( ) ( )x y x y vertical, / /

ψ ψ ψ
3( ) ( )= ( ) ( )x y x y diagonal, / /

Now, we need to model the filter bank for each of its sub-band to facilitate the 

compression of the redundant data of the decomposed input image using 

the following equations (Fig. 2). Let the so derived 2D matrix in previous 

steps be represented as X and w be the weights of the corresponding 

columns of the matrix X; such that the reduction in redundancy data 

(Fig. 3) for the image to be compressed can be written as:
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Where, T
i
 and R

i
 are the target indices for the output of the compressed 

image and R
i
 is the redundant column array for the weight vectors (w) needed to decompress the image, ρ is the compression ratio to regularize 

parametric stability of the compressing process, m is the mean of the 

diagonal pixels in the current window size of 4×4, 8×8, and 16×16, R
i+1

 

helps in predicting the redundancy in the consequent iterations of the 

processing, I is the image with m×n rows and columns; output figure is 

shown in Fig. 4. The emphasis is toward parsing the redundant information 

with the weight matrices to define its significance of association with 

the decomposed wavelet features [13]. The flow chart of the work flow 

process involving the compression process is given in Fig. 5.

Algorithm: Region-specific wavelet compression algorithm (RSWCA)

Input: Image I with m × n arrays.

Output: Compressed image I’

Fig. 1: Read input image I

Fig. 2: Illustration of the decomposition of wavelets in the form of 
logical manner using the above equation

Fig. 3: Illustration of the formation of non-redundant features

Fig. 4: Output denoised image I
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Step 1: Divide the arrays of the read image into R, G, and B components 

(C
1
, C

2
, C

3
)of size m × n.

Step 2: For each components C
1
, C

2
, C

3
 compute

Step 3: Use multiwavelet transformation to break down the given image 

into a pyramid of features which is linked to one another in a logical 

manner. Therefore, the decomposition tree is given as

Fig. 5: Compraission of the image properties of the input image 
and that of output image when processed through the presented 

region-specific wavelet compression algorithm

Fig. 6: Flow chart of the region-specific wavelet compression 
algorithm

Fig. 7: Sample results of the compression of high contrast images 
using region-specific wavelet compression algorithm
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Step 4: Map the unique non-redundant features from the given image 

using one-dimensional scaling and wavelet function

 j
i j j
x 2 i i=0,1,2 2 1( )= ( ) …− −

ψ ψj
i j j
x x i i( )= ( ) = …− −2 0 1 2 2 1, ,

Step 5: For each non-redundant nodes (x, y) scan weight vectors and 

evaluate optimal indexing arrays for given m x n array
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Step 6: Predict the redundancy by evaluating
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Step 7: End for

Step 8: End loop for C
1
, C

2
, C

3
.

Step 9: Update color nodes at x, y by merging C
1
, C

2
, C

3
 into 3D array 

I’=(C’
1
, C’

2
, C’

3
), show output I’

Step 10: End process.

CONCLUSION

We have presented the quantifying success of the proposed 

algorithm for compressing the digital images with high contrast 

(Fig. 6). Table 1 represents the performance range of compression 

for the test image shown in Fig. 1 with different patch window size 

for computation and its influence represented in form of mean 

square error and SNR are the two standard parameters used to 

compare the performance of compression. The assessment of 

comparative performance results for the denoizing methods with 

that of the RSWCA algorithm suggest the affectivity of performance 

for the proposed method (Fig. 7). The quality compression is 

achieved without elimination of the features and contrast-based 

imagery data. The future prospect of the algorithm will allow us 

to implement the proposed compression scheme with the other 

learning-based algorithms like that of a neural network or fuzzy 

algorithm to achieve better stats of compression.
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Table 1: Compression results of test images showing preseverance of image integrity and quality

Image instances of Fig. 1 Patch window size Given test image Compressed image

Even sized MSE SNR MSE SNR

1 4×4 0.00099669 27.4244 0.0018087 29.2572

2 4×4 0.00098415 25.3041 0.0016533 28.8478

3 4×4 0.00098072 28.9817 0.003711 30.8989

4 4×4 0.0010013 25.7159 0.00037186 31.3495

5 8×8 0.00074276 23.2035 0.00013993 28.3495

6 8×8 0.00083882 20.886 0.00010589 29.9232

7 8×8 0.00088107 18.7317 0.00016077 25.9367

8 16×16 0.0009948 15.7691 5.7354e-05 28.778

9 16×16 0.00098492 21.494 0.00019801 28.6501

10 16×16 0.00089379 16.2776 0.0032242 23.9822

MSE: Mean square error, SNR: Signal to noise ratio


