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is paper reviews the research work done on the response time analysis of messages in controller area network (CAN) from the
time CAN speci�cation was submitted for standardization (1990) and became a standard (1993) up to the present (2012). �uch
research includes the worst-case response time analysis which is deterministic and probabilistic response time analysis which is
stochastic. A detailed view on both types of analyses is presented here. In addition to these analyses, there has been research on
statistical analysis of controller area network message response times.

1. Introduction

e arbitration mechanism employed by CAN means that
messages are sent as if all the nodes on the network share
a single global priority-based queue. In effect, messages are
sent on the bus according to �xed priority nonpreemptive
scheduling [1]. In the early 1990s, a common misconception
was that although the protocol was very good at transmitting
the highest priority messages with low latency, it was not
possible to guarantee that the less urgent signals carried
in lower priority messages would meet their deadlines [1].
In 1994, Tindell et al. [2–5] showed how research into
�xed priority preemptive scheduling for single processor
systems could be applied to the scheduling of messages on
CAN. is analysis provided a method of calculating the
worst-case response times of all CAN messages. Using this
analysis it became possible to engineer CAN-based systems
for timing correctness, providing guarantees that allmessages
and the signals that they carry would meet their deadlines.
In 2007, Davis et al. [1] refuted this analysis and showed
that multiple instances of CAN messages within a busy
period (this period begins with a critical instant) need to
be considered in order to guarantee that the message and
the signals that they carry would meet their deadlines, since

CAN effectively implements �xed priority nonpreemptive
scheduling of messages.

Real-time researchers have extended schedulability anal-
ysis to a mature technique which for non-trivial systems
can be used to determine whether a set of tasks executing
on a single CPU or in a distributed system will meet their
deadlines or not [1, 2, 4, 5]. e essence of this analysis is
to investigate if deadlines are met in a worst-case scenario.
Whether this worst case actually will occur during execution,
or if it is likely to occur, is not normally considered [6].

In contrast with schedulability analysis, reliability mod-
elling involves the study of fault models, the characterization
of distribution functions of faults, and the development of
methods and tools for composing these distributions and
models in estimating an overall reliability �gure for the
system [6].

is separation of deterministic (0/1) schedulability anal-
ysis and stochastic reliability analysis is a natural simpli�ca-
tion of the total analysis. is is because the deterministic
schedulability analysis is quite pessimistic, since it assumes
that a missed deadline in the worst case is equivalent to
always missing the deadline, whereas the stochastic analysis
extends the knowledge of the system by computing how oen
a deadline is violated [7].
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ere are many other sources of pessimism in the anal-
ysis, including considering worst-case execution times and
worst-case phasings of executions, as well as the usage of
pessimistic fault models. In a related work [8], a model for
calculating worst-case latencies of controller area network
(CAN) frames (messages) under error assumptions is pro-
posed. is model is pessimistic, in the sense that there are
systems that the analysis determines to be unschedulable,
even though deadlines will be missed only in extremely rare
situations with pathological combinations of errors.

In [9, 10] the level of pessimism is reduced by introducing
a better fault model, and in [9] variable phasings between
message queuing are also considered, in order to make the
model more realistic. In [11] the pessimism introduced by
the worst-case analysis of CAN message response times is
reduced by using bit-stuffing distributions in the place of the
traditional worst-case frame sizes which are referred to in
[6, 7].

e organization of the paper is as follows: in Section
2, the review of the research on Worst Case Response Time
Analysis of CAN messages is presented, and in Section 3,
the review of the research on Probabilistic Response Time
Analysis of CANmessages is presented. In both sections, the
method of bit stuffing is reviewed.

2. Worst-Case Response Time Analysis of
CANMessages

In automotive applications, the messages sent on CAN are
used to communicate state information, referred to as signals,
between different ECUs. Examples of signals include wheel
speeds, oil andwater temperature, engine rpm, gear selection,
accelerator position, dashboard switch positions, climate
control settings, window switch positions, fault codes, and
diagnostic information. In a high-end vehicle there can be
more than 2500 distinct signals, each effectively replacing
what would have been a separate wire in a traditional point-
to-point wiring loom.

Many of these signals have real-time constraints asso-
ciated with them. For example, an ECU reads the position
of a switch attached to the brake pedal. is ECU must
send a signal, carrying information that the brakes have been
applied, over the CAN network so that the ECU responsible
for the rear light clusters can recognise the change in the
value of the signal and switch the brake lights on. All
this must happen within a few tens of milliseconds of the
brake pedal being pressed. Engine, transmission, and stability
control systems typically place even tighter time constraints
on signals, which may need to be sent as frequently as once
every 5milliseconds tomeet their time constraints [1]. Hence
it is essential that CAN messages meet their deadlines.

2.1. Related Work. CAN is a serial data bus that supports
priority-based message arbitration and non-pre-emptive
message transmission. e schedulability analysis for CAN
builds on previous research into �xed priority scheduling of
tasks on single processor systems [12].

In 1990, Lehoczky [13] introduced the concept of a busy
period and showed that if tasks have deadlines greater than
their periods (referred to as arbitrary deadlines) then it is
necessary to examine the response times of all invocations
of a task falling within a busy period in order to determine
the worst-case response time. In 1991, Harbour et al. [14]
showed that if deadlines are less than or equal to periods,
but priorities vary during execution, then again multiple
invocations must be inspected to determine the worst-case
response time. We note that non-pre-emptive scheduling
is effectively a special case of pre-emptive scheduling with
varying execution priority—as soon as a task starts to execute,
its priority is raised to the highest level. In 1994, Tindell et
al. [12] improved upon the work of Lehoczky [13], providing
a formulation for arbitrary deadline analysis based on a
recurrence relation.

Building upon these earlier results, comprehensive
schedulability analysis of non-pre-emptive �xed priority
scheduling for single processor systems was given by George
et al. in 1996 [15]. In 2006, Bril [16] refuted the analysis
of �xed priority systems with deferred pre-emption given
by Burns in [17], showing that this analysis may result in
computed worst-case response times that are optimistic. e
schedulability analysis for CANgiven byTindell et al. in [2–5]
builds upon [17] and suffers from essentially the same �aw.
A similar issue with work on pre-emption thresholds [18]
was �rst identi�ed and corrected by Regehr [19] in 2002. A
technical report [20] and a workshop paper [21] highlight
the problem for CAN but do not provide a speci�c in-depth
solution.

e revised schedulability analysis presented in [1] aims
to provide an evolutionary improvement upon the analysis of
CAN given by Tindell et al. in [2–5]. To do so, it draws upon
the analysis of Tindell et al. [12] for �xed priority pre-emptive
scheduling of systems with arbitrary deadlines, and the anal-
ysis of George et al. [15] for �xed priority non-pre-emptive
systems, and also presents a sufficient but not necessary
schedulability tests, to overcome the complexities involved in
calculating the response times of multiple instances of CAN
messages within the busy period.

2.2. Bit Stuffing in CAN Messages. CAN was designed as
a robust and reliable form of communication for short
messages. Each data frame carries between 0 and 8 bytes
of payload data and has a 15-bit Cyclic Redundancy Check
(CRC). e CRC is used by receiving nodes to check for
errors in the transmittedmessage. If a node detects an error in
the transmitted message, which may be a bit-stuffing error, a
CRC error, a form error in the �xed part of the message or an
acknowledgement error, then it transmits an error �ag [22].
e error �ag consists of 6 bits of the same polarity: “000000”
if the node is in the error active state and “111111” if it is
error passive. Transmission of an error �ag typically causes
other nodes to also detect an error, leading to transmission
of further error �ags.

Figure 1 illustrates CAN error frames, reproduced from
[1]. e length of an error frame is between 17 and 31 bits.
Hence eachmessage transmission that is signalled as an error
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F 1: CAN error frames.

can lead to a maximum of 31 additional bits of error recovery
overhead plus retransmission of the message itself [22].

One characteristic of Nonreturn-to-Zero code that is
adopted in CAN bus is that the signal provides no edges
that can be used for resynchronization if transmitting a large
number of consecutive bits with the same polarity. erefore
bit stuffing is used to ensure synchronization of all bus nodes.
is means that during the transmission of a message, a
maximumof �ve consecutive bitsmay have the same polarity.
e bit-stuffing area in a CAN bus frame includes the SOF,
Arbitration �eld, Control �eld, �ata �eld, and C�C �eld.
Since bit stuffing is used, six consecutive bits of the same type
(111111 or 000000) are considered an error.

As the bit patterns “000000” and “111111” are used to
signal errors, it is essential that these bit patterns are avoided
in the variable part of a transmitted message (refer to Figure
3). e CAN protocol therefore requires that a bit of the
opposite polarity is inserted by the transmitter whenever 5
bits of the same polarity are transmitted.is process referred
to as bit stuffing, is reversed by the receiver. e worst-case
scenario for bit stuffing is shown in Figure 2 [1]. Note that
each stuff bit begins a sequence of 5 bits that is itself subject
to bit stuffing.

Stuff bits increase the maximum transmission time of
CAN messages. Aer including stuff bits and the interframe
space, the maximum transmission time 𝐶𝐶𝑚𝑚 of a CAN
message containing 𝑠𝑠𝑚𝑚 data bytes is given by

𝐶𝐶𝑚𝑚 = 󶀤󶀤𝑔𝑔 𝑔 𝑔𝑔𝑔𝑚𝑚 + 13 + 󶃄󶃄
𝑔𝑔 𝑔 𝑔𝑔𝑔𝑚𝑚 − 1

4
󶃔󶃔󶀴󶀴 𝜏𝜏bit, (1)

where 𝑔𝑔 is 3� for standard format (11-bit identi�ers) or 5� for
extended format (2�-bit identi�ers), ⌊𝑎𝑎𝑎𝑎𝑎𝑎 is notation for the
�oor function, which returns the largest integer less than or
equal to a/b, and 𝜏𝜏bit is the transmission time for a single bit.

e formula given in (1) simpli�es to

𝐶𝐶𝑚𝑚 = 󶀡󶀡55 + 10𝑠𝑠𝑚𝑚󶀱󶀱 𝜏𝜏bit (2)

for 11-bit identi�ers and

𝐶𝐶𝑚𝑚 = 󶀡󶀡80 + 10𝑠𝑠𝑚𝑚󶀱󶀱 𝜏𝜏bit (3)

for 2�-bit identi�ers.

2.3. Scheduling Model. e system is assumed to comprise
a number of nodes (microprocessors) connected via CAN.
Each node is assumed to be capable of ensuring that at
any given time when arbitration starts, the highest priority
message queued at that node is entered into arbitration [1].

e system is assumed to contain a static set of hard
real-time messages each statically assigned to a node on the
network. Each message 𝑚𝑚 has a �xed identi�er and hence a
unique priority. As priority uniquely identi�es each message,
in the remainder of this paper we will overload 𝑚𝑚 to mean
either message𝑚𝑚 or priority𝑚𝑚 as appropriate. Each message
has a maximum number of data bytes 𝑠𝑠𝑚𝑚 and a maximum
transmission time 𝐶𝐶𝑚𝑚, given by (1).

Each message is assumed to be queued by a soware
task, process or interrupt handler executing on the host
microprocessor. is task is either invoked by, or polls for,
the event and takes a bounded amount of time between 0
and 𝐽𝐽𝑚𝑚 to queue the message ready for transmission. 𝐽𝐽𝑚𝑚 is
referred to as the queuing jitter of themessage and is inherited
from the overall response time of the task, including any
polling delay.

e event that triggers queuing of themessage is assumed
to occur with a minimum interarrival time of 𝑇𝑇𝑚𝑚, referred to
as the message period. is model supports events that occur
strictly periodically with a period of 𝑇𝑇𝑚𝑚, events that occur
sporadically with a minimum separation of 𝑇𝑇𝑚𝑚, and events
that occur only once before the system is reset, in which case
𝑇𝑇𝑚𝑚 is in�nite.

Each message has a hard deadline 𝐷𝐷𝑚𝑚, corresponding
to the maximum permitted time from occurrence of the
initiating event to the end of successful transmission of
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the message, at which time the message data is assumed to
be available on the receiving nodes that require it. Tasks on
the receiving nodes may place different timing requirements
on the data; however in such cases we assume that𝐷𝐷𝑚𝑚 is the
tightest of such time constraints.

e worst-case response time 𝑅𝑅𝑚𝑚 of a message is de�ned
as the longest time from the initiating event occurring to the
message being received by the nodes that require it.

A message is said to be schedulable if and only if its
worst-case response time is less than or equal to its deadline
(𝑅𝑅𝑚𝑚 ≤ 𝐷𝐷𝑚𝑚). e system is schedulable if and only if all of the
messages in the system are schedulable [1].

2.4. Response Time Analysis. Response time analysis for CAN
aims to provide a method of calculating the worst-case
response time of each message. ese values can then be
compared to themessage deadlines to determine if the system
is schedulable.

For systems complying with the scheduling model given
in �ection 2.3, the CAN has effectively implemented �xed
priority non-pre-emptive scheduling of messages. Following
the analysis in [2–5] the worst-case response time of a
message can be viewed as being made up of three elements:

(i) the queuing jitter 𝐽𝐽𝑚𝑚, corresponding to the longest
time between the initiating event and the message
being queued, ready for transmission on the bus,

(ii) the queuing delay𝑊𝑊𝑚𝑚, corresponding to the longest
time that the message can remain in the CAN con-
troller slot or device driver queue before commencing
successful transmission on the bus,

(iii) the transmission time 𝐶𝐶𝑚𝑚, corresponding to the
longest time that the message can take to be transmit-
ted.

e worst-case response time of message𝑚𝑚 is given by
𝑅𝑅𝑚𝑚 = 𝐽𝐽𝑚𝑚 +𝑊𝑊𝑚𝑚 + 𝐶𝐶𝑚𝑚. (4)

e queuing delay comprises blocking 𝐵𝐵𝑚𝑚, due to lower
priority messages which may be in the process of being

transmitted when message 𝑚𝑚 is queued and interference due
to higher prioritymessages whichmay win arbitration and be
transmitted in preference to message𝑚𝑚.

e maximum amount of blocking occurs when a lower
prioritymessage starts transmission immediately beforemes-
sage 𝑚𝑚 is queued. Message 𝑚𝑚 must wait until the bus is
idle before it can be entered into arbitration. e maximum
blocking time 𝐵𝐵𝑚𝑚 is given by

𝐵𝐵𝑚𝑚 = max
𝑘𝑘𝑘lp(𝑚𝑚)

󶀡󶀡𝐶𝐶𝑘𝑘󶀱󶀱 , (5)

where lp(𝑚𝑚𝑚 is the set of messages with lower priority than𝑚𝑚.
e concept of a busy period, introduced by Lehoczky

[13], is fundamental in analysing worst-case response times.
Modifying the de�nition of a busy period given in [14] to
apply to CAN messages, a priority level-𝑚𝑚 busy period is
de�ned as follows

(i) It starts at some time 𝑡𝑡𝑠𝑠 when a message of priority𝑚𝑚
or higher is queued ready for transmission, and there
are no messages of priority𝑚𝑚 or higher waiting to be
transmitted that were queued strictly before time 𝑡𝑡𝑠𝑠.

(ii) It is a contiguous interval of time during which any
message of priority lower than 𝑚𝑚 is unable to start
transmission and win arbitration.

(iii) It ends at the earliest time 𝑡𝑡𝑒𝑒 when the bus becomes
idle, ready for the next round of transmission and
arbitration, yet there are no messages of priority 𝑚𝑚
or higher waiting to be transmitted that were queued
strictly before time 𝑡𝑡𝑒𝑒.

e key characteristic of a busy period is that all messages
of priority 𝑚𝑚 or higher queued strictly before the end of
the busy period are transmitted during the busy period.
ese messages cannot therefore cause any interference on a
subsequent instance of message𝑚𝑚 queued at or aer the end
of the busy period.

Inmathematical terminology, busy periods can be viewed
as right half-open intervals: [𝑡𝑡𝑠𝑠, 𝑡𝑡𝑒𝑒) where 𝑡𝑡𝑠𝑠 is the start of
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the busy period and 𝑡𝑡𝑒𝑒 the end. us the end of one busy
period may correspond to the start of another separate busy
period. is is in contrast to the simpler de�nition given
in [13], which uni�es two ad�acent busy periods as we have
de�ned them, and therefore sometimes results in analysis
of more message instances than is strictly necessary. For
example, in the extreme case of 100% utilisation, the busy
period de�ned in [13] never ends, and an in�nite number of
message instances would need to be considered.

e worst-case queuing delay for message 𝑚𝑚 occurs for
some instances of message𝑚𝑚 queued within a priority level-
𝑚𝑚 busy period that starts immediately aer the longest lower
priority message begins transmission. is maximal busy
period begins with a so-called critical instant [1] where
message 𝑚𝑚 is queued simultaneously with all higher priority
messages, and then each of these messages is subsequently
queued again aer the shortest possible time intervals. In the
remainder of this paper a busy period means this maximum
length busy period.

If more than one instance of message 𝑚𝑚 is transmitted
during a priority level-𝑚𝑚 busy period, then it is necessary to
determine the response time of each instance in order to �nd
the overall worst-case response time of the message.

In [2–5], Tindell gives the following equation for the
worst-case queuing delay:

𝑊𝑊𝑚𝑚 = 𝐵𝐵𝑚𝑚 + 󵠈󵠈
∀𝑘𝑘𝑘hp(𝑚𝑚)

󶃥󶃥
𝑊𝑊𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit

𝑇𝑇𝑘𝑘
󶃵󶃵𝐶𝐶𝑘𝑘, (6)

where hp(𝑚𝑚𝑚 is the set ofmessages with priorities higher than
𝑚𝑚 and ⌈𝑎𝑎𝑎𝑎𝑎𝑎 is notation for the ceiling functionwhich returns
the smallest integer greater than or equal to 𝑎𝑎𝑎𝑎𝑎.

Although 𝑊𝑊𝑚𝑚 appears on both sides of (6), as the right
hand side is a monotonic nondecreasing function of 𝑊𝑊𝑚𝑚,
the equation may be solved using the following recurrence
relation:

𝑊𝑊𝑛𝑛
𝑚𝑚 = 𝐵𝐵𝑚𝑚 + 󵠈󵠈

∀𝑘𝑘𝑘hp(𝑚𝑚)
󶃦󶃦
𝑊𝑊𝑛𝑛𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit
𝑇𝑇𝑘𝑘

󶃶󶃶𝐶𝐶𝑘𝑘. (7)

A suitable starting value is𝑊𝑊0
𝑚𝑚 = 𝐵𝐵𝑚𝑚.e relation iterates

until either 𝐽𝐽𝑚𝑚 + 𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 + 𝐶𝐶𝑚𝑚 > 𝐷𝐷𝑚𝑚, in which case the

message is not schedulable or𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 = 𝑊𝑊𝑛𝑛

𝑚𝑚, in which case the
worst-case response time of the �rst instance o� the message in
the busy period is given by 𝐽𝐽𝑚𝑚 +𝑊𝑊𝑛𝑛𝑛𝑛

𝑚𝑚 + 𝐶𝐶𝑚𝑚.
e �aw in the previous analysis is that, given the

constraint 𝐷𝐷𝑚𝑚 ≤ 𝑇𝑇𝑚𝑚, it implicitly assumes that if message
𝑚𝑚 is schedulable, then the priority level-𝑚𝑚 busy period will
end at or before 𝑇𝑇𝑚𝑚. �e observe that with �xed priority
pre-emptive scheduling this would always be the case, as
on completion of transmission of message 𝑚𝑚, no higher
priority message could be awaiting transmission. However,
with �xed priority non-pre-emptive scheduling, a higher
priority message can be awaiting transmission whenmessage
m completes transmission, and thus the busy period can
extend beyond 𝑇𝑇𝑚𝑚 [1].

e length 𝑡𝑡𝑚𝑚 of the priority level-𝑚𝑚 busy period is given
by the following recurrence relation, starting with an initial
value of 𝑡𝑡0𝑚𝑚 = 𝐶𝐶𝑚𝑚 and �nishing when 𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚 = 𝑡𝑡𝑛𝑛𝑚𝑚:

𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚 = 𝐵𝐵𝑚𝑚 + 󵠈󵠈
∀𝑘𝑘𝑘hp(𝑚𝑚)∪𝑚𝑚

󶃥󶃥
𝑡𝑡𝑛𝑛𝑚𝑚 + 𝐽𝐽𝑘𝑘
𝑇𝑇𝑘𝑘

󶃵󶃵𝐶𝐶𝑘𝑘, (8)

where hp(𝑚𝑚𝑚𝑚 𝑚𝑚 is the set of messages with priority 𝑚𝑚 or
higher. As the right hand side is a monotonic nondecreasing
function of 𝑡𝑡𝑚𝑚, the recurrence relation is guaranteed to
converge provided that the bus utilisation 𝑈𝑈𝑚𝑚, for messages
of priority𝑚𝑚 and higher, is less than 1:

𝑈𝑈𝑚𝑚 = 󵠈󵠈
∀𝑘𝑘𝑘hp(𝑚𝑚)∪𝑚𝑚

𝐶𝐶𝑘𝑘
𝑇𝑇𝑘𝑘

. (9)

If 𝑡𝑡𝑚𝑚 ≤ 𝑇𝑇𝑚𝑚 − 𝐽𝐽𝑚𝑚, then the busy period ends at or before the
time at which the second instance of message 𝑚𝑚 is queued.
is means that only the �rst instance of the message is
transmitted during the busy period. e existing analysis
calculates the worst-case queuing time for this instance via
(7) and hence provides the correct worst-case response time
in this case.

If 𝑡𝑡𝑚𝑚 > 𝑇𝑇𝑚𝑚 − 𝐽𝐽𝑚𝑚, then the existing analysis may give
an optimistic worst-case response time depending upon
whether the �rst or some subsequent instance of message
𝑚𝑚 in the busy period has the longest response time.

e analysis presented in Appendix A.2 of [15] suggests
that 𝑡𝑡𝑚𝑚 is the smallest value that is a solution to (8); however
this is not strictly correct [1]. For the lowest priority message,
𝐵𝐵𝑚𝑚 = 0 and so 𝑡𝑡𝑚𝑚 = 0 is trivially the smallest solution. is
problem can be avoided by using an initial value of 𝑡𝑡0m = 𝐶𝐶𝑚𝑚
[1].

e number of instances 𝑄𝑄𝑚𝑚 of message 𝑚𝑚 that become
ready for transmission before the end of the busy period is
given by

𝑄𝑄𝑚𝑚 = 󶃥󶃥
𝑡𝑡𝑚𝑚 + 𝐽𝐽𝑚𝑚
𝑇𝑇𝑚𝑚

󶃵󶃵 . (10)

To determine the worst-case response time of message𝑚𝑚,
it is necessary to calculate the response time of each of the𝑄𝑄𝑚𝑚
instances and then take the maximum of these values.

In the following analysis, the index variable 𝑞𝑞 is used to
represent an instance of message 𝑚𝑚. e �rst instance in the
busy period corresponds to 𝑞𝑞 𝑞𝑞  and the �nal instance to 𝑞𝑞 𝑞
𝑄𝑄𝑚𝑚 − 1. e longest time from the start of the busy period to
the instance at 𝑞𝑞 beginning successful transmission is given
by

𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 = 𝐵𝐵𝑚𝑚 + 𝑞𝑞𝑞𝑞𝑚𝑚 + 󵠈󵠈

∀𝑘𝑘𝑘hp(𝑚𝑚)
󶃥󶃥
𝑊𝑊𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑘𝑘

󶃵󶃵𝐶𝐶𝑘𝑘.

(11)

e recurrence relation starts with a value of 𝑊𝑊0
𝑚𝑚(𝑞𝑞𝑞𝑞

𝐵𝐵𝑚𝑚 + 𝑞𝑞𝑞𝑞𝑚𝑚 and ends when 𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 (𝑞𝑞𝑞𝑞𝑞𝑞  𝑛𝑛

𝑚𝑚(𝑞𝑞𝑞 or when
𝐽𝐽𝑚𝑚 +𝑊𝑊

𝑛𝑛𝑛𝑛
𝑚𝑚 (𝑞𝑞𝑞𝑞  𝑞𝑞T𝑚𝑚 +𝐶𝐶𝑚𝑚 > 𝐷𝐷𝑚𝑚 in which case the message is

unschedulable. For values of 𝑞𝑞 𝑞𝑞  an efficient starting value
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is given by𝑊𝑊0
𝑚𝑚(𝑞𝑞𝑞 𝑞 W𝑚𝑚(𝑞𝑞 𝑞 𝑞𝑞 𝑞 𝑞𝑞𝑚𝑚. e event of initiating

instance 𝑞𝑞 of the message occurs at time 𝑞𝑞𝑞𝑞𝑚𝑚 − 𝐽𝐽𝑚𝑚 relative to
the start of the busy period, so the response time of instance
𝑞𝑞 is given by

𝑅𝑅𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 = 𝐽𝐽𝑚𝑚 +𝑊𝑊𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 − 𝑞𝑞𝑞𝑞𝑚𝑚 +𝐶𝐶 𝑚𝑚. (12)

e worst-case response time of message𝑚𝑚 is therefore

𝑅𝑅𝑚𝑚 = max
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑚𝑚 −1

󶀡󶀡𝑅𝑅𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱󶀱󶀱 . (13)

e analysis presented previously is also applicable when
messages have deadlines that are greater than their periods,
so-called arbitrary deadlines [1]. However, if such timing
characteristics are speci�ed, then the so�ware device drivers
or CAN controller hardware may need to be capable of
bufferingmore than one instance of amessage.enumber of
instances of eachmessage that need to be buffered is bounded
by

𝑁𝑁𝑚𝑚 = 󶃥󶃥
𝑅𝑅𝑚𝑚
𝑇𝑇𝑚𝑚

󶃵󶃵 . (14)

e analysis presented in [15] effectively uses 𝑄𝑄𝑚𝑚 =
⌊𝑡𝑡𝑚𝑚/𝑇𝑇𝑚𝑚⌋ +1  rather than 𝑄𝑄𝑚𝑚 = ⌈𝑡𝑡𝑚𝑚/𝑇𝑇𝑚𝑚⌉. is yields a
value which is one too large when the length of the busy
period plus jitter is an integer multiple of the message period.
Although this does not give rise to problems, the more
efficient formulation given by (10) is preferred [1].

e analysis given in this section as per Davis et al.
[1] corrects a signi�cant �aw in the previous schedulability
analysis for CAN, given by Tindell et al. [2–5]. However,
this schedulability test presented ismore complex, potentially
requiring the computation of multiple response times.

An upper bound on the queuing delay of the second and
subsequent instances of message𝑚𝑚 within the busy period is
therefore given by

𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 =𝐶𝐶 𝑚𝑚 + 󵠈󵠈

∀𝑘𝑘𝑘hp(𝑚𝑚)
󶙥󶙥
𝑊𝑊𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit
𝑇𝑇𝑘𝑘

󶙥󶙥 𝐶𝐶𝑘𝑘. (15)

is result suggests a simple but pessimistic schedulabil-
ity test. An instance of message 𝑚𝑚 can either be subject to
blocking due to lower priority messages or to push through
interference of at most 𝐶𝐶𝑚𝑚 due to the previous instance of
the same message, but not both. Hence we can modify (7) to
provide a correct sufficient but not necessary schedulability
test:

𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 = max 󶀡󶀡𝐵𝐵𝑚𝑚, 𝐶𝐶𝑚𝑚󶀱󶀱 + 󵠈󵠈

∀𝑘𝑘𝑘hp(𝑚𝑚)
󶃥󶃥
𝑊𝑊𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit
𝑇𝑇𝑘𝑘

󶃵󶃵𝐶𝐶𝑘𝑘.

(16)

A further simpli�cation is to assume that the blocking factor
always takes its maximum possible value:

𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 = 𝐵𝐵max + 󵠈󵠈

∀𝑘𝑘𝑘hp(𝑚𝑚)
󶙥󶙥
𝑊𝑊𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit
𝑇𝑇𝑘𝑘

󶙥󶙥 𝐶𝐶𝑘𝑘, (17)

where 𝐵𝐵max corresponds to the transmission time of the
longest possible CAN message (8 data bytes) irrespective of
the characteristics and priorities of the messages in the sys-
tem. So far we have assumed that no errors occur on the CAN
bus. However as originally shown in [2–5], schedulability
analysis of CAN may be extended to include an appropriate
error model.

In [1] it is assumed that the maximum number of errors
present on the bus in some time interval [0, 𝑡𝑡𝑡 is given by
the function 𝐹𝐹𝐹𝐹𝐹𝐹. No speci�c detail about this function is
assumed, save that it is a monotonic non-decreasing function
of 𝑡𝑡. e schedulability equations are modi�ed to account
for the error recovery overhead. e worst-case impact of
a single bit error is to cause transmission of an additional
31 bits of error recovery overhead plus retransmission of
the affected message. Only errors affecting message 𝑚𝑚 or
higher priority messages can delay message 𝑚𝑚 from being
successfully transmitted. e maximum additional delay
caused by the error recovery mechanism is therefore given
by

𝐸𝐸𝑚𝑚 (𝑡𝑡) = 󶀦󶀦31𝜏𝜏bit + max
𝑘𝑘𝑘hp(𝑚𝑚)u𝑚𝑚

󶀡󶀡𝐶𝐶𝑘𝑘󶀱󶀱󶀱󶀱𝐹𝐹 (𝑡𝑡) . (18)

Revising (8) to compute the length of the busy period we have

𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚 = 𝐸𝐸𝑚𝑚 󶀡󶀡𝑡𝑡𝑛𝑛𝑚𝑚󶀱󶀱 + 𝐵𝐵𝑚𝑚 + 󵠈󵠈
∀𝑘𝑘𝑘hp(𝑚𝑚)u𝑚𝑚

󶃥󶃥
𝑡𝑡𝑛𝑛𝑚𝑚 + 𝐽𝐽𝑘𝑘
𝑇𝑇𝑘𝑘

󶃵󶃵𝐶𝐶𝑘𝑘. (19)

Again an appropriate initial value is 𝑡𝑡0𝑚𝑚 =𝐶𝐶 𝑚𝑚. Equation (19)
is guaranteed to converge, provided that the utilisation 𝑈𝑈𝑚𝑚
including error recovery overhead is less than 1.

As before, (10) can be used to compute the number of
message instances that need to be examined to �nd the worst-
case response time:

𝑊𝑊𝑛𝑛𝑛𝑛
𝑚𝑚 󶀡󶀡𝑞𝑞󶀱󶀱 = 𝐸𝐸𝑚𝑚 󶀡󶀡𝑊𝑊

𝑛𝑛
𝑚𝑚 +𝐶𝐶 𝑚𝑚󶀱󶀱 + 𝐵𝐵𝑚𝑚 + 𝑞𝑞𝑞𝑞𝑚𝑚

+ 󵠈󵠈
∀𝑘𝑘𝑘hp(𝑚𝑚)

󶃥󶃥
𝑊𝑊𝑛𝑛

𝑚𝑚 + 𝐽𝐽𝑘𝑘 + 𝜏𝜏bit
𝑇𝑇𝑘𝑘

󶃵󶃵𝐶𝐶𝑘𝑘.
(20)

Equation (20) extends (11) to account for the error recovery
overhead. Note that as errors can impact the transmission of
message 𝑚𝑚 itself, the time interval considered in calculating
the error recovery overhead includes the transmission time
of message 𝑚𝑚 as well as the queuing delay. Equations (20),
(12), and (13) can be used together to compute the response
time of eachmessage instance 𝑞𝑞 and hence �nd theworst-case
response time of eachmessage in the presence of errors at the
maximum rate speci�ed by the error model.

e sufficient schedulability tests given earlier in this
section can be similarly modi�ed via the addition of the term
𝐸𝐸𝑚𝑚(𝑊𝑊

𝑛𝑛
𝑚𝑚+𝐶𝐶𝑚𝑚) to account for the error recovery overhead [1].
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3. Probabilistic Response Time Analysis of
CANMessages

3.1. Probabilistic Bit-Stuffing Distributions. When perform-
ing worst-case response-time analysis, the worst-case num-
ber of stuff bits is traditionally used. In [7], Nolte et al.
introduce a worst-case response time analysis method which
uses distributions of stuff bits instead of the worst-case
values. is makes the analysis less pessimistic, in the sense
that we obtain a distribution of worst-case response times
corresponding to all possible combinations of stuff bits of all
message frames involved in the response time analysis. Using
a distribution rather than a �xed value makes it possible
to select a worst-case response time based on a desired
probability 𝑝𝑝 of violation; that is, the selected worst-case
response time is such that the probability of a response-time
exceeding it is ≤ 𝑝𝑝. e main motivation for calculating such
probabilistic response-times is that they allow us to reason
about tradeoffs between reliability and timeliness.

e number of bits, apart from the data part in the frame,
which are exposed to the bit-stuffingmechanism, is de�ned as
𝑔𝑔which is in the range {34, 54}.is is because we have either
34 (CAN standard format) or 54 (CAN extended format) bits
which are exposed to the bit-stuffing mechanism. 10 bits in
theCAN frame are not exposed to the bit-stuffingmechanism
(refer to Figure 3). e number of bytes of data in CAN
message frame 𝑖𝑖 is de�ned as 𝐿𝐿𝑖𝑖 which is in the range [0, 8].

Recall that a CAN message frame can contain 0 to 8
bytes of data. According to the CAN standard [22], the total
number of bits in a CAN frame before bit stuffing is therefore

8𝐿𝐿𝑖𝑖 + 𝑔𝑔 𝑔 𝑔𝑔𝑔 (21)

where 10 is the number of bits in the CAN frame not exposed
to the bit-stuffing mechanism. Since only 𝑔𝑔 𝑔𝑔𝑔𝑔 𝑖𝑖 bits in the
CAN frame are subject to bit stuffing, the total number of bits
aer bit stuffing can be no more than

8𝐿𝐿𝑖𝑖 + 𝑔𝑔 𝑔 𝑔𝑔𝑔  󶃅󶃅
𝑔𝑔 𝑔𝑔𝑔𝑔 𝑖𝑖 − 1

4
󶃕󶃕 . (22)

Intuitively the above formula captures the number of stuffed
bits in the worst case scenario, shown in Figure 2.

e expression (22) describes the length of a CAN frame
in theworst case. In [6], the number of stuff bits is represented
as a distribution. By using a distribution of stuff bits instead
of the worst-case number of stuff bits, it is possible to obtain
a distribution of response times that allow to calculate less
pessimistic (compared to traditional worst-case) response
times based on probability.

Firstly, let us de�ne 𝛾𝛾 as the distribution of stuff bits in a
CANmessage frame.We express 𝛾𝛾 as a set of pairs containing
the number of stuff bits with corresponding probability of
occurrence. �ach pair is de�ned as (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, where 𝑃𝑃𝑃𝑃𝑃𝑃 is
the probability of exactly 𝑥𝑥 stuff bits in the CAN frame. Note
that ∑∞

𝑥𝑥𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  .
As shown in [6], we can extract 9 different distributions

of stuff bits depending on the number of bytes of data in
the CAN message frame. We de�ne 𝛾𝛾𝐿𝐿𝑖𝑖 as the distribution
representing a CAN frame containing 𝐿𝐿𝑖𝑖 bytes of data. Recall

that 𝐿𝐿𝑖𝑖 is the number of bytes of data (0 to 8) in a message
frame 𝑖𝑖.

We de�ne 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛  as the worst-case number of stuff
bits, 𝑛𝑛, to expect with a probability 𝑃𝑃 based on the stuff-bit
distribution 𝛾𝛾, that is, ∑∞

𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  , or to express it in
another way, the probability of �nding more than 𝑛𝑛 stuff bits,
based on the stuff-bit distribution 𝛾𝛾, is ≤ 𝑝𝑝.

Note that the selection of a probability 𝑃𝑃 should be done
based on the requirements of the application. With a proper
value for 𝑝𝑝, the worst case mean time to failure should
sufficiently exceed what is required. Finally, by assuming
(as in [6]) that CAN message frames are independent in
the sense of number of stuff bits, we can de�ne ∏𝑛𝑛𝛾𝛾 as
the joint distribution corresponding to the combination of
𝑛𝑛 distributions of stuff bits; that is, the number of stuff
bits caused by a sequence of 𝑛𝑛 messages sent on the bus is
described by∏𝑛𝑛𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾,

where 𝑥𝑥 denotes multiplicative combination of discrete
distributions. If the distributions happen to be equal, ∏−

𝑛𝑛𝛾𝛾
is de�ned as the joint distribution of 𝑛𝑛 equal distributions of
stuff bits; that is, the number of data bytes is the same for all
messages considered by the expression.

In order to include the bit-stuffing distributions in (12),
we need to rede�ne 𝐶𝐶𝑖𝑖 and 𝐵𝐵𝑖𝑖 as 𝐶𝐶𝑖𝑖(𝑝𝑝) and 𝐵𝐵𝑖𝑖(𝑝𝑝), where

𝐶𝐶𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 = 𝑐𝑐𝑖𝑖 + 𝛾𝛾𝐿𝐿𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 𝜏𝜏bit, (23)

where 𝛾𝛾𝐿𝐿𝑖𝑖 is the distribution of stuff-bits in the message and
𝐶𝐶𝑖𝑖 is the transmission time of message 𝑖𝑖 excluding stuff-bits:

𝐶𝐶𝑖𝑖 = 󶀡󶀡8𝐿𝐿𝑖𝑖 + 𝑔𝑔 𝑔 𝑔𝑔󶀱󶀱 𝜏𝜏bit,

𝐵𝐵𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 = 𝑏𝑏𝑖𝑖 + 𝛾𝛾max
𝑘𝑘𝑘lp(𝑖𝑖𝑖

(𝐿𝐿𝑘𝑘) 󶀡󶀡𝑝𝑝󶀱󶀱 𝜏𝜏bit,

𝑏𝑏𝑖𝑖 = max
𝑘𝑘𝑘lp(𝑖𝑖)

󶀡󶀡𝐶𝐶𝑘𝑘󶀱󶀱 + 3𝜏𝜏bit,

𝑅𝑅𝑛𝑛𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 = 𝐽𝐽𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝐶𝐶𝑖𝑖

+ 󵠈󵠈
𝑗𝑗𝑗hp(𝑖𝑖)

𝐼𝐼𝑗𝑗 󶀢󶀢𝑅𝑅
𝑛𝑛𝑛𝑛
𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 − 𝐽𝐽𝑖𝑖 − 𝐶𝐶𝑖𝑖󶀲󶀲 󶀲󶀲𝐶𝐶𝑗𝑗 + 3𝜏𝜏bit󶀲󶀲

+ 𝜓𝜓𝑖𝑖 󶀡󶀡𝑝𝑝󶀱󶀱 𝜏𝜏bit,

(24)

where 𝜓𝜓𝑖𝑖 is de�ned as the distribution of the total number
of stuff-bits of all messages involved in the response time
analysis for message 𝑖𝑖.

is approach obtains the maximum stuffed bits under
a given probability 𝑃𝑃, to reduce pessimism of the worst-case
response time and busload value.

Anyu Cheng et al. in [23] extend this work in [7] and
gives the probability distribution curves of stuffed bits in
message’s different lengths by introducing the probability
model of stuffed bits. ey design and develop scheduling
analysis soware on �xed priority message scheduling. en
they use the soware to analyses the schedulability for
the messages in a hybrid electric vehicle. Furthermore, a
simulation experiment based on CANoe was made to test
the design. By comparing the results, it shows that algorithm
based on the probability model of stuffed bits is right, and the
designed soware is accurate and reliable.
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3.2. Probabilistic Error Model. e analysis as presented
does not cover the effect of transmission errors. Obviously,
detected errors trigger the transmission of an error frame as
well as a retransmissionwhich increases the busywindow and
therefore the response time. On the other hand a longer busy
window might increase the probability that successive errors
might affect the busy window [24]. In order to include effects
of errors (e.g., retransmission overhead) different approaches
were introduced.

3.2.1. Related Work. A method to analyse worst-case real-
time behaviour of a CAN bus was developed by Tindell et al.
[5]. By applying processor scheduling analysis to the CAN
bus, they showed that in the absence of faults the worst-
case response time of any message is bounded and can be
accurately predicted. Moreover, the analysis can be extended
in order to handle the effect of errors in the channel.

e error recovery mechanism of CAN involves the
retransmission at any corrupted messages. An additional
term can be introduced into their analysis, called the error
recovery overhead function, which is the upper bound of the
overhead caused by such retransmissions in a time interval.
A very simple fault model is used [5], to show how the
schedulability analysis is performed in the presence of errors
in the channel.emodel is based on aminimum interarrival
time between faults. e authors note that the error recovery
function can be more accurately determined either from
observation of the behaviour of CAN under high noise
conditions or by building a statistical model.

Punnekkat et al. [8] extend the work of Tindell et al. by
providing a more general fault model which can deal with
interference caused by several sources. Punnekkat’s model
assumes that every source of interference has a speci�c
pattern, consisting of an initial burst of errors and then a
distribution of faults with a known minimum interarrival
time. Except for the more general fault model, the rest of the
schedulability analysis is performed like [5].

Both Tindell and Punnekkat use models based on a
minimum interarrival time between faults and therefore
assume that the number of faults that can occur in an interval
is bounded. In the environment where CAN is used, faults are
caused mainly by Electromagnetic Interference (EMI) which
is oen observed as a random pulse train with a Poisson
distribution [24]. erefore the assumption made by the
bounded model may not be appropriate for many systems
because there is a realistic probability of faults occurring
closer than the minimum interarrival time.

Unlike Tindell and Punnekkat, Navet et al. [25] propose a
probabilistic fault model, which incorporates the uncertainty
of faults caused by EMI. e fault model suggested by Navet
uses a stochastic process which considers both the frequency
of the faults and their gravity. In that model, faults in the
channel occur according to a Poisson law and can be either
single-bit faults or burst errors (which have a duration of
more than one bit) according to a random distribution. is
allows the interference caused by faults in the channel to be
modeled as a generalised Poisson process. Note that if the
occurrence of faults in the channel follows a Poisson law,
the maximum number of transmission errors suffered by the

system in a given interval is not bounded, so the probability
of having sufficient interference to prevent a message from
meeting its deadline is always nonzero; therefore every
system is inherently unschedulable.

Hence Navet’s analysis does not try to determine whether
a system is schedulable (as [5, 8]), but it calculates the
probability that a message does not meet its deadline.
Obtaining such a probability, named Worst Case Deadline
Failure Probability (WCDFP), gives a measure of the system
reliability, because a lower value of theWCDFP implies a high
resilience to interference.

Navet’s analysis uses the scheduling analysis of Tindell to
calculate themaximumnumber of faults that can be tolerated
for eachmessage before the deadline is reached.is number
is called𝐾𝐾𝑚𝑚 and only depends on the characteristics (length,
priority, period, etc.) of the message set. e worst-case
response time that𝐾𝐾𝑚𝑚 faults would generate is called 𝑅𝑅𝑚𝑚 𝑚𝑚𝑚.
Once 𝐾𝐾𝑚𝑚 and 𝑅𝑅𝑚𝑚 𝑚𝑚𝑚 are obtained, they are used with the
fault model to �nd the probability that a message may miss
its deadline. Navet de�nes theWCDFP of a message𝑚𝑚 as the
probability that more than 𝐾𝐾𝑟𝑟𝑟𝑟 errors occur during 𝑅𝑅𝑚𝑚 𝑚𝑚𝑚.
is probability can be analytically calculated as the fault
model assumed by Navet is a generalized Poisson process.

e main drawback of the analysis is that it includes two
inaccuracies which increase the pessimism in the estimation
of the WCDFP. e �rst source of pessimism is implicit in
the de�nition of WCDFP. e de�nition of WCDFP does
not properly re�ect the conditions in which a message can
miss its deadline. In order for a message to miss a deadline,
faults in the channel is required to occur while the message is
queued or in transmission; a fault occurring aer themessage
has been received cannot delay the message.is condition is
more restrictive than the condition used in [25], which is that
𝐾𝐾𝑚𝑚 errors occur at any time during the maximum response
time of the message, independently of whether the message
has already been received.

e second source of pessimism is an overly pessimistic
assumption about the nature of burst errors where a fault
causes a sequence of bits to be corrupted. In Navel’s analysis,
a burst error of duration “𝑢𝑢” bits is treated as a sequence of 𝑢𝑢
single bit faults [25, Equation (7)], each causing a maximal
error overhead (an error frame and the retransmission of
a frame of higher or equal priority). is assumption is
inconsistent with the CAN protocol speci�cation [22] since
in reality a burst error can cause retransmission of only one
frame, because no message is sent again until the effect of the
burst is �nished. is causes pessimism of several orders of
magnitude.

A different method to calculate probability of deadline
failure in CAN under fault conditions is proposed in [9].is
work points out that errors happening during bus idle do
not cause any message retransmission, and therefore those
errors cause interference lower than the interference typically
considered in scheduling analysis. To avoid this source of
pessimismwhen performing scheduling analysis, the effect of
errors ismodelled with a �xed pattern of interference; this is a
simpli�cation of the fault model presented in [8]. Due to this
determinism, interactions between messages and errors can
be analysed through simulation, and then the probability of
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having a message that misses its deadline can be determined.
Nevertheless, this method has important drawbacks. First, an
interference pattern for every possible error source is hard
to be determined. And second, combination of several error
sources increases the complexity of the analysis to such an
extent that it becomes infeasible, so random sampling is used.

Modelling arrivals of errors with a random distribution,
as done in [10], allow a more generalized solution. Broster
et al. [26] propose an analysis that provides an accurate
probability of deadline failure without excess pessimism,
based on the assumption that faults are randomly distributed.

In [27], an approach is presented to tightly bound the
reliability for periodic, synchronized messages. erefore, a
reliabilitymetric𝑅𝑅𝑅𝑅𝑅𝑅 is de�nedwhich denotes the probability
that CAN communication survives time 𝑡𝑡 without a deadline
miss. e reliability is calculated based on the hyperperiod,
which is the time when the activation pattern of a periodic
message set repeats itself. It is de�ned by the least common
multiple over all periods. Hence, the complexity of the
algorithm depends on the amount of activations in the hyper-
period.is algorithm is suitable for automotivemessage sets
in which periods are typically multiples of 10ms. However,
if messages are not synchronized, or the relative phasing
is unknown, the approach is not applicable. In [26], the
busy-window approach is used, and a tree-based approach
is presented, where different error scenarios are evaluated
iteratively. In a second step, these scenarios are translated to
probabilities and a worst-case deadline failure probability is
calculated. e approach was extended in [28], and the tree-
based was superseded by a simpler, more accurate approach.
However, both methods [26, 28] allow only deadlines smaller
than the periods, which is a limit for practical use since
bursty CAN traffic is not supported. In [24], existingmethods
are generalized to support arbitrary deadlines and derive a
probabilistic response time bound.

3.2.2. Error Model. In [24, 26] the occurrence of errors is
modeled by using a Poissonmodel. Practically, a Poisson pro-
cess models independent single bit errors (without bursts),
where 𝜆𝜆 speci�es the bit error rate. e probability for the
occurrence of m error-events in the time window 𝜆𝜆𝜆𝜆 is

𝑝𝑝 (𝑚𝑚𝑚 𝑚𝑚𝑚) 𝑛𝑛 𝑛
𝑒𝑒−𝜆𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆𝜆)𝑚𝑚

𝑚𝑚𝑚
. (25)

It is possible that a message of length 𝐶𝐶 is hit by multiple
error events and only one retransmission occurs (e.g., aer
reception when the CRC is checked), but it is assumed that in
the worst-case condition, each error event will lead to exactly
one retransmission. us, we can directly use (25) to obtain
the probability that𝐾𝐾 error events occur during a given time
window, and the probability for the error-free case is

𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 = 𝑝𝑝 󶀢󶀢0, 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 = e−𝜆𝜆𝑤𝑤𝑖𝑖𝑖𝑖 . (26)

For 𝐾𝐾 𝐾 𝐾, it is not enough to just calculate 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖),
because error events have to occur in certain segments of the
busy window, and more efficient technique was used in [27],
which can be applied for the general case in which a busy-
window includes multiple queued activations which can be

affected by errors. e approach works as follows: one error-
event in the entire busy window𝑤𝑤𝑖𝑖𝑖𝑖 can happen in two ways.
e error may actually lead to an 𝑤𝑤𝑖𝑖𝑖𝑖 busy window with the
probability 𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖). Or, we face a busy window of length 𝑤𝑤𝑖𝑖𝑖𝑖
and the error event occurs in the interval (𝑤𝑤𝑖𝑖𝑖𝑖, 𝑤𝑤𝑖𝑖𝑖𝑖):

𝑝𝑝 󶀢󶀢1, 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 = 𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 + 𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 𝑝𝑝 󶀢󶀢1, 𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 . (27)

e value of 𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) can then be obtained by rearranging
the equation. Similarly we can apply this idea to 𝐾𝐾 𝐾
2. Two errors in the time window 𝑤𝑤𝑖𝑖𝑖𝑖 may occur in the
following mutually exclusive ways. (i) A busy window of
length𝑤𝑤𝑖𝑖𝑖𝑖 actually occurs assuming two error events with the
probability 𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖). (ii) 𝑤𝑤𝑖𝑖𝑖𝑖, occurred which implies exactly
one error in 𝑤𝑤𝑖𝑖𝑖𝑖 and the second error must then happen in
the interval (𝑤𝑤𝑖𝑖𝑖𝑖; 𝑤𝑤𝑖𝑖𝑖𝑖). (iii) 𝑤𝑤𝑖𝑖𝑖𝑖 occurred which implies no
error in 𝑤𝑤𝑖𝑖𝑖𝑖. And exactly two errors must be in the interval
(𝑤𝑤𝑖𝑖𝑖𝑖, 𝑤𝑤𝑖𝑖𝑖𝑖):

𝑝𝑝 󶀢󶀢2, 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 = 𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 + 𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 𝑝𝑝 󶀢󶀢1, 𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲

+ 𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 𝑝𝑝 󶀢󶀢2, 𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖󶀲󶀲 .
(28)

By rearranging the equation for 𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ), we get the probabil-
ity for a 𝐾𝐾 𝐾𝐾  busy window. e same argument is valid for
the following 𝐾𝐾-error busy windows, and (28) is generalized
into the following form:

𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖𝑖󶀲󶀲 = 𝑝𝑝 󶀢󶀢𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖󶀲󶀲

−
𝐾𝐾𝐾𝐾
󵠈󵠈
𝑗𝑗𝑗𝑗

𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖𝑖󶀲󶀲 𝑝𝑝 󶀢󶀢𝐾𝐾 𝐾𝐾𝐾𝐾𝐾𝐾  𝑖𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖𝑖󶀲󶀲 .
(29)

e worst-case response time exceedance function can be
calculated as

𝑃𝑃+ 󶁡󶁡𝑅𝑅𝑖𝑖 > 𝑟𝑟󶁱󶁱 =1  − 󵠈󵠈
∀𝐾𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖 <𝑟𝑟

𝑃𝑃 󶀢󶀢𝑤𝑤𝑖𝑖𝑖𝑖𝑖󶀲󶀲 . (30)

Practically, this function denotes a bound for the probability
that a response time exceeds a certain threshold, and the
probability that a deadline is exceeded can be bounded to
𝑃𝑃+[𝑅𝑅𝑖𝑖 > 𝐷𝐷𝑖𝑖].

4. Conclusion

In this review paper, the worst case response time analysis
of messages in controller area network and the probabilistic
response time analysis of CAN messages are reviewed. e
worst-case response time analysis includes the worst-case
response time analysis presented in early 1990s by Tindell
et al. [2–5] and the worst case response time analysis byDavis
et al. [1] in 2007. Davis et al. in [1] have pointed out the
�aw in the earlier analysis by Tindel et al. and showed that
multiple instances of the CAN messages should be analysed
to determine the response time and hence the schedulability
of the CAN messages. e worst-case response time analysis
leads to excessive level of pessimism; we may choose a
pessimistic approach but with as little pessimism as possible,
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since worst case does not always occur. e probabilistic
response time analysis of CAN messages is recommended;
here two approaches are considered [6, 7], namely, instead
of using the worst-case bit-stuffing pattern, we can consider a
distribution of possible bit stuffing according to the applica-
tion and select onemost probable bit-stuffing pattern, thereby
we are less pessimistic; another probabilistic approach is
considering the probability of occurrence of errors [24–26].
In worst-case analysis, it is assumed that every error �ag
transmitted has a retransmission associated, whereas this is
not true, since the same error can cause many error �ags and
only one retransmission. is assumption causes some level
of pessimism. ere are different methods presented in [6]
whereby we can reduce the number of stuff bits, either by
using XOR operation on the messages before transmission
(encoding) and redoing the XOR aer reception (decoding),
thus avoiding having continuous bits of zeros or ones, thereby
avoiding bit stuffing. e other method presented in [6] is to
choose the priorities such that the identi�er bits do not have
continuous ones or zeros, thereby avoiding bit stuffing. Of
course in this method the number of priorities that can be
used is reduced.

Another approach in making the best usage of the
bandwidth is to schedule the messages with offsets, which
leads to a desynchronization of the message streams. is
“traffic shaping” strategy is very bene�cial in terms of worst-
case response times [29, 30]. eWorst-Case Response Time
(WCRT) for a frame corresponds to the scenario where all
higher priority CAN messages are released synchronously.
Avoiding this situation and thus reducing WCRT can be
achieved by scheduling stream of messages with offsets.
Precisely, the �rst instance of a stream of periodic frames
is released with a delay, called the offset, in regard to a
reference point which is the �rst time at which the station
is ready to transmit. Subsequent frames of the streams are
then sent periodically, with the �rst transmission as time
origin. e choice made for the offset values has an in�uence
on the WCRT, and the challenge is to set the offsets in
such a way so as to minimize the WCRT, which involves
spreading the workload over time as much as possible. e
future work is to present the review of statistical approach
to response time analysis. It is proposed that a fusion of
methods may be adopted to cater to the requirement of the
application; for safety critical application like automotive and
industrial application, the worst-case response time analysis
is recommended, and for noncritical applications where we
can introduce some tolerance we may apply the probabilistic
response time analysis.
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