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a b s t r a c t

Hydraulic Governor (HG) in Standalone Micro-Hydro generating Systems (SMHS), for maintaining voltage
and frequency at desired levels, is not preferred as HG is much costlier than the generator. Electronic load
controller (ELC) is a cost-effective solution for this application. Resistive (dump) load at an equal rating of
generator is used to maintain constant voltage and frequency at the load perturbations. However, the sys-
tem receives electrical and mechanical stresses as it operates at full load throughout the life which causes
degradation of its component and lifetime reduction. This paper reviews the development trends of ELC
used for SMHS and identifies the shortcomings of available technology for it. After the review, it proposes
a novel methodology to enhance the generator efficiency and its lifespan by reducing the amount of
dump load used. Performance of generator with conventional and proposed methodologies is investi-
gated experimentally and lifespan is estimated through temperature profile. In addition, generator pro-
tection from sensor faults is enforced in proposed controller for enhancing the reliability of the system.
� 2018 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Economic growth and greater energy utilization are essential in
raising people’s living standard, as well, rural electrification using
renewable and sustainable energy has a significant role in it. World
Bank shows much interest in universal electricity access and clean
cooking fuels through increasing the renewable energy sources [1].
Hence, the Universe focuses on the development of economically
viable renewable energy for rural and remote areas [2–7]. Among
renewable energy sources, hydroelectric energy is a major energy
source [8], in which micro hydropower plant (MHP) is the best
-Hydro
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suitable for rural electrification as it does not require dam and
reservoir as of convention hydropower plant [9–11]. In general,
MHP operates in stand-alone and it is built with either self-
excited synchronous generator or asynchronous generator for
continuously varying load that creates voltage unbalance and fre-
quency fluctuations. These perturbations develop mechanical
vibrations and thermal effect, that consequence to generator
lifespan deterioration [12]. Therefore, control system on turbine side
or generator side must be employed to regulate output voltage and
frequency during load variation. As can be seen in Fig. 1, the gener-
ator output voltage and frequency can be controlled from turbine
side known as mechanical control, or it can be controlled from gen-
erator side known as electrical control, or it can be controlled from
both sides known as electro-mechanical control. In turbine side
control system, generator voltage and frequency is controlled by
regulating the speed of turbine, which is governed by controlling
the water flows. These water flows are controlled through regulat-
ing the inlet valve or opening and closing the valves in multi-pipe
system [13]. These hydro turbine speed governing system is car-
ried out using electrical controllers (analog /digital) for improving
the system performance. Also, various control techniques adopted
to govern the turbine speed such as, gate limit control, speed level
control, speed droop control, etc., [13–18]. However, due to the less
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dynamic response and high expenses, the mechanical and elec-
tromechanical regulators are less preferred in MHP [19–22].

Similarly, the generator side control system regulates the volt-
age and frequency by employing dummy resistors during load vari-
ation which modifies the amount of power sent to dissipation
circuit. The electronic controller with resistive load is also known
as electronic load controller (ELC) or dump load controller (DLC).
ELC advances over mechanical control system in dynamic
response, reduced cost, less complexity, and maintenance [23]. In
this regard, a comprehensive review of generator output control
in the perspective of controller, control techniques and power elec-
tronic configuration is discussed in this paper.

In 1980, Woodward, et.al, introduced power relay based ELC
scheme in hydropower plant to regulate the voltage and frequency
of generator for providing good isolation between control circuitry
and the power lines [24]. Soon after, in 1984, S. Kormilo, et.al
replaces power relays with phase control power electronic
switches for providing smooth regulation in generation system
[25]. These power electronic regulatory switches are connected
in between the generator terminals and the dump load to control
the generator output voltage and frequency as in [13,21] and
[26]. Later on, in 1990, Bonert R, et.al reforms the power electronics
circuit configuration to minimize the line distortion in standalone
er
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induction generator based ELC system [27]. Eventually, ELC
schemes developed with different switches and configuration like
TRIAC based regulators in [28–36], SCR based controlled rectifier
in [21,27,37,38], contactors with resistive load [39], and contrac-
tors with discreet ballast [40]. Meanwhile, in 1998, Insulated Gate
Bipolar Transistor (IGBT) is introduced in ELC for chopping the
uncontrolled rectified voltage [41]. Later, IGBT chopper is
employed in ELC with various configurations of rectification circuit
such as, three phase uncontrolled rectifiers with IGBT chopper
[37,42–49], single phase uncontrolled rectifier with IGBT chopper
[50,51], 6-pulse diode rectifier with IGBT chopper [52–55], 24-
pulse diode rectifier with IGBT chopper [56]. Also in recent, bidi-
rectional IGBT switches are used for chopping [57,58,89] and
matrix converter operation [84]. Likewise, in Micro hydro genera-
tion system, IGBT switches are employed in different converter
configurations such as 2-leg IGBT based voltage source converter
[61,62], 3-leg IGBT based voltage source converter [63], 4-leg IGBT
based voltage source converter [64,65], and 6-leg IGBT based volt-
age source converter [66].

Initially, Self-Excited Induction Generator (SEIG) is employed in
MHG as it is reliable, robust and cost-effective. To regulate the out-
put voltage and frequency of the SCIG based system, numerous con-
trollers and control techniques are used such as analog controller
[24], microprocessor based ELC with the current control algorithm
[28], microcontroller based fast feedforward control [34,37,68],
and digital signal processor based ELC [48,69]. In addition, various
control techniques are adopted to enhance the efficiency of SEIG
based ELC system like, Proportional controller based ELC [70,71],
PI controller based ELC [36,41,43,44,58,59,72,73] PID control [74]
and harmonics elimination control using p-q control theory [75].
Later, Synchronous Generators (SG) are employed in MHP due to
their high efficiency and regulation in energy production, such gen-
erator can be implemented using various controller and control
strategies like, AIM 65 microcomputer [25], Proportional controller
[40,54,55], PI controller [45,76], Fuzzy logic control based battery
charging system [77], Micro-controller based ELC [78], PLC based
load controller [39], etc. Similarly, asynchronous generators with
external excitation (also known as separately excited induction
generator) employed in MHP adopting various control techniques
such as PI based decoupled voltage and frequency controller
[64,65,79–82], PI controller based active and reactive power control
[63,66], deadbeat-current-controller-based active power filter [83],
Zig-zag transformer using PI controller [61,62,84] integrated elec-
tronic load controller using PLL technique [85–87], automatic gen-
eration control technique [88], transformer based ELC [89], IGBT
converter based ELC [90], genetic algorithm based dumped load
and multivalve control [35], DSP based reactive power control
[91], quasi-oppositional grey wolf optimization algorithm based
control [60,92], and other optimization control [93].

Overall, mainly, MHP is employed by self-excited synchronous
or asynchronous generator and in modern plants, brushless gener-
ators are preferred for hassle free operation [8]. Phase angle control
is mainly used with synchronous generators and it is less appropri-
ate for induction generators due to lagging power factor because it
increases frequency variation and waveform distortion. To lessen
these effects, a binary-weighted controller is adopted in [42], how-
ever, binary-weighted controller possesses hindrance due to
stepped voltage regulation and complexity in connection. To attain
smooth voltage regulation with simple connection, a mark-space
(on-off) ratio chopping technique has been adopted in
[20,21,34,37,41–47,50,57,68,69,77,79,80,94–102]. In addition to
smooth voltage regulation, unity power factor is achieved using a
single resistance topology [103]. Still, phase unbalance is a prob-
lem in this method which leads to waveform distortion and derat-
ing of generator. Balancing three phases of generator, all phases are
independently controlled using single-phase rectifier with chopper
Please cite this article in press as: R.R. Singh et al., Review and experimental
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circuit [66]. Likewise, chopping frequency is increased for reducing
waveform distortion in [27]. Most of these controllers are designed
for under load conditions, but in case of overloaded generator,
power factor gets lagged. To compensate this, IGBT based voltage
source converter and capacitor is used under various power elec-
tronic configuration [48,61–65,72,73,83,85–91,94,99,104–113]. In
addition to voltage and frequency regulation through dump load,
few controllers are designed for utility purpose charging battery,
heating water, etc., with harmonic filtration [58,57,77,81,97]. On
the other track, PWM based VSC with various transformer config-
urations is discussed in [82,89,106,107,114,115]. Few schemes
without dump load and valve control strategy are also being
adopted in [116–118]. Moreover, using unbalanced excitation
capacitor the derating of a self-excited three-phase induction gen-
erator is studied in [119]. Eventually, the development of ELC is
exhibited in Table 1, in the perspective of (i) controllers and control
techniques, (ii) machine types and (iii) power electronic typologies.

Although existing ELC is utilized for regulating the output volt-
age and frequency, it creates power wastage. Typical ELC required
cooling facility for cooling dump load, especially, during the sum-
mer period and tropical regions, which increases system complex-
ity and cost (installation cost and running cost) [85]. Some of these
controllers are used for utility purpose [58,59] whereas, the effi-
ciency and lifetime of the machine is concerned, still an issue. As
the capacity of the dump load resembles plant capacity, it requires
more cooling system, which affects the generator’s life span. As per
the survey of CIGRE [54], a major source of breakdown in hydro-
electric generator is due to electrical, mechanical, and thermal
stresses. Understanding these stresses are important to increase
efficiency and lifespan of the generator. The lifetime of a generator
depends upon environmental condition and operating stresses
(electrical, mechanical and thermal). Variation of dump load with
respect to the main load creates electrical and mechanical stresses,
as well as, thermal stress in generator are created due to unbalance
loading, continuous loading, bearing fault, etc. In existing ELC with
typical dump load, afore discussed stresses are accountable. Con-
sidering this problem in existing ELC, 20 percent of dump load is
reduced in the proposed strategy by increasing the reference fre-
quency. Performance of generator and domestic appliances under
reduced dump load have been experimentally investigated in this
paper. Moreover, lifespan of the generator under existing and pro-
posed strategy is estimated with their thermal effects. In addition,
protection of system from load disturbances and sensor fault is
embedded in the controller. Overall the paper includes; design
and operation of electronic load controller with experimental
arrangement and testing in Section 2, investigation of generator
and domestic loads with 20 percent voltage and frequency varia-
tion in Section 3, lifetime estimation of hydroelectric generator
with existing and proposed strategy is deduced in Section 4, sensor
fault detection and isolation technique is implementation in
Section 5, Section 6 discusses the realization of proposed strategy
with result and discussions in Section 7 and concluded in Section 8.
2. Design and operation of electronic load controller

In this section, the design of an electronic load controller with
hardware setup and functioning procedures is discussed.

2.1. Design of ELC

Electronic controller functions as a frequency regulator on a
generator by diverting surplus electrical power to ballast resistive
load [8], as in Eq. (1). As frequency is the main control variable,
difference between measured frequency and desired reference
frequency is considered as the error signal given in Eq. (2).
illustrations of electronic load controller used in standalone Micro-Hydro
.2018.07.006
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Table 1
Comprehensive review of electronic load controllers.

Sl.
No

Controller/Control Techniques Machine Power Electronics Configuration Year [Ref.
No.]

1. Analog Controller SEIG Power Relays 1980 [24]
2. AIM 65 Microcomputer SG Thyristors with TRIAC 1984 [25]
3. Electronic impedance controller IG 3ɸ SCR controlled rectifier with chopper 1990 [27]
4. Analog circuit based phase angle control SESCG TRIAC based phase angle control 1991 [28]

2012 [30]
5. Microprocessor based ELG with the current control algorithm. SEIG TRIAC based phase angle control 1998 [67]
6. PI controller based ELC and switched capacitor based VAR compensator SEIG Uncontrolled rectifier with IGBT based chopper for ELC

Thyristor based VAR
1998 [41]

7. Microcontroller (MC68332) based fast feed-forward control SEIG 3ɸ phase controlled bridge with chopper 1998 [68]
8. Double control strategy for voltage and frequency regulation. IG 3-leg IGBT based bi-directional VSC, Bidirectional SCR

for ELC
1999 [38]

9. (Atmega-16) with PI controller based ELC SEIG Uncontrolled rectifier with IGBT based chopper for ELC,
MOSFET chopper

1999 [120]
2013 [101]

10. IGC with under voltage and overvoltage protection SCIG TRIAC based regulation system 2000 [31]
11. PID controller with dual feedback Dynamo TRIAC based regulation system 2001 [32]
12. Comparison of back to back thyristor based and IGBT based ELC SEIG Uncontrolled rectifier with back to back thyristor based

chopper
2003 [20]

13. Triple PI controller based ELC SEIG IGBT based CC-VSI and IGBT chopper 2003 [72]
14. PI controller based power balancing SEIG Uncontrolled rectifier with IGBT based chopper 2004 [43]
15. Numerical voltage and frequency controller SEIG Uncontrolled rectifier with IGBT based chopper 2005 [46]
16. PIC 18F252 microcontroller with PI controller SEIG Uncontrolled rectifier with IGBT based chopper, TRIAC

for capacitor switching
2006 [37]
2010 [34]

17. Multi-pipe flow control with reduced dump load. IG Thyristor based phase control 2006 [13]
18. Design of ELC using PI controller SEIG Uncontrolled rectifier with IGBT based chopper 2006 [44]
19. Dump load control using PI controller SG Uncontrolled rectifier with IGBT based chopper 2007 [45]
20. Proportional controller based load control SEIG Chopper circuit (Anti-Parallel IGBT) in series with

dump load
2007 [70]
2010 [71]

21. PID controller based AVR (simulation) SESA PSCAD based AVR 2007 [19]
22. PI based multi-mode controller PMSG TRIAC with analogue controller (CI-tronicTM) 2007 [29]
23. PI based decoupled voltage and frequency controller AG 3ɸ uncontrolled rectifier with IGBT based chopper, 3-

leg IGBT based VSI
2007 [79]

24. Hybrid excitation system with deadbeat current control strategy SGIG IGBT based VSI for active power filter 2007 [83]
25. PI controller based voltage and frequency control (simulation) IAG 4-leg IGBT based VSC with IGBT chopper. 2008 [64]
26. PI controller based active and reactive power control (simulation) IAG 3-1ɸ transformer with 6-leg IGBT based current

controlled VSI for STATCOM, Uncontrolled rectifier
with chopper for ELC

2008 [66]

27. Decoupled control (STATCOM and ELC) using PI controller (simulation) AG 4-leg IGBT based CC-VSI for STATCOM, 3ɸ diode
rectifier with an IGBT based chopper.

2008 [65]

28. Simultaneous active and reactive power control of two parallel IG using PI
controller (simulation)

IAG 3-leg IGBT based current controlled VSI with IGBT
based chopper.

2008 [63]

29. Zig-Zag transformer based ELC using PI controller (simulation) IAG 2-leg IGBT based VSC with IGBT chopper. 2008 [61]
2008 [62]

30. DSP(TMS320F2812) based IGC with PI controller SEIG 1ɸ uncontrolled rectifier with IGBT based chopper 2008 [50]
31. Polygon wound autotransformer with 24 pulse bridge rectifier based ELC

using PI controller
AG 2-3ɸ diode rectifier with 2 zero sequence blocking

transformer and IGBT based chopper.
2008 [80]

32. Integrated electronic load controller using PLL technique (simulation) IAG Star-delta transformer, 3-leg IGBT based VSC with IGBT
chopper.

2009 [85]

33. Integrated ELC with battery energy storage system using PI controllers
(simulation)

IAG Star-hexagon transformer, 3-leg IGBT based VSC with
IGBT chopper.

2009 [81]

34. Static VAR compensation magnetic energy recovery switch as a shunt
controlled capacitor using PLL technique (simulation)

IG Single phase full-bridge IGBT with a capacitor. 2009 [86]
2009 [87]

35. Hybrid control of parallel micro-hydro generators using PI controller
(simulation)

SG, IG Servo motor as governor control and power electronic
based dump load controller.

2010 [121]

36. Synchronous reference frame theory based IELC (DS-1104 control board) IAG Star-hexagon transformer with 3-leg IGBT based VSC
with IGBT chopper.

2010 [104]

37. TS Fuzzy based multi-mode controller (DS-1104 control board) PMSG TRIAC phase controller 2010 [33]
38. Variable DC-link voltage using hysteresis controller SEIG 3-leg IGBT based voltage source converter 2010 [105]
39. T- Connected transformer based ELC with Icosɸ algorithm implementation. IG T- connected transformer for reducing triplet

harmonics
2010 [89]

40. Transient Analysis of SEIG SEIG Single phase uncontrolled rectifier with IGBT based
chopper for ELC

2010 [94]
2012 [99]

41. Star delta transformer with H – bridge VSC based decoupled ELC.
(simulation)

IAG Star delta transformer with IGBT based H –bridge VSC,
3ɸ uncontrolled rectifier with IGBT based chopper

2010 [114]

42. Instantaneous reactive power theory-based ELC IAG Zig-zag (3-1ɸ isolated transformer), 3-leg IGBT based
VSC with IGBT based chopper.

2011 [106]

43. Improved 3-leg IGBT based electronic load controller (DS-1104 control
board)

IG 3-leg IGBT based VSC with IGBT chopper. 2011 [90]

44. NN based least square (adaline) algorithm for integrated ELC IAG Zig-zag (Three single phase isolated transformer), 6-leg
IGBT based VSC with IGBT based chopper.

2011 [107]
2012 [115]

45. PI based single control structure for voltage and frequency regulation. (DS-
1102 and DS-1103 control board)

IG 3-leg IGBT based VSC and IGBT based chopper. 2011 [108]

46. Hybrid topology with smart loading and BESS. (DS-1102 and DS-1103
control board)

SM 3-1ɸ uncontrolled rectifier with IGBT based chopper, 3-
leg IGBT based VSC and 2- IGBT based chopper.

2011 [95]

47. Genetic algorithm and PI based dump load and multilevel valve control. IG TRIAC as a load phase control switch 2011 [35]
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Table 1 (continued)

Sl.
No

Controller/Control Techniques Machine Power Electronics Configuration Year [Ref.
No.]

48. DSP (TMS320 28335) based reactive power control IG 3-leg IGBT based VSC with a capacitor 2011 [91]
49. Microcontroller (Atmega-32) with Fuzzy logic based ELC SEIG Single phase uncontrolled rectifier with MOSFET based

chopper
2011 [96]

50. Fuzzy logic control based ELC SEIG IGBT based CC-VSI and IGBT chopper for ELC. 2012 [109]
51. Battery storage based ELC using PI controller (simulation) SEIG Uncontrolled rectifier with IGBT based chopper for ELC,

resistance replaced by battery.
2012 [97]

52. DSP (TMS320 28335) based Integral resonant single loop voltage control. PMSM IGBT based controlled rectifier with 4-leg VSI. 2012 [110]
53. Hybrid control of two parallel micro hydro generators and a wind generator.

(simulation)
SG, IG 3-leg IGBT based VSC with capacitor, and 3-leg IGBT

based VSC with IGBT based chopper.
2013 [111]

54. Hybrid voltage regulation with capacitor bank and STATCOM using PI
controller

SEIG 4-leg IGBT based VSC and star connected capacitor
bank.

2013 [112]
2013 [113]

55. Harmonic reduction with Multi-pulse ELC using PI controller (simulation) IAG Multi-pulse uncontrolled rectifier bridge with the
zigzag phase-shifting transformer.

2013 [82]

56. Fuzzy logic controlled battery charging system SG AC-DC rectifier with DC-DC chopper. 2013 [77]
57. Binary weighted ballast load with PI controller PMSG

SESA
IGBT switch as a chopper. (Prototype model)
Uncontrolled rectifier with IGBT switch (Simulation)

2013 [42]
2015 [47]

58. Dump load control using PI controller (simulation) MHG Uncontrolled rectifier with IGBT based chopper. 2013 [100]
59. Microcontroller (Atmega-32) based ELC SG 3 sets of Anti-parallel SCR 2014 [78]
60. Self-tuned fuzzy PI controller based ELC PMSG Anti-parallel SCR as a phase control switch. 2014 [21]
61. Split dump load technique based ELC SEIG Bi-directional IGBT for chopping. 2014 [57]
62. Atmega-32 based ELC with grid synchronization unit MHG Solid State Relays switches between resistors and

generator.
2014 [122]

63. Atmega-328 based ELC MHG MOSFET switch as a chopper. 2014 [102]
64. DS-PIC30F6010 based ELC SEIG 3-Single phase uncontrolled rectifier with IGBT based

chopper.
2014 [69]

65. Dynamic ELC for 3ɸ induction motor drive load (DS-1104 control board) SEIG IGBT based VSI and uncontrolled rectifier with chopper 2014 [48]
66. DSTATCOM-DTC drive based voltage and frequency control using PI

controller
SEIG IGBT based VSI with a capacitor 2014 [73]

67. Distributed ELC using PI controller: Excess power to house hold water
heaters. (MSP-430 Launch Pad microcontroller)

SEIG Bi-Directional Insulated Gate Bipolar Transistor
Switching method as in [36].

2014 [58]
2014 [59]

68. Power quality control of Pico-hydro power plant using star delta and zigzag
transformers

SEIG 6-Pulse Diode rectifier with IGBT chopper
24-Pulse Diode rectifier with IGBT chopper

2014 [52]
2017 [56]

69. PI based proportional resonant derivative controller (DSP, TMS320F28335) SCIG IGBT chopper connected to the three-phase bus
through a non-controlled rectifier.

2014 [49]

70. PLC based load controller SG 3 Contactors with resistive load 2015 [39]
71. Proportional controller (30) SG 6-Pulse Diode rectifier with IGBT chopper 2015 [53]
72. Harmonic elimination using p-q control theory SEIG IGBT based VSC with DC chopper 2016 [75]
73. AVR with PI based ballast load frequency regulator. SG SCR based AVR and 3-Single phase AC-AC control

(TRIAC) based load frequency regulator.
2016 [76]

74. Improved Distributed ELC with PI controller. SEIG TRIAC based load frequency regulator. 2016 [36]
75. Modified ELC with PI controller. 1ɸ-SEIG Single phase diode rectifier with IGBT chopper 2016 [51]
76. Droop based load control using proportional controller SG Contactor with discreet ballast. 2016 [40]
77. Steady state analysis of ELC with P, PI, PID controller. SG 6-Pulse Diode rectifier with IGBT chopper 2016 [5455]

In the above table: NN: Neural Network, IG: Induction Generator, SG: Synchronous Generator, AG: Asynchronous Generator, ELC: Electronic load controller; ELG: Electronic
Load Governor; AVR: Automatic Voltage Regulator; MHG: Micro Hydropower Generator; IGC: Induction Generator Controller; SEIG: Self Excited Induction Generator; IAG:
Isolated Asynchronous Generator; SESA: Self excited synchronous alternator; SESCG: Self Excited Squirrel Cage Generator; PMSG: Permanent Magnet Synchronous Generator
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PG ¼ PD þ PM ð1Þ

Df ¼ Fr � F ð2Þ
where, PG is power generated; PD is dump load power; PM is

main load power; F is output frequency; Fr is reference frequency;
Df is error signal.

Error signal through PI controller decides the firing angle, which
determines the amount of power dissipation. Switches are fired at
such firing angle to dissipated surplus power, equation (3).

a ¼ KpDf þ Ki

Z
Dfdt ð3Þ

where, Kp is proportional gain and Ki are integral gain of PI
Controller.

Power rating of ballast resistive load is equal to or be slightly
greater than rated capacity of plant. Per phase resistance value
and power consumption of dump load are calculated using Eqs.
(4) and (5),

R ¼ 3V2
s

K � PG

�����
a¼0

ð4Þ
Please cite this article in press as: R.R. Singh et al., Review and experimental
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PD ¼ V2
s

R
1
p

p� að Þ þ sin2a
2

� �� �
ð5Þ

where, R is dump load resistance value; VS is generator phase
voltage (rms value); K is dump load multiplication factor and nor-
mally considered around 1.2; a is firing angle; PD is dump load
power.

2.2. Experimental arrangement

Experimental arrangement (Fig. 2a) consists of a 3 kVA syn-
chronous generator (S.G) driven by 3.5 kW prime mover (DC motor
drive), rating of both machines is given in Table 4. As well, the
enforcement of dump load controller mainly consists of sensing
unit, control unit and switching unit (Fig. 2b). Frequency of output
voltage is sensed and compared with reference value to control fir-
ing angle of switches.

i. Sensing Unit: The sensing circuit consists of potential trans-
former (VDE 0570) for measuring and providing voltage sig-
nals to zero-crossing detector circuit (ZCD). ZCD is circuited
using LM741 IC for developing square wave proportional to
illustrations of electronic load controller used in standalone Micro-Hydro
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Fig. 3. Efficiency and current profile of synchronous generator.
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the voltage signals. ZCD’s output is fed to phase locked loop
based frequency multiplier circuit (CD4046 & 74LS294) for
higher resolution during F to V conversation. The circuit
locks the rising and falling edge of input square wave signal
with the falling edge of output signal for increasing fre-
quency of output (approximately 10 times). As the phase
locked loop is driven by positive signal transitions, output
of ZCD block is locked with falling edge. Finally, the multi-
plied frequency signal is converted into a voltage signal
using LM2907 IC and fed to comparator where the processed
signals are compared with the reference value for getting
error signal.

ii. Control Circuit: error signal is amplified by PI controller
and reduces the steady-state error (kp = 1.13 & Ki = 0.512),
the controller gain values are obtained by trial and error
tuning method. Initially, the proportional gain is tuned
until the constant rate output by setting the integral term
to zero. Once the obtained response is fast enough, the
integral gain is tuned to reduce the steady-state error. PI
controller’s output is compared with high frequency carrier
wave for providing pulses to switches through driver cir-
cuits. The high frequency is generated using SG3524 IC.
The non-inverting amplifier based driver circuit with
opto-isolator is used to provide isolation between the sig-
nals and power circuits.

iii. Switching Unit: Three-single phase rectifier (GBPC3506)
with IGBT chopper (STGW40N120KD) and ACNW3190-
1335 IC based opto-isolated gate driver circuit for engag-
ing resistive load depend up on controller signal. In addi-
tion, output quantities of generator are measured and
analyzed using three phase power quality analyzers (PQA
– FLUKE 435) is used and input quantities of the generator
(torque and speed) are measured using spring dial
arrangement and tachogenerator respectively. Moreover,
the surface temperature of generator under various oper-
ating conditions are measured and analyzed using a ther-
mal analyzer (FLUKE Ti-32) and smart view software
respectively.

2.3. Testing of machine

Based on theory, empirical evidence and standards (IEEE Std.
115TM-2009), laboratory studies are conducted in experimental
setup (Fig. 2a). Empirical evidence for analysis is obtained precisely
by systematic operation of the apparatus. Generator is loaded from
no load to full load and parameters (input and output) of generator
is measured for plotting the efficiency, shown in Fig. 3. During
loading, output voltage and frequency of the generator is main-
tained constant by regulating excitation and speed of prime mover
respectively. From the depicted graph, it is observable that, the
generator attains maximum efficiency near at 0.8p.u. load. Hence,
MAIN
Load

DUM
Load

(a) Snapshot of experimental arrangement     

Fig. 2. Experimental arrangement
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operating the generator with 80% load is assumed to be an opti-
mum because generator efficiency is inversely proportional to
losses. Also, it is noticed that the efficiency of the generator is
lesser in case of inductive loading (shown in dashed curve) due
to the increase of reactive power and decrease of real power.
Additionally, voltage and frequency variation of generator without
regulating excitation and speed respectively under varying load is
tested, shown in Fig. 4.
3. Investigation of generator and domestic loads with 20%
voltage and frequency variation

The aim of this paper is to enhance the lifespan of hydroelectric
generator by reducing the thermal stress. Therefore, the effect of
proposed strategy (variation of voltage and frequency) on genera-
tor and consumer domestic loads are analyzed in this section.
3.1. Effect of dump load reduction in hydroelectric generator

Running the generator with reduced load (80%) provides maxi-
mum efficiency which assures loss reduction. In case of isolated
generator with fixed excitation and fixed mechanical torque, oper-
ating the generator with 80% load increases frequency and voltage
(Fig. 5). Percentage variances of output electrical and thermal
parameters of generator during the investigation are exhibit in
Table 2. As per IEEE standard 1250TM-2011 and from the previous
studies (Indian Electricity Rules 1956 ‘amended up to 25th Nov
20000), the permissible range for grid frequency was � 3 % of
nominal i.e. 48.5 Hz to 51.5 Hz. This frequency ranges are given
by manufacturers for operating the generation units [123]. In the
proposed system, the change in frequency and voltage under load
variation (from 1 to 0.8p.u.) are in permissible limit. Also, the result
reveals that reduced dump load increases performance of genera-
tor, as well as, enhances the generator’s lifespan. Moreover, the
effect of voltage and frequency variation on consumer load (main
load) is examined in subsequent Section 3.2.
Voltage 
Sensors

Main Breaker

+

P
Controller

-

Switching
Unit

   (b) Schematic diagram 

FRef

Display

SG
Rotor

Stator

Outlet

Inlet

of electronic load controller.
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Fig. 4. Variation of output electrical quantities during load variation without regulation. (a) Voltage; (b) Frequency; (a) Current; (b) Power.

Fig. 5. Variation of voltage and frequency at different Loads.

Table 2
Variation of parameter from 1p.u. load to 0.8p.u. load.

Parameter % Variation

Temperature 8.4 ;
Current 18 ;
Voltage 5 "
Frequency 3 "

All the above values are in percentage.
" represents an increase in percentage.
; represents a decrease in percentage.
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3.2. Performance of domestic loads under 20% reduced load

Reduction of dump load increases the voltage and frequency of
generator. Accounting this variation (Fig. 5), an investigation is
performed using different domestic loads. The domestic loads are
tested in the laboratory with voltage and frequency variation
(Fig. 5) using AC programmable power supply (AMETEK LX-
3000). Functioning of entire domestic loads with voltage and fre-
quency variation is presented in Table 3. From the studies, it is
observed that, due to the inductive nature in fan and pump load
there is a slight speed variation, whereas, no changes are observed
in the other domestic loads such as lightings and heaters (due to
Please cite this article in press as: R.R. Singh et al., Review and experimental
generating plants, Eng. Sci. Tech., Int. J. (2018), https://doi.org/10.1016/j.jestch
resistive in nature). Overall, it shall be concluded that, reducing
20 percent of dump load increases performance of generator and
lifespan without influencing the performance of domestic loads.
4. Lifetime estimation of hydro electric generator with full load
and 0.8 p.u. Load

Source of energy from micro hydropower plant serves rural
areas where grid power is inaccessible and it must be operated
continuously for providing uninterrupted power. Henceforth, a
system has to be developed for a continuous duty in accordance
with operating stresses [119]. In practice, stator windings of hydro-
electric generator are optimized for good efficiency by adding elec-
trically active material (copper winding and insulation) [124]. The
illustrations of electronic load controller used in standalone Micro-Hydro
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Table 3
Effects of reduced dump load strategy on consumer loads.

Sl. No. Load V F Effects

1 Incandescent lamp "" " No variation is observed
;; ;

2 Fluorescent tube "" " No variation is observed
;; ; Observed flickering

3 Fan and Pumps "" " 2.75% Increase in speed
;; ; 2.75% Reduction in speed

4 Heating system "" " No variation is observed
;; ;

5 Cooling system "" " No variation is observed
;; ;

6 UPS/ Inverter "" " No variation is observed
;; ;

7 Entertaining system "" " No variation is observed
;; ;

"" represents increase 10 % of voltage.
;; represents decrease 10 % of voltage.
" represents increase 3 % of frequency.
; represents decrease 3 % of frequency.

Table 4
Machine parameters.

Machine Parameters SG DC machine

Voltage 415 V 220 V
Current 3.5 amps 19 amps
Frequency 50 Hz –
Power 3 kVA 3.5 kW
Speed 1500 rpm 1500 rpm
Ext. voltage 220 V 220 V
Ext. current 1.4 amps 0.9 amps
No of poles 4 4
Type Salient pole Shunt
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electrical insulation system has a significant act in the overall con-
struction of generator because the prime function of insulator is to
insulate electric conductors in normal operating conditions, to
resist electrical stress, and to provide mechanical support over a
wide range of temperature. During regular operation, hydroelectric
generator often confronts electro-thermomechanical stresses.
Increase in these stresses, especially thermal stress causes reduc-
tions in lifespan of the generator and leads to failure [125,126].
Thermal stress on stator winding and insulation is directly related
to the generator loading. Increase in load current creates a temper-
ature gradient between stator conductors and insulation cause
thermal aging. Thermal aging is usually the breaking of chemical
bonds, that results in creation of gas and water due to thermal agi-
tation of molecules [127]. Primary, end-of-life failure mode is asso-
ciated with insulation failure occurring due to deterioration at or
Fig. 6. Temperature variation under reduce
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near copper conductors in the front half of coils that are operating
at or near line potential. This deterioration usually results in an in-
service failure of winding [128]. Therefore, in hydroelectric gener-
ators, thermal stress occurs, particularly in peak-load. There are
different methods for estimating the life span of the generators
and their parts [129], in this paper using modified Arrhenius law
equation (6), the lifespan of a hydroelectric generator is estimated.

In laboratory, an experiment has been carried out with a 3 kVA
synchronous generator for investigating the thermal effect on gen-
erator loaded with 0.8p.u. load and 1p.u. load individually. The
generator is operated with two different load points for a specific
time (2 Hrs run with 5 Hrs. interval) and their thermal effect is
measured using the thermal analyzer. The measured results are
further analyzed using smart view software to understand the
temperature variation. The results (Fig. 6) impart that, the genera-
tor running with full load produces 8.4% more thermal effects than
generator running with 80 % of load.

Considering variation in temperature variation, the lifespan of
generator stator winding is estimated with few assumptions as
follows;

i. The lifespan of generator stator winding is 50,000 hrs.
ii. The temperature of generator is computed in steady state.
iii. Surface temperature of machine is 20 �C lesser than the sta-

tor winding temperature.
iv. Insulation temperature of machine is 10 �C greater than the

winding temperature.
v. Only thermal stress has been considered, as the level of

electro-mechanical stress is very low in comparison.
nL ¼ kLC
� IT�Tw

TDb

� �
ð6Þ

where, nL is estimated winding lifespan, kL is winding lifespan, C is
constant (0.5), IT is temperature index. According to IEC 216, 1987
standard, temperature index (IT) provides information about a ther-
mal endurance profile (TEP) for the thermal evaluation of individual
insulation material. Based on the definition, the IT is a figure that
equates to the temperature in centigrade, which is derived through
extrapolation of a thermal endurance curve up to a specified period
of time, typically 20,000 h [128]. Tw is average winding temperature
and TDb is base difference insulation and winding temperature (10
�C). Using above equation, the lifespan of generator has been com-
puted for full load and reduced load, from the calculated solution, it
is proved that the electronic load controller with reduced dump
load provide sufficient advantage and increases the lifespan
(strength) of the stator winding by 52.62 percent. The insulation
aging at an exponentially faster rate with respect to an increase in
operating temperature. Hence, reducing the load slightly further
d dump load and full dump load in oF.
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Fig. 7. Flow diagram for sensor fault detection and isolation.
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reduces operating temperature and greatly reduces the rate of
thermal aging.

5. Sensor fault detection and isolation

In the controlling process, sensor fault may cause degradation
in control performance, disastrous accident or system shut down.
Above sensor fault have different types like gain fault, short faults,
open circuit fault, noise faults, and constant faults. The absence of
signal from the voltage sensor creates an open circuit fault, which
is considered in this paper. In this case, due to the drop out of volt-
age sensor signal causes overloading in generator by adding dump
load with the main load. Hence sensor fault detection and isolation
(SFID) technique is adopted to avoid overloading the machine
through open circuit fault detection. Usually, sensor faults depend
on hardware and software redundancy, which is costly and hard to
implement in real time. Literature studies say that, observation
technique is carried out for the identification and isolation of sen-
sor fault [130–132]. In these techniques, faults are detected by
comparing the measured values with the estimated values, which
requires a system model and their respective parameters. More-
over, multiple sensor fault is very hard to detect, hence, this paper
adopts the diagnostic fault detection method [133] that works by
measuring phase voltage only. The balance three-phase voltage
ðVabcÞ is given as,

Vabc ¼
va ¼ Vm sin xt þ hð Þ
vb ¼ Vmsinðxt � 2p

3 þ hÞ
vc ¼ Vmsinðxt þ 2p

3 þ hÞ

8><
>: ð7Þ

where Vm is voltage amplitude, x is angular frequency, and h is
initial phase angle.

The modulus of Park’s vector Vsj jð Þ is obtained through applying
the Park transformation to input phase voltages and it is given as,

vd ¼
ffiffiffi
2
3

r
va � 1ffiffiffi

6
p vb � 1ffiffiffi

6
p vc ð8Þ

vq ¼ 1ffiffiffi
2

p vb � 1ffiffiffi
2

p vc ð9Þ

vsj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
d þ v2

q

q
ð10Þ

where vd and vq are the Park’s vector component.
To normalize phase voltage (VabcN), phase voltage is divided by

Park’s vector modulus is given as,

VabcN ¼ Vabc

Vsj j ð11Þ

And, it is proved that the Park’s vector modulus can be given by,

vsj j ¼ Vm

ffiffiffi
2
3

r
ð12Þ

Due to normalization, the normalized phase voltage will always
take values within the range of � ffiffiffiffiffiffiffiffi

2=3
p

and it is independent of
measured phase voltage amplitude, therefore the normalize the
phase voltages are given as,

VabcN ¼

vaN ¼
ffiffi
2
3

q
sin xtþ hð Þ

vbN ¼
ffiffi
2
3

q
sinðxt � 2p

3 þ hÞ

vcN ¼
ffiffi
2
3

q
sinðxt þ 2p

3 þ hÞ

8>>>><
>>>>:

ð13Þ

VabcNis always within range of ±0.8165. Likewise, the instanta-
neous maximum value jvjmax

abc under normal operating condition is
approximated by,
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jvjmax
abc � Vm

ffiffiffi
3

p

2
þ 1�

ffiffiffi
3

p

2

 !
jcosð3xtþ hÞj

( )
ð14Þ

Similarly, differential protection in the system takes care of
ground fault, but the sensor fault may remain undetected. To
detect the sensor fault, a variable ‘d’ is introduced. ‘d’ is calculated
using Eq. (12), which is zero under normal balance flow of voltage.

d ¼ x
2p

Z 2p
x

0
jvaN þ vbN þ vcNjdt ð15Þ

SFDI algorithm (Fig. 7) is embedded in the electronic load con-
troller. The reliability of the developed algorithm is investigated by
creating a sensor fault in the healthy system (fully loaded test
machine equipped with SFDI based reduced dump load control
strategy) and the proper result was obtained. At the instant of fault,
the system is stopped with 5 s delay as depicted in Fig. 8.
6. Implementation of proposed strategy

Micro hydro power plant generates electricity utilizes natural
flow of water and generating during demand period is not usually
practiced [10]. As well, due to inefficiency of mechanical governor
system, water flow is not regulated to generate the required power
during demand period. This constrains makes most of the MHP to
accept ELC, which engages the generator with full load at all the
times for maintaining output voltage and frequency constant [8].
Operating the generator with full load perpetually develop operat-
ing stresses and degrades its component, results in poor efficiency
and lifespan reduction. Hence, an inventive approach is introduced
in this paper for enhancing generator efficiency and extending gen-
illustrations of electronic load controller used in standalone Micro-Hydro
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Fig. 8. Experimental result for sensor fault and isolation.
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Fig. 10. Flow diagram of the proposed strategy.
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erator lifespan by reducing 20 percent of dump load from its rating.
The dump load is supplemented for main load and it is toted up by
the controller output, as shown in Fig. 9.

As the frequency is directly proportional to load variation in iso-
lated hydro generator, it is considered as the prime factor. Hence
the reference frequency is increased for reducing the dump load
value. In the test machine, 3 percent frequency (1.5 Hz) is
increased for reducing 20 percent of dump load. Hence, employing
proposed control strategy, the thermal effects and power wastage
is considerably reduced (Table 2) without any extensive modifica-
tion. In addition to this, the protective futures against sensor fault
and overloading is embedded in the controller. Adopting the same
controller for different rated generator and different moment
requires reference frequency readjustment feature. Therefore,
external reference frequency (Fr) adjusting provision is provided
in proposed shown in Fig. 10. Also, in the proposed strategy, dump
load can be reduced without interrupting the process. Actual oper-
ation of the systemwas successfully verified through experimenta-
tion. Additionally, overload protection features are also provided in
the proposed control strategy. In case of overloading, input line
current increases above the rated value, as well, voltage and
frequency get drooped. The reduction in generator frequency (F)
due to increased load has multiple adverse effects on overall sys-
tem performance [51].

i. Frequency reduction causes drop in system voltage (VG) due
to shifting of magnetizing characteristics towards down-
ward direction and considering (VG/F) ratio constant.

ii. Increasing active power with constant input power (speed),
reduces the frequency to meet the core losses. Therefore, the
system frequency reduces during overloading.
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Fig. 9. Typical load curve of a
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iii. In case of SCIG, the reduction in system frequency increases
capacitive reactance (Xc) of capacitor bank (Xc = 1/2pfc),
which decreases system voltage due to shifting of operating
point towards downward direction on magnetizing
characteristics.

Therefore, if generator output frequency decreases beneath the
preloaded value, the signal to main breaker will be stopped with an
alert to protect the system. Once the output reaches steady state,
the reference frequency can be adjusted for automatic
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management cycle. The overall flow diagram with starting of gen-
erator, reduction of dump load future with protection system is
depicted in Fig. 10.

7. Result and discussion

The proposed reduced dump load controller is developed and
experimented in a 3 kVA SG with varying load to study
performances of the controller under steady-state and dynamic
state. Using experimental arrangement (Fig. 2), load test on
Fig. 11. Output electrical parameter of generator between existing and proposed strateg
(f) Frequency.
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unregulated isolated SG is carried out for studying the perfor-
mance, and the results are shown in Fig. 4. As well, Figs. 11 and
12 show the performance of the SG under varying load with typical
DLC and proposed RDLC strategy. The experimental results shown
are measure using three-phase power analyser (Fluke 435). The
change in parameters with respect to main load variation Fig. 11
(a) and (b), are discussed below:

In the proposed reduced dump load strategy, voltage at gener-
ator terminal gets increased by 4.57 % from the existing full load
shown in Fig. 11(c) and (d). As per 1250TM -2011 IEEE standard
y Existing - (a) Power; (c) Voltage; (e) Frequency Proposed - (b) Power; (d) Voltage;
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and from the previous studies [123], voltage rise due to reduction
in load is in acceptable limit. In fact, voltage rise weakens the insu-
lation system, whereas it depends upon the percentage of rise.
Therefore, considering the studies and standards, it can be con-
cluded that the machine with proposed strategy does not influence
the generator and the load connected to it.

Fig. 11(f) shows the rise in frequency from the conventional full
load strategy as in Fig. 11(e). As per 1250TM -2011 IEEE standard
and from the previous studies and frequency rise due to reduction
Fig. 12. Output electrical parameter of generator between existing and proposed strateg
Current; (d) Main Load power; (f) Dump load power.
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in load is in acceptable limit. In fact, rise in frequency influences
the load with inductance, whereas it depends upon the percentage
of rise. Therefore, considering the studies and standards, it can be
concluded that the 2.74% of frequency rise does not impact the
generator and the load connected to it.

Similarly, Fig. 12(a) and (b) shows the current profile of existing
and proposed strategy respectively. The current in the proposed
strategy is 17.4% decreased from the conventional strategy, which
indirectly entails reduction in thermal effect and enhancement of
y Existing - (a) Current; (b) Main Load power; (c) Dump load power Proposed - (b)
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generator life span. Also, the reduction in current reduces the elec-
trical and mechanical effect of the generator, especially, during
load changing [134].

Likewise, the generator total output power (PG) with existing
and proposed method is shown in Fig. 12(c) and (d) respectively.
Utilizing the proposed scheme, 21.0 % of power consumption is
reduced from the existing method. This strategy not only reduce
the power consumption, but also reduce the aging of generator
due to full loading at all times.

Fig. 12(e) and (f), shows dump load power (PD) with respect to
the main load as in Fig. 11(a) and (b). In the proposed method, 20 %
of dump load is reduced from the rated value. This reduction con-
sumes less power, that benefits in less wastage and less cooling
effect in cost reduction compared to the typical rated dump load
electronic controller.

Considering the thermal effect, the results in Fig. 6 impart that
the generator running with full load (100 % load) produces 8.4 per-
cent more thermal effects than generator running with reduced
load (80 % load). Comparing the thermal effect between fully
loaded and reduced loaded generator, the results are externalized
using Eq. (6). The results show that the fully loaded synchronous
generator is more affected than the reduced loaded synchronous
generator. It is noticed that the electronic load controller with
reduced dump load provide sufficient advantage and increases
the life span (strength) of the stator winding by 52.62 percent.
The insulation aging at an exponentially faster rate with respect
to an increase in operating temperature. Hence, reducing the load
slightly further reduces operating temperature and greatly reduces
the rate of thermal aging.

8. Conclusion

ELC receives significant attention in stabilizing the output of
MHP. Using the typical ELC system, the lifetime of generator is
reduced due to continuous full load operation. Hence, the paper
proposes reduced dump load technique in ELC that brings down
operating stresses, especially the thermal stress from 127.3 �F to
116 �F. Experimented result and analysis manifests that, employ-
ing reduced dump load strategy increases generator life span up
to 52.62 %. Besides, protection of generator from overloading and
sensor fault is taken care. The open circuit sensor fault detection
and isolation algorithm is embedded in the controller to protect
the system from overloading during sensor failure. Overall, the
proposed system can be easily adopted in the existing dump load
strategy and it is cost effective.
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