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REPRESENTABILITY OF CHOW GROUPS OF CODIMENSION THREE

CYCLES

KALYAN BANERJEE

ABSTRACT. In this note we are going to prove that if we have a fibration

of smooth projective varieties X → S over a surface S such that X is of

dimension four and that the geometric generic fiber has finite dimen-

sional motive and the first étale cohomology of the geometric generic

fiber with respect to Ql coefficients is zero and the second étale coho-

mology is spanned by divisors, then A3(X ) (codimension three alge-

braically trivial cycles modulo rational equivalence) is dominated by

finitely many copies of A0(S). Meaning that there exists finitely many

correspondences Γi on S×X , such that
∑

i Γi is surjective from ⊕A2(S)

to A3(X ).

1. INTRODUCTION

The representability problem in the theory of algebraic cycles is a very

interesting and a fundamental problem. Precisely it means the follow-

ing. Let X be a smooth projective algebraic variety of dimension n over

an algebraically closed ground field k of characteristic zero. Consider the

group of algebraic cycles of codimension i which are algebraically triv-

ial modulo rational equivalence. Denote this group by Ai (X ). Then the

question is, when there exists a smooth projective curve C defined over

k and a correspondence Γ on C × X such that Γ∗ from J (C ), the Jacobian

variety of C , to Ai (X ) is onto. The case when we consider An(X ), this

representability question is equivalent to the fact that An(X ) is isomor-

phic to the albanese variety of X , which is also equivalent to the surjec-

tivity of the natural map from some high degree symmetric power of X

to An(X ). It is a conjecture due to Bloch that when we consider a smooth

projective surface S with geometric genus zero then the group A2(S) is

representable. On the other hand, Mumford [M] proved that when the

geometric genus of the surface is greater than zero then the group A2(S)

is not representable. Bloch’s conjecture for surfaces with geometric genus

equal to zero has been proved in certain cases, for all surfaces not of gen-

eral type [BKL] and some examples of surfaces of general type [V],[VC].
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In [G][Theorem 1] it has been proved that when we have a smooth pro-

jective threefold X fibered into surfaces over a smooth projective curve C ,

such that the geometric generic fiber has finite dimensional motive, has

first étale cohomology with Ql is zero and the second étale cohomology

with Ql is spanned by divisors, then the group A2(X ) is representable in

the sense that there exists finitely many correspondences Γi on C × X ,

such that ⊕iΓi∗ from ⊕i J (C ) to A2(X ) is onto. Then as an application, it

has been proved that the A2 of a del Pezzo fibration over a smooth pro-

jective curve is representable.

In this paper our aim is to extend the result of [G] to the case when

X is of dimension 4 and it is fibered into surfaces over a smooth projec-

tive surface, such that the geometric generic fiber satisfies the property

as above. Then we prove that A3(X ) is representable up to dimension 2.

Precisely it means that there exists finitely many correspondences Γi on

S×X such that⊕iΓi∗ from A2(S) to A3(X ) is onto. In other words we prove

that A3(X ) is representable by A2 of smooth projective surfaces.

So the main theorem is :

Theorem 1.1. Let X be a smooth projective fourfold birational to a four-

fold X ′ fibered over a surface S. Assume moreover that the geometric generic

fiber of the fibration X ′
→ S satisfies the following:

(i) The motive of it is finite dimensional. (ii) First étale cohomology of it

is trivial with respect to Ql coefficients. (iii) The second étale cohomology

is spanned by divisors on it.

Then the group A3(X ) is representable up to dimension two.

The underlying technique to prove the main theorem is same as in the

proof of Theorem 1, [G], but the only non-trivial step is to excise a curve

from the base of the fibration and to prove that the representability of

A3(X ) will follow from representability of A3(XU ), where U = S \C , that is

the part we remove has representable A2.

The theorem is interesting from the following view point: The repre-

sentability of A3 up to dimension 2 is a birational invariant of smooth

projective fourfolds that holds for rational varieties. Hence one moti-

vation for the above mentioned theorem is to the rationality problem,

where we explain the vanishing of this obstruction to rationality for smooth,

projective fourfolds fibered over surfaces. In one case of interest to the
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rationality problem, when X is a cubic fourfold, it should be noted that

the representability of A3 is already known by [BP][Proposition 2.7] and

[SV][part 3].

Acknowledgements: The author thanks Kapil Paranjape for his constant en-

couragement and for carefully listening about the arguments of this paper from

the author. The author thanks R.Laterveer and the anonymous referee for point-

ing out a mistake present in the previous version of the paper.

Throughout this text we work over an algebraically closed ground field k of

characteristic zero and all Chow groups are considered with Q-coefficients.

2. REPRESENTABILITY UP TO DIMENSION TWO OF CODIMENSION THREE

CYCLES

Let X be a smooth projective variety and let Ai (X ) denote the alge-

braically trivial, codimension i algebraic cycles on X , modulo rational

equivalence. Then we say that Ai (X ) is weakly representable up to di-

mension two if there exists finitely many curves C1, · · · ,Cm with corre-

spondences Γ1, · · · ,Γm on C1 × X , · · · ,Cm × X and finitely many surfaces

S1, · · · ,Sn with correspondences Γ′

j
on S j ×X , such that

∑

i

Γi +
∑

j

Γ
′

j

is surjective from ⊕i A1(Ci )⊕ j A2(S j ) to Ai (X ). If we assume that X is a

fourfold, then the representability of A2(X ) is a birational invariant. This

is because if we blow up X to X̃ , then A2(X̃ ) is isomorphic to A2(X )⊕

A1(Z ), where Z is the center of the blow up. Since A1(Z ) is dominated by

J (Γ), for some smooth projective curve Γ, this will imply that if A2(X ) is

representable up to dimension two then so is A2(X̃ ). Suppose that X ,Y

are birational, such that Y is obtained by one blow up of X and then one

blow down, the we have a generically finite map from X̃ to Y , which gives

a surjection at the level of A2. So A2(X ) representable up to dimension

two implies the same for A2(X̃ ), hence the same for A2(Y ). Changing the

role of X ,Y , we get the reverse implication.

Similarly if we consider the representability of A3(X ) up to dimension

two, where X is a smooth projective fourfold, then it is a birational invari-

ant in X . This is because if we blow up X along a surface or a curve then

the blow up formula gives us

A3(X̃ ) = A3(X )⊕ A2(S)⊕ A1(S)
3



or

A3(X̃ ) = A3(X )⊕ A1(C )

where S or C is the center of the blow up. So if we blow up for many times

we are only adding A2 of a surface or A1 of a curve, so the representability

up to dimension two remains.

So our main theorem in this section is the following.

Theorem 2.1. Let X be a smooth projective fourfold birational to a four-

fold X ′ fibered over a surface S. Assume moreover that the geometric generic

fiber of the fibration X ′
→ S satisfies the following:

(i) The motive of it is finite dimensional. (ii) First étale cohomology of it

is trivial with respect to Ql coefficients. (iii) The second étale cohomology

with respect to Ql coefficients, is spanned by divisors on it.

Then the group A3(X ) is representable up to dimension two.

Proof. Let us assume from the very beginning that the fourfold X is equipped

with a fibration to a smooth projective surface S. That is we have a fibra-

tion X → S. Let η= Spec(k(S)), and η̄= Spec(k(S)). Let b2 be the dimen-

sion of H2
ét

(X η̄,Ql ) and let by our assumption D1, · · · ,Db2
be the divisors

on X η̄, generating the second étale cohomology group H2
ét

(X η̄,Ql ). Let

us consider a finite extension L of k(S), inside its algebraic closure such

that D1, · · · ,Db2
are defined over L. That is we consider a smooth pro-

jective curve S ′ mapping finitely onto S with function field L, such that

X ′
= X ×S S ′

→ X is of finite degree and D1, · · · ,Db2
are defined over the

generic point of S ′. Since X ′
→ X is finite we can work with this divisors

which are actually defined over the generic point of S ′.

Now we need the lemma.

Lemma 2.2. Let X be a smooth projective fourfold over a field k and let

A3(X ) =V ⊕W , where V is a finite dimensionalQ vector space. Then A3(X )

is representable if and only if there exists finitely many smooth curves and

surfaces C1, · · · ,Cm ,S1, · · · ,Sn , and correspondencesΓi on Ci×X , andΓ
′

j
on

S j ×X such that the homomorphism
∑

i Γi +
∑

j Γ
′

j
from ⊕i A1(Ci )⊕ j A2(S j )

to A3(X ) is surjective onto W .

Proof. Let v1, · · · , vn be a basis for V . For each v j let Z j be the algebraical

cycle representing it. Since Z j is algebraically equivalent to zero, we have

a smooth projective curve C j and a correspondence Γ j such that Γ j∗(x j )
4



equals Z j , where x j is a point on J (C j ). Therefore the homomorphism∑
j Γ j∗ is covering the space V and it has domain ⊕J (C j ). So to prove that

A3(X ) is representable it is enough to prove the representability of W . So

we need to find some smooth curves and surfaces satisfying the assump-

tion that the sum of algebraically trivial zero cycles on these curves and

surfaces cover W . �

step2:

Let {p1, · · · , pm} be a finite set of closed points on S. Let U be the com-

plement of this finite set. Let Y = f −1(U ). Then by the localization exact

sequence we have that

⊕ j CH2(Xp j
) →CH3(X ) → CH3(Y ) → 0

so the Q vector space CH3(X ) splits as CH2(Y )⊕ I where I is the image

of the pushforward from ⊕ j CH2(Xp j
) to CH3(X ). It is also true that the

map from A3(X ) to A3(Y ) is surjective, where A3 denote the algebraically

trivial one-cycles modulo rational equivalence. So we have a splitting

A3(X ) = A3(Y )⊕ J

where J is the intersection of I and A3(X ). Let for Xp j
, X̃p j

is the resolu-

tion of singularity of it. Then we have that J is covered by two subspaces,

one is the direct sum of A2(Xp j
), which is covered by direct sums of the

A2’s of the irreducible components of X̃p j
, the other is a finite dimen-

sional subspace, coming from the Neron severi group of the irreducible

components of the resolutions of X̃p j
. So by the previous lemma it is suf-

ficient to prove that A3(Y ) is representable up to dimension two to prove

the representability of the group A3(X ).

step 3:

Let C be a projective curve inside S, and we excise C from S. Let Y

be the complement of XC = X ×S C in X . Then we prove that the repre-

sentability of A3(X ), follows from the representability of A3(Y ). For that

we consider the localisation exact sequence given by

CH2(XC ) → CH3(X ) →CH3(Y ) → 0 .

Then we have CH3(X ) = CH3(Y )⊕ I , where I is the image of CH2(XC ) in

CH3(X ). Considering the subgroup of algebraically trivial cycles we get
5



that

A3(X ) = A3(Y )⊕ J

where J is the intersection of I with the image of A3(X ). Then J is a sum

of two Q-vector spaces. One is the image of A2(XC ) and the other is a

finite dimensional subspace corresponding to the Neron-Severi group

of XC . Then by step one if we have A2(XC ) is representable then we

have the representability of J . But the representability of A2(XC ) follows

from [G][Theorem 1]. Because according to our assumption the geo-

metric generic fiber of X → S has finite dimensional motive and base

change of finite dimensional motive is finite dimensional. Therefore the

geometric generic fiber of XC → C has finite dimensional motive. Also

the first and second etale cohomology of the geometric generic fiber of

XC → C satisfies the assumption of [G][Theorem 1], because the geo-

metric generic fiber of X → S satisfies the similar properties. Therefore

we have the representability of A3(X ) follows from that of A3(Y ). So we

can say that to prove representability of A3(X ) it is sufficient to remove

a finitely many curves from the base, and look for the representability of

the A3(Y ), where Y is he complement of ∪i XCi
.

step 4:

Suppose that Xη is defined over a finite extension L of k(S) inside k(S).

Then let S ′ be a smooth projective surface with function field L, and map-

ping finitely onto S. Now over S ′ we have a rational point of the variety

X ′

η = Xη×k(S) S ′. This rational point induces a section of the map Y →U ,

over some U ′ Zariski open inside U . Now U ′ maps isomorphically onto

its image in Y . So we have to remove a curve from U to obtain U ′. Since

the representability remains unchanged by this process, we can assume

without loss of generality that the section is defined everywhere on U . So

without loss of generality we can assume that Y → U has a section. Let

E be the image of this section. Then E .E has codimension 4 in Y , so it’s

support is contained in finitely many fibers. So we can cut down those

finitely many fibers. Then we can prove that π0 = E ×U Y ,π4 = Y ×U E

are pairwise orthogonal [G][page 332, reduction 4]. Hence we have the

projector

π2 =∆Y /U −π0 −π4 .
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Let M2(Y /U ) be the relative motive defined by π2. Then we have the

decomposition

M(Y /U ) = 1U ⊕M2(Y /U )⊕L2
U

Now we know that M(X η̄) is finite dimensional, which means at the

level of Chow groups that there exists some correspondence p, q on X η̄

such that dSym ◦ pn is rationally trivial and dal t ◦ qn is rationally trivial.

Let L be the minimal field of definition of p, q , then taking a finite exten-

sion S ′ over S, with function field L, we have M(Yη) is finite dimensional

over η itself. On the other hand since CH2(Yη×Yη) is the colimit of the

groups C H2(YU ×U YU ), we have that the motive M(Y /U ) is finite dimen-

sional for some open set U in S. Then we shrink our U to this U by taking

intersection.

Now the finite dimensionality of M(Y /U ) implies M2(Y /U ) is finite di-

mensional. One can show more, that is M2(Y /U ) is evenly finite dimen-

sional of dimension b2. This follows from the computation of [G][Main

computations, page 333].

Now let D1, · · · ,Db2
be the divisors defined over η and they generate the

cohomology group H2(Yη,Ql ). According to [G][page 334],[GP][theorem

2.14] we have

ρη = (π2)η−
b2∑

i=1

[Di ×η D ′

i ]

is homologically trivial. Then there exists some n such that ρn
η = 0, in the

associative ring End(M2(Yη)), by Kimura’s nilpotency theorem [KI][proposition

7.2].

Let Wi ,W ′

i
are spreads of the above divisors over U , they may be non-

unique but we choose and fix one spread. Consider the cycles

Wi ×U W ′

i

in C or r 0
U (Y ×U Y ) and set

ρ =π2 −

b2∑

i=1

[Wi ×U W ′

i ]

thenρ maps toρη under the base change functor from the category of rel-

ative Chow motives over U to the category of Chow motives over η. Let us

consider an endomorphism ω of M2(Y /U ). Then under the above func-

tor trace of ω ◦ρ is mapped to trace of ωη ◦ρη [G][page 334], [DM][page
7



116], which is zero because ρη is homologically trivial. The base change

functor defines an isomorphism from End(1U ) to End(1η). Therefore

trace of ω ◦ρ = 0 for any ω, so ρ is numerically trivial, therefore ρn
= 0

by [G][Proposition 2], [KI][7.5],[AK][9.1.14].

Let W̄i be the Zariski closure of Wi in X and consider

θi = Γ
t
f .[S ×W̄i ]

it is a codimension 3 cycle on S × X . The cycle Γ
t
f

is the transpose of

the graph of the map f : X → S. Consider the homomorphism θi∗ from

CH2(S) to CH3(X ). Let us compute θi∗.

θi∗(a) = pX∗(p∗

S (a).θi )

which is equal to

θi∗(a) = pX∗(p∗

S (a).Γt
f .[S ×W̄i ])

on the other hand we have p∗

S (a).Γt
f
= p∗

S (a).τ∗([X ]), where τ is the map

x 7→ ( f (x), x). We have f ∗(a) = τ∗p∗

S (a) = τ∗p∗

S (a).[X ] therefore τ∗ f ∗(a) =

τ∗(τ∗p∗

S (a).[X ]), which by projection formula is p∗

S (a).τ∗(X ) = p∗

S (a).Γt
f

.

Putting this in the above expression of θi∗ we have

θi∗(a) = pX∗(τ∗ f ∗(a).[C ×W̄i ])

= pX∗(τ∗ f ∗(a).p∗

X ([W̄i ])) = pX∗τ∗ f ∗(a).[W̄i ] = f ∗(a).[W̄i ] .

So this computation provides the description of the homomorphism θi∗

in the non-compact case when we consider it from CH2(U ) to CH3(Y ).

It is immediate that the homomorphisms θi∗’s are compatible in com-

pact and non-compact cases. Since the homomorphism θi∗ in the non-

compact case respects algebraic equivalence we have the compatibility

at the level of algebraically trivial cycles modulo rational equivalence. So

summarising we have a commutative diagram as follows.

∑b2

i=1
A2(S)

��

θ∗
// A3(X )

��∑b2

i=1
A2(S)

θ∗
// A3(Y )

8



Chasing the above diagram and assuming that the bottom θ∗ is surjective

we have that the top θ∗ has image equal to A3(X ) modulo A2(XC ), where

C is the complement of U in S and XC = f −1(C ). Since A2(XC ) is finite

dimensional it is enough to prove that θ∗ at the bottom is onto to prove

the representability of A3(X ) up to dimension 2.

Let y belongs to CH3(Y ), then considering the relative correspondence

∆Y /U , we get that

y =∆Y /U∗(y) =π0∗(y)+π2∗(y)+π4∗(y) .

Nowπ0∗(y) is equal to p2∗(p∗

1 (y).π0) which is equal to p2∗(p∗

1 (y).p∗

1 (E )) =

p∗

2 p∗

1 (y.E ) = f ∗ f∗(y.E ) = 0 as the codimension of y.E is five. So we have

π0∗(y) = 0. Also we have f∗(y) = 0.

Next we compute,

π4∗(y) = p2∗(p∗

1 (y).π4)

= p2∗(y ×U Y .Y ×U E )= p2∗(y ×U E )

= f∗(y)×U E = 0 .

So we have that y = (π2∗)(y) . Putting π2 equal to
∑

i [Wi ×U W ′

i
] + ρ

we get that y = π2∗(y) =
∑

i [Wi ×U W ′

i
]∗(y)+ρ∗(y). Let Z j ’s are curves

representing the class of y , then

[Wi ×U W ′

i ]∗(Z j ) = p2∗([Z j ×U Y ].[Wi ×U W ′

i ])

= p2∗([Z j ].[Wi ]×U [Y ].[W ′

i ]) = p2∗([Z j ].[Wi ]× [W ′

i ])

by linearity we have

[Wi ×U W ′

i ](y) = p2∗(y.[Wi ]×U [W ′

i ])

since y is of codimension 3 and Wi is of codimension 1, we have y.Wi is

a zero cycle on Y . Observe that

[Wi ×U W ′

i ]∗(y) = p2∗(y.Wi ×U W ′

i )

= p2∗(p∗

1 (y.Wi ).p∗

2 (W ′

i )) = p2∗p∗

1 (y.Wi ).W ′

i

= f ∗ f∗(y.Wi ).W ′

i = f ∗(ai ).W ′

i = θi∗(ai )

where ai = f∗(y.Wi ). Since y belongs to A3(Y ), we have hat ai is in A2(U ).

Then we get that
∑

i

[Wi ×U W ′

i ]∗(y) =
∑

i

θi∗(ai ) = θ∗(e1)

where c1 = (a1, · · · , ab2
) in ⊕i A2(S). So we have

ρ∗(y) = θ∗(c1)+ y
9



applying ρ n-times we have that

ρn
∗

(y) = 0= θ∗(cn)+n y

so we have y =−1/nθ∗(cn), hence θ∗ is surjective.

�

Remark 2.3. It is interesting to note that one of the conditions in Theo-

rem 2.1 is the motivic finite dimensionality of the geometric generic fiber

X η̄. Suppose that the ground field is C. Consider X η̄ over C(S). Then the

motivic finite dimensionality is also equivalent to Bloch’s conjecture for

the geometric generic fiber if the geometric genus of the fiber is zero, see

[GP1][Theorem 27]. Recall that, universal triviality of the Chow group of

zero cycles on the surface X η̄ defined over the algebraically closed field k(S)

is

CH0(X η̄(k(S))(Xη̄)
) ∼=Z .

This is equivalent, [ACP][proof of Lemma 1.3], to the integral decomposi-

tion of the diagonal ∆Xη̄ ⊂ X η̄×X η̄, which says that

[∆Xη̄ ] = [Z1]+ [Z2]

in CH2(X η̄× X η̄), where [.] denote the cycle class modulo rational equiva-

lence in the Chow group, Z1 is supported on D×X η̄, D ( X η̄ and Z2 = X η̄×x

for a k(S)-point x on X η̄. Let us now consider the case k =C. Suppose that

the geometric genus of the surface X η̄C
, obtained under the extension of

scalars from C(S) to C, is zero. Suppose also that the torsion in the Neron-

Severi group of X η̄ is trivial. Since torsion in the Neron-Severi group re-

mains unchanged by the extension of scalars from C(S) to C (this follows

from rigidity of unramified cohomology groups as studied in [C][Section

4.4]) we have, the torsion in the Neron-Severi group of X η̄C
is trivial. Now

motivic finite dimensionality of X η̄ implies motivic finite dimensionality

of X η̄C
. This further implies the Bloch’s conjecture on X η̄C

with the as-

sumption on the geometric genus of X η̄C
. The Bloch’s conjecture on X η̄C

with the triviality of the torsion subgroup in the Neron-Severi group of

X η̄C
implies the universal triviality of the Chow group of zero cycles on

X η̄, see [ACP][Proposition 1.9 + Corollary 1.10], [BS][Remark 2, page 1252],

[GG][Corollary 8], [Vo][Corollary 2.2].

On the other hand, integral decomposition of the diagonal, gives Bloch’s

conjecture on X η̄ by Chow moving lemma (also the geometric genus of X η̄

is zero in this case by the Proposition 1.8 in [ACP]) and hence we obtain the
10



finite dimensionality of the motive M(X η̄). Therefore for surfaces X η̄ over

k =C(S), with X η̄C
being of geometric genus zero, and NS(X η̄)Tor s = {0} (or

equivalently NS(X η̄C
) = {0}), the motivic finite dimensionality condition in

Theorem 2.1 can be replaced by the integral decomposition of the diagonal

of X η̄ or the universal triviality of CH0 of X η̄.

Now, let X be a smooth projective variety defined over the field of com-

plex numbers with universally Q-trivial Chow group of zero cycles, that

is

CH0(XC(X ))⊗ZQ
∼
=Q .

It follows by [BS][Proposition 1] that the cycle class of the diagonal ∆X in

CH2(X ×X ) admits a rational decomposition, that is

N [∆X ] = [Z1]+ [Z2]

in CH2(X ×X ), where [.] denote the class of a cycle modulo rational equiv-

alence in the Chow group. Here Z1 is supported on D × X , D ( X and Z2

is m(X ×x), for a C-point x on X and m an integer. Let NX be the smallest

positive integer for which the above mentioned decomposition of the diag-

onal holds. This integer NX is defined as the torsion order of the variety

X .

Let X → S be a smooth, projective fourfold fibred into surfaces over the

surface S as before. Suppose that CH0 of X η̄ is universallyQ-trivial. Now by

the main theorem of [K] [Proposition 3.3 and Corollary 6.4], [KS][Remark

3.1.5 (3)], it follows that the torsion order of the surface X η̄ is the expo-

nent of the torsion subgroup in the Neron-Severi group of X η̄. Suppose

that the torsion subgroup in the Neron-Severi group of X η̄ is trivial, then

we have the universal (Z)-triviality of the Chow group of zero cycles of

X η̄. This fact is well-known and proven in [ACP][Proposition 1.8 and 1.9].

Therefore universal Q-triviality of CH0 of X η̄ with the information that the

torsion subgroup of the Neron-Severi group of X η̄ is trivial give integral

decomposition of the diagonal, which further implies, by the above dis-

cussion, the motivic finite dimensionality of X η̄. Hence the assumption

of universal Q-triviality along with torsion free Neron-Severi group of X η̄

is stronger than the motivic finite dimensionality assumption for the geo-

metric generic fiber in the main theorem 2.1. Also note that in the case of

universal Q-triviality of CH0 of X η̄, the geometric genus of the surface X η̄

is zero by the result of Bloch-Srinivas, [BS].
11



Example 2.4. Let X be a smooth, projective fourfold over C fibered into del

Pezzo surfaces over a smooth, projective surface, then the geometric generic

fiber of this fibration satisfies the conditions of the Theorem 2.1. Therefore

A3(X ) is representable up to dimension 2. Such examples have been stud-

ied in [AHTV], where a generic cubic fourfold containing a sextic, elliptic,

ruled surface is shown to be birational to a del Pezzo surface fibration over

the projective plane. General del Pezzo fibrations are studied in detail in

[Ku]. Also it is to be mentioned that representability of A3 up to dimension

2 is known for all cubic fourfolds.

Other examples of fourfolds fibered in del Pezzo surfaces are quadric sur-

face bundles over surfaces and involution surface bundles over surfaces.

The representability of A3 up to dimension 2 holds for these examples as

the geometric generic fibers of the fibrations mentioned above are del Pezzo

surfaces and satisfy the condition of Theorem 2.1. The first family of ex-

amples are studied in [HPT] and the authors exhibit families of this type,

having both rational and non-stably rational fibers and further showing

that stable rationality for these families are non-deformable. The second

family of examples are studied in [KT], [KT1]. In both of these two types of

examples, the authors prove that families of such fourfolds have their very

general fiber (hence the geometric generic fiber) not stably rational, though

the representability of A3 up to dimension 2 holds for the geometric generic

fibers.

Consider a smooth, projective fourfold X over C fibered into Barlow sur-

faces over a smooth, projective surface, then we have the criterion of The-

orem 2.1 satisfied, as Bloch’s conjecture is true for Barlow surfaces [V], the

motive of the geometric generic fiber of this fibration, is finite dimensional.

Therefore we have A3(X ) representable up to dimension 2. Examples of

such fibration can be constructed from the universal determinental Bar-

low surface over the moduli space of determinental Barlow surfaces which

is two dimensional. This universal family of Barlow surfaces can be con-

structed as a quotient of a family of certain Catanese surfaces admitting an

involution. For such examples please see [S], [V][Introduction, discussion

after theorem 0.6].
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