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Abstract This paper investigates on the entire finger dorsal surface for human identity that can be

extremely beneficial for forensics applications and its related fields. Further, this paper formulates a

novel approach to achieve improved performance by simultaneous extraction and integration of fin-

ger knuckle geometric and texture features by score level fusion. The geometric features are derived

through Angular Geometric Analysis Method (AGAM) which extracts angular-based feature infor-

mation for unique identification. Similarly, Texture Feature Extraction Methods (TFEM) viz.,

Completed Local Ternary Pattern (CLTP) generation method, 2D Log Gabor Filter (2DLGF)

method and Fourier – Scale Invariant Feature Transform (F-SIFT) method are incorporated to

derive the local texture features of an acquired finger back knuckle surface. The experimental results

indicate that integration of geometric and local texture features of finger knuckle regions shows

decrease in error rate by 27% (in average) when compared to the existing benchmark system taken

for comparison.

� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biometric identification through physiological features such as

fingerprint, palm print, iris, face and hand geometry has been

widely used in highly critical security applications and

forensics applications [1]. The high level security applications

include access control in physical or logical systems that

impose new challenge of handling large volume of biometric

data for rapid and precise personal verification whereas, foren-

sics applications need to identify a person using a scale, rota-

tional and transformational variant images of their

morphological characteristics [2].

However, the researchers have proposed comprehensive

models for personal recognition which uses well promising

methods to exploit the highly unique patterns present in the

inner and outer surfaces of the hand and these systems are uni-

versally accepted as hand-based biometric system [3]. In the

recent past, hand based biometric systems have drawn consid-

erable attention of researchers due to its merits such as (i) hand

traits can be easily captured using low cost acquisition devices,

(ii) hand traits have highly discriminative features which are
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potential enough for personal recognition, (iii) hand traits have

high user acceptance rates since they were captured in a non-

intrusive (touch-less) manner and (iv) they yield high perfor-

mance in terms of both speed and accuracy [4]. In the litera-

ture, various personal recognition algorithms using hand

traits such as fingerprint, palm print, hand shape features,

hand vein structures and finger knuckle print [5–9] have been

proposed.

Among these hand traits, finger knuckle biometric trait was

gaining importance in critical security applications since (i) it

possesses distinctive and stable features such as lines, curved

lines, contours and wrinkles for identification, (ii) unlike fin-

gerprint, the patterns of finger knuckle surface were present

in the inner surface of the hand which is very difficult to be

spoofed, (iii) unlike palm print, finger knuckle surface patterns

can be acquired by capturing smaller area which contains more

number of features for identification, (iv) unlike hand vein sys-

tems, finger knuckle surface contains highly discriminative tex-

ture patterns that are easily acquirable by means of a low

resolution cameras and (v) when compared with hand geome-

try systems, the finger knuckle surface can be captured in a

touch-less environment without pegs [10].

Most of the works in the literature investigate on finger

knuckle recognition methods for access control applications

and hence only the knuckle patterns of central bend area of fin-

ger dorsal surface were taken for consideration. In contrast,

this paper focuses on incorporating entire finger dorsal surface

that can be extremely beneficial for forensics applications and

identification of suspects in criminal investigations. The entire

finger back surface consists of two most prominent joints viz.,

Proximal Inter Phalangeal (PIP) joint and Distal Inter Pha-

langeal (DIP) joint which are present in the middle and tip sur-

face of the finger respectively. This joint makes the finger to

bend uni-directionally toward palm side of the hand and that

flexion shrinks on the skin surface create unique patterns

which are highly potential enough to identify an individual.

A knuckle pattern of entire finger dorsal region is referred as

Finger Back Knuckle Surface (FBKS).

Unlike other security applications, forensics applications

further impose a challenge of handling distorted (wounded

or burned) and deformed (scale, rotation and transformation

variant) knuckle images. In the literature, there were no known

attempts to examine entire finger dorsal surface for biometric

identification with effective algorithms that could able to han-

dle distorted and deformed knuckle images. In addition to this,

local features of a knuckle image are robust against noise and

deformations since they derive feature information of a block

or sub-band of a knuckle image which possesses lower degree

of intra-class variations. Thus, local features have higher

degree of discriminatory power for matching knuckle biomet-

ric images. However in the literature, very few attempts were

made to analyze the knuckle image patterns based on three

local features to the best of our knowledge. Hence, we are

motivated to formulate a complete finger knuckle biometric

framework which derives geometric features based on angular

geometric analysis and local texture features through three tex-

ture analysis methods and further integration of these geomet-

ric and three local texture features is done by means of score

level fusion method in order to derive final authentication

decision.

The major contributions of this paper are given as follows:

(i) This paper investigates on the entire finger back knuckle

surface for personal identification. This work con-

tributes efficient segmentation methodology which

simultaneously segments proximal and distal knuckle

regions from the captures of FBKS image. Integration

of proximal and distal knuckle features is carried out

to attain improved performance in personal

identification.

(ii) This paper investigates on performance improvement

that could be achieved by utilizing angular geometric

feature information in addition to that of the general

shape information such as finger knuckle length, width,

area and perimeter.

(iii) This paper further investigates on statistical-based tex-

ture analysis method viz., Completed Local Ternary

Pattern (CTLP) method that extract local phase features

of finger knuckle surface. The extractions of local fea-

tures are performed since they are robust enough in han-

dling deformations of very low degree.

(iv) Additionally, this paper also investigates on transform

based texture analysis methods viz., 2D Log Gabor Fil-

ters (2DLGF) and Fourier-Scale Invariant Feature

Transform methods (F-SIFT) for extracting finger

knuckle local phase and orientation information for fur-

ther improvement in authentication accuracy of the

system.

(v) Finally, this paper contributes a complete personal

authentication system that considers entire finger back

knuckle surface as input, then simultaneously extracts

and integrates angular geometric features and local tex-

ture features of both proximal and distal knuckle sur-

faces for personal authentication. This paper also

presents a systematic analysis to ascertain the perfor-

mance of the proposed textural analysis method in terms

of scale, rotation and transformation invariant

properties.

The organization of the paper is as follows. Section 2 pre-

sents a thorough and comprehensive analysis of existing finger

knuckle preprocessing, feature extraction and classification

methods. Section 3 presents the design of the proposed per-

sonal authentication and image acquisition setup for capturing

finger knuckle images. Section 4 illustrates the steps involved

in preprocessing and ROI segmentation process. Section 5 pre-

sents angular geometric analysis method that extracts angular

knuckle features. Section 6 presents texture feature extraction

methods that extract local texture feature information from

finger knuckle surface which are robust against deformations.

Section 7 presents various integration rules for combining

matching scores of geometrical and texture analysis methods

implemented on FBKS. Extensive experimental analysis con-

ducted to assess the performance of proposed personal authen-

tication system and their detailed results analyses is presented

in Section 8. Section 9 concludes the paper with future plan for

study.

2. Existing work

In the literature, researchers have proposed various promising

feature extraction methods for hand based biometrics. These

methods are broadly classified into two categories viz.,
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geometric analysis based feature extraction methods and tex-

ture analysis based feature extraction methods [11]. Generally,

geometrical analysis methods utilize several edge detecting

approaches for extracting features such as edges, lines, creases,

and wrinkles, from the hand biometric traits. The extracted

feature points were converted into a form of geometrical fea-

ture information to represent the feature vector of that partic-

ular image for matching [12]. Further, in case of texture

analysis methods, the feature information is extracted by

means of spatial variations exhibited by the captured finger

knuckle image. In this texture analysis, various mathematical

models are used for analyzing the different spectral values that

are iterative in a region of large spectral scale [13].

Many researchers have also explored finger knuckle texture

feature extraction methods that are further classified into (i)

sub-space based methods, (ii) coding based methods and (iii)

statistical based methods. In sub-space based feature extrac-

tion method, captured finger knuckle images are projected into

sub-spaces build from training data. Thus, the projected sub-

spaces were explored to generate sub-space coefficients by

means of various techniques. In a coding-based texture feature

extraction method, each field of code-map is assigned a bit-

wised code based on the quantization obtained through the

image’s responses toward a set of filters. Similarly, statistical

based texture analysis methods attempt to represent the tex-

ture patterns of finger knuckle image by means of non-

deterministic properties that quantifies the distributions and

relationships between the gray-level of a finger knuckle image

[14]. Some of the geometric and texture analysis methods

implemented for finger knuckle feature extraction were dis-

cussed below.

Woodard and Flynn [15] were the first authors to introduce

finger knuckle print as a biometric trait by capturing it in a 3D

sensor. Feature extraction for identification is carried out by

means of geometric methods that extract the curvature shape

information of the finger knuckle print. In addition to this,

Kumar and Ravikanth [16] have proposed a novel framework

for personal authentication using finger knuckle surface based

on textural analysis and edge detection methods (FGFEM).

Texture exhibited by the knuckle image was derived by means

of sub-space based approaches such as principle component

analysis, independent component analysis and linear discrimi-

nant analysis. Kumar et al., in the second work [17], intro-

duced a new modality known as hand vein structure for

personal authentication. In this, dorsum surface of the hand

is captured using infra red imaging system (DTFEM). The

captured image is subjected to histogram equalization for

enhancement and the structure of the vein is studied using

key point triangulation method. This paper also focuses on

incorporating the simultaneous extracted of knuckle shape

information to achieve better performance. Kumar and Zhang

[18] have further explored the finger knuckle surface by incor-

porating the quality feature of the trait which is highly depen-

dent on the capturing device. This is achieved by means of

quality dependant fusion (KGFEM), in which the quality of

the data acquired from the captured image is quantified for

the estimation of matching scores.

Furthermore, Zhang et al., in 2011 [19], proposed a bio-

metric system which implements a novel approach for feature

extraction and representation based on texture analysis of fin-

ger knuckle print. Authors suggested a new method for fea-

ture recognition based on Riesz transform and used a 6 bit

coding scheme namely RieszCompCode to encode it. Further,

in 2012 [20], authors have contributed a new FKP recognition

scheme which extracts both local and global feature informa-

tion of FKP images. Zhang et al., in [21] investigated a feature

extraction mechanism to extract local features of FKP based

on phase congruency model (LFI). This work computes the

phase congruency, local orientation and local phase informa-

tion of the subjected FKP image using a set of quadrature pair

filters such as two dimensional complex Gabor filter or log-

Gabor filters. In addition to this, Zhang and Hongyu in [22]

proposed a novel coding scheme based on Riesz transform

for encoding the local feature information of palm print and

finger knuckle print images. Hegde et al., in [23] implemented

a real time personal authentication using finger knuckle print.

The features of the finger knuckle surface were extracted using

three unique algorithms viz., radon transform, Gabor Wavelet

transform and correlation based matching. Aoyama et al. [24]

proposed a novel finger knuckle print recognition algorithm

based on local block matching. The captured finger knuckle

print was subjected to two dimensional discrete Fourier trans-

forms to obtain phase information required as feature

information.

Shariatmadar and Faez [25] proposed a new finger knuckle

print recognition scheme for personal authentication by sub-

jecting finger knuckle print into bank of Gabor filters from

which binary patterns are generated and represented in the

form of histograms. Additionally, Gao et al. [26] address the

issue of handling scaling, rotational and translation variant

FKP which is a result of flexibility in positioning the finger

knuckle during capturing process. This variance in scaling,

rotation and transformation is handled by reconstructing the

captured finger knuckle image using dictionary learning

method. Gao et al., in their further work in [27] presented a

novel mechanism which integrates multiple orientation coding

and texture feature information obtained from finger knuckle

print image for personal recognition (LGIC). Yet another

method for verifying human identities using finger knuckle sur-

face was proposed by Kumar in 2014 [28]. In this work, the

author has explored minor finger knuckle patterns along with

major finger knuckle print in order to achieve improved per-

formance in personal recognition. Texture patterns of finger

knuckle surface were extracted by means of Local Binary Pat-

terns (LBPs), Improved Local Binary Patterns (ILBPs) and 1D

Log Gabor Filters.

2.1. Extracts of the literature

From the survey conducted, it has been inferred that the exist-

ing feature extraction methods have the following limitations:

(i) The existing geometric analysis based feature extraction

approaches for hand traits extract feature information

such as, finger length, finger width, palm length, palm

width, palm area and perimeter that possess lower

degree of discrimination and may lead to inaccurate

authentication within the larger population.

(ii) The existing statistical methods like local binary patterns

and improved local binary patterns are sensitive toward

noise and illumination of the captured image.
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(iii) The existing local phase information extraction methods

like Gabor filters fail to handle larger bandwidth of an

image and also 1D log Gabor filters capture only hori-

zontal patterns of finger knuckle image which are highly

sensitive toward deformations.

(iv) Even though, the existing transform based texture anal-

ysis methods, such as SIFT method was robust against

deformations, it extracts features based on gradient

information which is not well suited for finger knuckle

images.

(v) Moreover, there are no known attempts to integrate

geometric/shape oriented features and three texture fea-

tures of finger knuckle surface in order to improve the

performance in terms of accuracy and robustness

against deformations of knuckle images.

Hence, we are motivated to implement a complete finger

knuckle biometric framework based on angular geometric

and three different texture analysis methods for identifying

an individual.

3. The proposed system design

This paper contributes a complete personal authentication sys-

tem using entire finger back region. The proposed personal

authentication system captures finger knuckle surface through

peg-free and touch-less imaging system and employs efficient

feature extraction algorithms which are robust against noise

and image deformations. Moreover the proposed system also

handles the problem that arises due to the presence of wounds

or burns on the finger knuckle surface. The two main aspects

of the proposed system are (i) extraction of angular based

knuckle shape features in order to achieve better precision rate,

(ii) extraction of local phase features through three texture

analysis methods which are robust enough to authenticate

deformed knuckle images. The following Fig. 1 illustrates the

block diagram of the proposed personal authentication system

using finger back knuckle surface.

Initially, the captured FBKS images are subjected to pre-

processing and ROI segmentation process. Further, simultane-

ous extractions of geometric and local texture features from

the FBKS images are done through AGAM and TFEM

approaches respectively. Furthermore, matching of finger

knuckle images are performed by manipulating distance based

metrics and phase only correlation between registered tem-

plates and input image feature vectors. Finally, the obtained

matching scores from AGAM and three TFEM approaches

are fused to obtain final authentication decision. This work

attempts to develop an image acquisition setup similar to that

of the image capturing system discussed in [16]. The developed

acquisition system is a peg-free and touch-free imaging system

that captures a FBKS image by placing it on the white surface

which is uniformly illuminated in front of the 4 mega pixel dig-

ital camera and the resolution of captured image is

1280 � 990 pixels. The acquired FBKS images of index, mid-

dle, ring and little finger regions are shown in Fig. 2.

4. Preprocessing and ROI segmentation

The proposed finger knuckle biometric system captures entire

finger knuckle surface by means of a non-intrusive and peg-

free environment. The captured finger dorsal region of a

human hand consists of three phalangeal joints viz., Meta-

carpo phalangeal joint (connects the finger region with the

hand surface), Proximal Inter Phalangeal (PIP) joint (present

in the middle surface of the finger region) and Distal pha-

langeal joint (present in the tip surface of the finger back

region). This paper mainly focuses on incorporating both

proximal and distal knuckle patterns for personal recognition.

Hence, in this stage of preprocessing step, we attempt to

extract proximal and distal knuckle regions separately from

the captured finger back knuckle surface. Fig. 3 illustrates

the steps for ROI segmentation process from the captured

entire finger back knuckle surface image.

In preprocessing, each acquired finger knuckle surface

image is subjected to thresholding operation in order to obtain

binarized images. In binarization operation each and every

pixel in the finger knuckle surface image is converted into

one bit information based on the thresholding limit s which

can be derived using Sauvola’s thresholding function [29] given

by (1)

sðx; yÞ ¼ lðx; yÞ 1þ k dðx; yÞ=Rð Þ � 1½ � ð1Þ

where
l(x, y) – represents the mean value of pixel present in the

obtained finger knuckle surface image,

d(x, y) – represents the standard deviation value of pixel of

the finger knuckle surface image,

R – Maximum value of standard deviation,

k – Bias value.

Here R value is considered as 128 as the captured finger

knuckle surface is converted into gray scale and the value of

k is considered as 0.3 because the boundary of the image can

be distinctly identified at only this point.

The mean and standard deviation of pixel values of the cap-

tured finger knuckle surface image is derived through integral

sum method which is given in (2):

Figure 1 Block diagram of proposed personal authentication system.
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lðx; yÞ ¼ Sðx; yÞ=I1 � I2 ð2Þ

where
(x, y) – represents the pixel location.

S(x, y) – represents the sum intensities of the pixels present

in the surrounding region in the form of rectangle and

I1
* I2 defines the size of the captured finger knuckle surface

image.

The resultant binarized image is further subjected to con-

tour tracing in which the largest possible contour of the finger

knuckle is traced out for framing the exact boundary of the fin-

ger knuckle image. The derived contour image is subjected to

angular geometric analysis for shape oriented feature extrac-

tion (detailed in Section 5).

Besides this, each FBKS contour image is marked with its

central line representing the length of the finger knuckle region

starting from the tip of the finger knuckle toward to its end.

Fig. 4 shows the captured FBKS, binarized FBKS image, con-

tour image of FBKS, contour image of FBKS represented with

its central-line and edge-map of the FBKS image.

Further, the FBKS image is subjected to canny edge detec-

tion algorithm [30] in order to extract region of interest. As

shown in Fig. 4(e), the regions present in the center and adja-

cent side of the symmetric central-line are densely populated

with high intensive pixels. Therefore, this region is extracted

proportionally on either side of the central-line from a finger

knuckle region at a distance of one-third of the finger knuckle

length to three-fourth of the finger knuckle length from its base

region. Nearly, 110 � 220 pixel values have been extracted for

proximal knuckle region. Similarly, the high intensive pixel

region present in tip surface of the finger is extracted by seg-

menting 80 � 170 pixel values from either side of the central

line for distal knuckle region. Fig. 5 illustrates the captured fin-

ger knuckle surface regions with their corresponding proximal

and distal ROI images. The proximal and distal knuckle

regions of each finger knuckle surface are subjected to Texture

Feature Extraction Method (TFEM) detailed in Section 6.

5. Angular Geometric Analysis Method (AGAM)

The main objective of this study was to evaluate the improved

performance induced by the integration of geometric and tex-

ture features of a finger knuckle biometric system. The geomet-

ric measurements are extracted from the ROI images of

proximal and distal knuckle regions using Angular Geometric

Analysis Method (AGAM) as discussed in [31]. As detailed in

[31], the angular geometric analysis method extracts six geo-

metric features from proximal knuckle and six from distal

knuckle region. Hence totally, 12 geometric measurements

were derived from a finger knuckle surface which includes,

two finger knuckle length, six finger knuckle widths and four

finger knuckle angular information. The distance between

the input finger knuckle geometric measures (fksi) and the reg-

istered feature vector (fksr) is computed through Weighted

Euclidean Distance rule, which is given by (3)

D fksi; fksrð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xl

k¼1
wk fksiðkÞ � fksrðkÞð Þ2

r

ð3Þ

where
i – Notation used to represent feature vector of an input

image.

r – Notation used to represent feature vector of a registered

image.

fksi – represents the geometric measurement vector of an

input finger knuckle surface image.

fksr - represents the geometric measurement of registered

finger knuckle surface image.

wk – corresponds to the weight which is assigned a lower

value for lower variance between input and registered value

and assigned higher value for higher variance between input

and registered value. wi takes the value between 0 < wk < 1

and
Pn

k¼11.

The key significance of the proposed angular geometric

analysis method is that it extracts angular-based feature infor-

mation which is highly potential enough to distinguish the

individuals.

Figure 2 Captured finger back knuckle surface of fore finger,

middle finger, ring finger and little finger.

Figure 3 Block diagram illustrating ROI segmentation steps in personal authentication system.
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6. Texture Feature Extraction Method (TFEM)

This section reports about the investigation of texture feature

analysis for finger knuckle recognition. The focus of this work

is on simultaneous extraction of geometrical and local texture

feature information. Generally, local texture feature extraction

is known as a measure of texture information computation

within a local sub-band which encodes the details of the trait

in the specific area. Local texture features of a finger knuckle

surface represent more detailed texture information within

the specified area and also robust against small scaling and

rotational changes in the captured finger knuckle image.

Hence, in this section, the extraction of local texture feature

information from both proximal and distal finger knuckle

regions is performed using three different texture analysis

methods viz., (i) Completed Local Ternary Patterns (CLTP),

(ii) 2D Log Gabor Filters (2DLGF) and (iii) Fourier – Scale

Invariant Feature Transform (F-SIFT). In fact, the texture

information obtained through these methods reflects different

aspects of feature information such as (i) representation of

multi-scale and multi-orientation texture patterns, (ii) repre-

sentation of local phase information and (iii) representation

of local orientation or magnitude information respectively.

Moreover, this local texture feature information provides most

prominent results even they are implemented independently

and at the same time performance of the finger knuckle bio-

metric system can further be improved by combining these

three local features. The following subsections discuss on

implementation details of aforementioned texture feature

extraction methods.

6.1. Completed Local Ternary Pattern (CLTP)

In 2010, Tan and Triggs, contributed an enhanced local texture

feature sets known as Local Ternary Patterns (LTP). This tex-

ture coding scheme encodes the neighboring pixel value into

3-valued code known as trits. Further, this scheme is highly

insensitive toward scaling and rotational variances of an

image. The LTP scheme encodes the local texture patterns of

a knuckle image and represents it in the form of multi-scale

texture patterns similar to that of Local Binary Patterns

(LBPs). This work incorporates Completed Local Ternary Pat-

tern (CLTP) as discussed in [32] for representing local knuckle

texture features. This method is quite popularly used in texture

Figure 4 (a) Acquired FBKS image (b) binarized image of FBKS (c), (d) representation of contour extracted from binarized FBKS

image. (e) Contour image of FBKS.

Figure 5 Finger knuckle surface with corresponding proximal and distal knuckle regions for (a) index finger knuckle region, (b) middle

finger knuckle region, (c) ring finger knuckle region and (d) little finger knuckle region.
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classification, human action recognition, object recognition

and identification. Hence, CTLP can be implemented on the

FBKS regions in order to extract multi-scale texture patterns

of knuckle surface.

In the captured FBKS image, the ternary patterns for cen-

tered pixel CP with neighboring pixel NP around the radius R

are calculated through (4),

sðCP;NPÞ ¼

1; ðCP �NPÞP t

0; �1 < ðCP �NPÞ < t

�1 ðCP �NPÞ < �t

8

>

<

>

:

ð4Þ

where
t – denotes threshold.

The LTP code for the corresponding centered pixel CP is

computed by assigning binomial weight 2P to (1) which can

be given as (2)

LTPðRÞ ¼
X

P�1

p¼0

2PsðCP;NPÞ; ð5Þ

where
CP – represents the gray scale value of centered pixel.

NP – represents gray scale value of neighboring pixel pre-

sent on a circular region of radius as R.

P – represents the number of neighbors.

p – represents the gray value of the center pixel and the gray

value of the neighboring pixel in a circular region of radius

as R p = {0, 1, 2, 3, . . ., P � 1}.

In this coding technique, local ternary patterns for a sub-

band of finger knuckle surface are obtained through threshold-

ing process as described above. The derived local ternary pat-

terns are categorized into two LBPs viz., upper patterns and

lower patterns.

The derived local ternary patterns are categorized into two

complementary patterns viz., (i) S
upper
P (Su

P) and Slower
P ðSl

PÞ as

two sign components (ii) M
upper
P ðMu

PÞ and Mlower
P ðMl

PÞ as

two magnitude components which can be given by (6) and (7):

Su
P ¼ SðNP � ðCP þ tÞÞ; Sl

P ¼ SðNP � ðCP þ tÞÞ ð6Þ

Mu
P ¼ NP � ðCP þ tÞj j; Ml

P ¼ NP � ðCP � tÞj j ð7Þ

Then, Su
P and Sl

P are incorporated to build CLTP Su
PðRÞ

and CLTP Sl
PðRÞ respectively which is given in (8)–(11):

CLTPSuðRÞ ¼
X

p�1

p¼0

2PS NP � ðCP þ tÞð Þ ð8Þ

Su
P ¼

1; NP P CP þ t

0; Otherwise

�

ð9Þ

CLTPslðRÞ ¼
X

P�1

p¼0

2PS NP � ðCP � tÞð Þ ð10Þ

Sl
P ¼

1; NP < ðCP � tÞ

0; Otherwise

�

ð11Þ

CLTPSuðRÞ and CLTPslðRÞ are concatenated and given in

(12):

CLTPSðRÞ ¼ CLTPSuðRÞ þ CLTPSlðRÞ

h i

ð12Þ

Similarly, CLTP for two magnitude complementary pat-

terns is derived as Mu
P and Ml

P, then the concatenated pattern

is given as (13):

CLTPMðRÞ ¼ CLTPMuðRÞ þ CLTPMlðRÞ

h i

ð13Þ

These two concatenated CLTP are combined into joint or

hybrid distributions to derive the final complemented local

ternary pattern which is given as (14)

CLTP ¼ CLTPSðRÞ þ CLTPMðRÞ

� �

ð14Þ

Matching between two knuckle images is performed by

means of dissimilarity measuring framework of local ternary

patterns. In this work, dissimilarity measure between two his-

tograms of CLTP is derived by means of Chi-Square statistic.

Let v2 of two histograms H1 = h1. . .i and H2 = k1. . .i, where

i= 1, 2, 3. . .B can be given as (15)

v2ðH1;H2Þ ¼
X

B

i¼1

hi � kið Þ2

hi þ ki
ð15Þ

If the value of v2 is least value, then it shows the registered

and input finger knuckle images matche correctly while larger

value of v2 shows larger level of dissimilarity between the reg-

istered and input images.

6.2. 2D Log-Gabor filters (2DLGF)

Log Gabor filter overcomes the disadvantage Gabor filter [33]

by removing DC components which could able to handle lar-

ger bandwidth of even more than one octane. Moreover, log-

Gabor functions are more beneficial since it has symmetry

on log frequency axis. At the same time, 1D log Gabor filter

which is used in work [34], captures only the horizontal pat-

terns of an knuckle image, whereas 2D log Gabor spatial

approach could be able capture two dimensional characteris-

tics of the knuckle patterns.

The 2D Gabor filter is a band pass filter that extracts two

dimensional information such as frequency and orientation

information using four parameters which are highly suitable

for finger knuckle recognition. The 2D log Gabor spatial filters

capture local texture features of finger knuckle image which is

known as local phase information. The proximal and distal

regions of knuckle images were subjected to 2D log Gabor fil-

ter [21] defined in (16),

G½f; h� ¼ exp �
ðlogðf=f0ÞÞ

2

2r2
f

 !

exp
ðh� h0Þ

2

2r2
h

 !

ð16Þ

where
½f ; h� – represents the normalized polar coordinates of the

corresponding Cartesian coordinates (x, y) in a region of

a knuckle image.

f 0 – represents the center frequency of the filter.

rf – represents radial bandwidth parameter for the filter.

h0 – represents center orientation frequency for the filter.

rh – represents orientation bandwidth parameter for the

filter.
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in which, rf and rh are constants that are used to derive the

radial and angular bandwidth respectively which are derived

by using (17) and (18)

B ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2= log 2
p

k logðrf=fhÞk
� �

ð17Þ

Bh ¼ 2rh

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log 2
p

ð18Þ

The filtered FBKS images are analyzed to derive local

phase information similar to that detailed in [21] which can

be given as projected image obtained by (19)

Pnðc; hÞ ¼ F�1 FðTðc; hÞÞ � Gnðf; hÞ½ �; h ¼
p

2
::
3p

2
ð19Þ

where F and F�1 denote Fourier and inverse Fourier trans-

forms. Gnðf; hÞ represents 2D log Gabor filters at scale n. Both

even and odd symmetric responses of filters are represented as

matching template.

The parameters were empirically obtained by means of gal-

lery set of FBKS images. The parameter values were chosen

according to the lower values of EER. The center frequency

is taken as 46, the value of r0 = 0.56, the value of rf is taken

same as the r0 and the value of f10 ¼ 0:69, f20 ¼ 0:169,

f30 ¼ 0:094.

The matching is done by means of estimating the normal-

ized Hamming distance between registered and input knuckle

images which can be given in (20):

SM;N ¼

PI

x¼1

PJ

y¼1 Mrðx; yÞ �Nrðx; yÞ þMiðx; yÞ �Niðx; yÞf g

2� I� J
;

ð20Þ

where M and N are the registered and Input knuckle images of

size I � J.

6.3. Fourier – Scale invariant feature transform

Scale invariant Feature Transform (SIFT) is one of the popu-

lar transform based texture analysis method proposed in [35]

for extracting knuckle texture features. This SIFT method is

also reported as one of the efficient method which produces

lowest equal error rate in personal recognition. However, SIFT

method extracts features based on the key point descriptor

obtained through gradient information that cannot be imple-

mented for distorted finger knuckle images. This limitation

can be overwhelmed by extracting features based on the char-

acteristics of the knuckle texture patterns. Hence, in the pro-

posed method, initially Fourier transform is incorporated for

characterizing the finger knuckle texture patterns since it has

the property of addressing repeated structures/patterns of an

image. Secondly, SIFT descriptor is applied to derive the key

points to represent the feature information and finally, match-

ing is done through the phase only correlation of derived fea-

tures points. This Fourier SIFT (F-SIFT) mechanism is a

robust method against distortions and deformations which

has been proved using iris texture patterns in [36].

The scale space analysis of the captured knuckle image is

performed in order to find the key points through the cascade

filter approach. The Gaussian kernel G(x, y, r) implemented

on a knuckle image to derive its scale space is given in (21),

Lðx; y; rÞ ¼ Gðx; y; rÞ � Kðx; yÞ; ð21Þ

where

Kðx; yÞ – represents the captured finger knuckle image,

r – represents the width of the Gaussian filter,

The difference in nearby scale space can be estimated by

means of difference of Gaussian parameter which can be given

as in (22)

Dðx; y; rÞ ¼ Lðx; y; krÞ � Lðx; y; rÞ; ð22Þ

where
k – represents constant multiplication factor defined by

nearby scales space values.

The key points are derived by means of maximum and min-

imum difference of Gaussian images as described in [36]. From

the obtained key points the incorporation of phase informa-

tion based on the Fourier transform to quantify the texture

pattern of the finger knuckle surface. Each sub-band descrip-

tor is obtained through (23)

KiðM;NÞ ¼
1

W2

X

xþW
2ð Þ

n1� x�W
2ð Þ

X

xþW
2ð Þ

n2� x�W
2ð Þ

I n1; n2ð Þe�2p
n1M

W þ
n2N

Wð Þ

¼ AðM;NÞe2hðM;NÞ ð23Þ

where
W � W – represents the size of the sub-band,

(x, y) – represents the key point centered at (x, y),

; – represent direction,

A(M, N) – represents the amplitude component for each

sub-band,

hðM ;NÞ – represents the phase component for each sub –

band.

The matching between the gallery and probe set of knuckle

images is performed through Phase-Only Correlation (POC)

functions in which ith sub-band of probe image is matched

with jth sub-band of gallery image.

Let Ai(M, N) and hi(M, N) represents the amplitude and

phase components of Fourier transform derived from the ith

sub-band. Similarly, Aj(M, N) and hj(M, N) is the representa-

tion of the jth sub-band.

The cross phase spectrum among the two key points Kpi

and Kpj is obtained through (24) and (25)

CPSijðM;NÞ ¼
KpiðM;NÞKpjðM;NÞ

KpiðM;NÞKpjðM;NÞ
�

�

�

�

ð24Þ

CPSijðM;NÞ ¼ ei hiðM;NÞ�hjðM;NÞf g; ð25Þ

where
KpiðM ;NÞ – represents the complex conjugate.

The phase-only correlation is obtained by taking inverse

Fourier transform for CPSij(M, N) which can be given as (26)

POCij n1; n2ð Þ ¼
1

W2

X

xþW
2ð Þ

n1� x�W
2ð Þ

X

xþW
2ð Þ

n2� x�W
2ð Þ

CPSij n1; n2ð Þe�2p
n1M

W þ
n2N

Wð Þ

ð26Þ

The matching between two finger knuckle images (based on

their key points) is performed by analyzing the derived POC

function of their corresponding key points. If the two key

points are derived from the similar finger knuckle texture pat-

tern, then the POC function will result in a sharp peak value,
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whereas if the key points are from different texture, then the

POC value decreases considerably. Further, the height of the

peak is quantified and compared with the threshold (s), if it

is greater than a threshold then the considered key points are

said to be similar. In the same manner, all other key points

of the probe set knuckle image are matched for identifying

an individual.

7. Integration of geometric and three local phase features

In this section, we discuss fusion process that combines match-

ing scores obtained by means of angular geometric analysis

and three texture feature extraction methods (CLTP, 2DLGF

and F-SIFT) from all classes of FBKS regions to achieve better

performance. Since, texture pattern exhibited by all the finger

knuckle regions is found to be different, the matching scores

obtained from these regions are combined to yield high accu-

racy equivalent to that of multi-modal biometric system. In

this work, we employ three basic rules, viz., (i) sum of match-

ing scores (SUS) (ii) weighted sum of matching scores (WSS)

and (iii) multiplication of matching scores (MUL) for combin-

ing matching scores since these rules are computationally effi-

cient. The combined matching score (CM) obtained through

SUS, WSS and MUL rule is given by (27), (28) and (29)

respectively.

CM ¼
X

n

j¼1

Dij ð27Þ

CM ¼
Y

n

j¼1

Dij ð28Þ

CM ¼
X

n

j¼1

Wi �Dij; ð29Þ

where

Wi ¼

1
Pn

j¼1

1
EERj

h i

EERi

In all the above equations, the Dij represents matching score

derived from the ith user using jth classifier. Here, the EER

refers to equal error rate, a point at which false acceptance rate

and false rejection rate become equal. The value of wi is

assigned highest value when the EER obtained for the subject

i in a classifier is minimum.

8. Experimental analysis and results discussion

The performance of the proposed geometric and texture fea-

ture extraction methods is analyzed by conducting various

experiments using a newly created biometric data on finger

knuckle surface (FBKS-DB). This database consists of finger

knuckle surface images captured from 150 subjects using the

acquisition setup as detailed in Section 3. This finger knuckle

database was collected from 80 males and 70 female subjects

belonging to the age group of 18–40 years. The database was

collected in three different sessions with a time interval of

5–6 weeks. In each session, three images of finger knuckle

regions from four fingers viz., fore finger, middle finger, ring

finger and little finger are captured for processing. Thus, 12

images are collected from each subject in one session. Hence,

totally 36 images are collected from one subject in all the three

sessions. Finally, the finger knuckle dataset comprises of

150 � 36 = 5400 images in which 600 (150 � 4) images were

different finger knuckle regions.

In all the experiments conducted in this study, the images

collected during the first session are taken as gallery set,

whereas images collected during the second and third session

are considered as probe set. The evaluation metrics taken for

performance assessment of proposed finger knuckle recogni-

tion system are Genuine Acceptance Rate (GAR) and Equal

Error Rate (EER). The GAR is derived by assessing the num-

ber of genuine matches toward the total number of matches

performed by the system. Equal Error Rate is derived by

assessing the number of false acceptances and false rejections.

The point at which false acceptance rate and false rejection

rate become equal derives the ERR of the system. In addition,

the Decidability Threshold [37] which is defined as the normal-

ized distance between genuine and imposter matching scores is

given by (30)

DT ¼
lg � li
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
g þ r2

i

	 


=2

r ð30Þ

where lg and li are the mean values of genuine and imposter

matching scores respectively, rg and ri are the standard devia-

tion values of genuine and imposter matching scores respec-

tively. The number of false acceptances and its false rejection

rates are obtained for all possible decidability threshold values

and plotted as detection error tradeoff (DET) curve. The

obtained DET curve reflects the overall accuracy of the pro-

posed personal authentication system. Hence, in this paper

the performance analysis of both AGAM and TFEM

approaches is achieved by constructing DET curves.

Experiments are conducted in four different categories viz,

Experiment 1: Performance of angular geometric features,

Experiment 2: Performance of local phase features, Experi-

ment 3. Performance of Integrated features and Experiment

4: Robustness of local texture features toward deformations.

Experiment 5: Computational time analysis of proposed inte-

grated features. Among these, Experiments 3 and 4 are also

conducted using published database for entire finger back

knuckle surface which is referred to as PolyU Contactless Fin-

ger Knuckle Images Dataset (PolyU-FBKS) [38]. This PolyU-

FBKS is created by capturing the entire finger dorsal surface

which contains the patterns generated by both proximal and

distal phalangeal joints and it is referred as major and minor

finger knuckle regions respectively. The dataset contains finger

back knuckle images acquired from more than 500 people

(both male and female) from Hong Kong PolyU university

and IIT Delhi campus during the period of 2006–2013. The fin-

ger knuckle surface images are captured in a contactless (non-

intrusive) manner by means of simple acquisition setup incor-

porated with hand held camera device. This dataset consists of

2515 of middle finger dorsal regions acquired from 503 sub-

jects and stored in bitmap format.

8.1. Experiment 1 – Performance of angular geometric features

This experiment is conducted to ascertain the performance

improvement achieved through angular geometric features of
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FBKS. Initially, the experiments were conducted using each

type (index, middle, ring and little finger) of finger knuckle

images separately and then analyzed for combined perfor-

mance. For each type of FBKS analysis, the gallery and probe

set is considered to be 150 and 900 (150 � 6) respectively. The

number of genuine and imposter matches are 5765 and 998,160

respectively. Table 1 depicts the experimental results based on

equal error rate and its corresponding decidability index for

various geometric approaches which has been exercised on

all the four types of finger knuckle regions. Fig. 6(a) –(d) illus-

trates the DET curves derived based on the experiment results

of various geometric approaches implemented on index (IF),

middle (MF), ring (RF) and little (LF) finger back knuckle sur-

face respectively.

From the experimental results, it is evident that for index,

middle and ring finger knuckle regions the proposed AGAM

approach performs much better than the existing FGFEM,

KGFEM and DTFEM approaches. But, only for little finger

knuckle regions, the performance is slightly degraded due to

the unclear texture patterns exhibited by the distal surface of

little finger dorsal surface. In average, the decrease in EER

of each FBKS type is 29.13%, 31.73%, 30.76% and 22.45%

respectively which clearly portrays the superiority of the pro-

posed AGAM approach is due to the incorporation of angular

geometric features.

In the combined analysis, all the four finger knuckle regions

were used. Therefore, number of images taken for gallery and

probe set is 600 (150 � 4) and 3600 (150 � 4 � 6) respectively.

In this experiment, each probe set image has been compared

with each gallery set images. The number of genuine and

imposter matches obtained through this experimental analysis

is 9783 and 12, 727, 86 respectively. The experimental results

obtained through various combinations of finger knuckle

regions with its performance according to three different score

level fusion rules (SUS, WSS and MUL) are illustrated in

Table 2. Table 2 results illustrates that combining matching

scores of two or more finger knuckle regions using weighted

sum rule (WSS) yields good results than the other score level

fusion rules, since the angle oriented shape information is

obtained from four finger knuckle regions are found to be

independent and the weights are calculated for these indepen-

dent sets. In addition, the experimental results in terms of

equal error rate and its corresponding decidability indices for

various geometric analysis methods are shown in Table 3.

Fig. 7 depicts the DET plots combined performance of various

geometric methods.

Further, each obtained score is multiplied by their weights

and then combined to yield better results. Additionally, the

results from Table 3 and Fig. 7 illustrate that the combined

performance of the proposed AGAM approach yields better

results in terms of lower error rate of 0.71% which is 28%,

29.63% and 30.28% drop when compared to FGFEM,

KGFEM and DTFEM respectively. This decrease in error rate

is possible since AGAM derives angular based shape oriented

features.

8.2. Experiment 2 – Performance of local phase features

This experiment is conducted to prove that derived local fea-

tures of finger knuckle surface can provide better performance.

Initially, the experiment conducted separately with each FBKS

regions and then finally combined performance of all the four

FBKS regions has been analyzed. For separate FBKS analysis,

number of gallery and probe set images were 150 and 600

respectively. The number of genuine and imposter matches

were 9945 and 13, 647, 53 respectively. Table 4 depicts the

equal error rate and its corresponding decidability indices for

the three proposed local feature extraction approaches (CLTP,

2DLGF, F-SIFT) that has been implemented for four FBKS

regions. Fig. 8(a) –(d) illustrates the DET curves derived based

on the experiment results of proposed texture analysis method

implemented on index, middle, ring and little finger back

knuckle surface respectively.

From the experimental results, it is evident that for index,

middle and ring finger knuckle regions the proposed FKTAM

approaches such as CLTP, 2DLGF, F-SIFT produces lowest

error rates since all the three local features produces finer rep-

resentation by encoding more detailed information of the

determined local region. But, for little finger knuckle regions,

the error rate is slightly increased when compared to all other

knuckle regions since the texture pattern area of proximal

region is very small when compared to other fingers and also

distal knuckle region posses unclear texture patterns.

For combined performance analysis, all the four fingers

knuckle regions are utilized. Hence, 900 gallery images and

3600 probe set images. The number of genuine and imposter

matches were 26,780 and 14, 727, 689 respectively. Table 5

shows the combined performance obtained by local texture

feature extraction methods viz., CLTP, 2DLGF and F-SIFT

respectively using three fusion methods (SUS, WSS and

MUL). The tabulated results illustrates that the combined per-

formance of four finger knuckle regions using WSS rule yields

better performance than the other fusion rules. Similarly, com-

bination of two or three finger knuckle regions also yields

higher accuracy.

Table 6 and Fig. 9 illustrates the combined performance of

the all classes of FBKS regions using three texture analysis

methods. The experimental results show that the proposed

CLTP approach produces lowest error rate of 0.49% since it

quantifies the multi-scale texture appearances in terms of trits

in an efficient way. The CLTP approach drops the error rate

Table 1 Performance of geometric analysis methods based on EER (%).

Feature extraction methods Index finger knuckle Middle finger knuckle Ring finger knuckle Little finger knuckle

EER (%) DI EER (%) DI EER (%) DI EER (%) DI

FGFEM 3.67 4.6756 3.98 4.6756 4.12 4.6756 4.09 4.6756

KGFEM 3.14 4.7867 3.29 4.7867 4.09 4.7867 4.15 4.7867

DTFEM 2.89 4.9920 3.09 4.9920 3.89 4.9920 3.97 4.9920

AGAM 1.81 3.5461 1.86 3.5461 1.81 3.5461 2.23 3.5461
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by 32.96%, 33.45%, 37.56% when compared to the LBP,

ILBP and LTP [28] (local binary pattern, Improved Local Bin-

ary Pattern, Local Ternary Pattern) respectively which are

some of the state of art method that derives local texture fea-

tures form finger knuckle surface.

Similarly, the results show that the proposed 2DLGF yields

lower error rate of 0.36% since it exploits the local phase infor-

mation of finger knuckle surface. This approach decreases the

error rate by 22% when compared to the Gabor filter method

[28] since, (i) log – Gabor filter have zero discrete cosine com-

ponents which makes the filter to respond independent to the

mean value of the signal, (ii) it has logarithmic value of size

distribution of features in an image. However, the equal error

rate obtained through Fourier SIFT method is 0.35% which is

23% and 19% lesser than that of SIFT and OE-SIFT [35]

algorithms.

8.3. Experiment 3 – Performance of Integrated features

(geometric and three local phase features)

This experiment is performed to project the superiority of the

integrated features (geometric + three local texture features)

based on score level fusion with separate analysis of features

like, geometric and local texture features. The number of gal-

lery and probe images is considered to be 600 and 3600 respec-

tively. Therefore, the genuine and imposter matches were 9980

and 14, 234, 789 respectively. In this experiment, scores

obtained through geometric and texture features are combined

using three basic score level fusion rule viz., SUS, WSS and

MUL and from the results it is obvious that the MUL rule

were promising than the other two rules since independence

of data representation is retained in this rule. Hence, for inte-

grating geometric and texture features MUL rule of score level
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Figure 6 DET curves reflecting the performance analysis of geometric methods implemented on (a) index finger back knuckle surface,

(b) middle finger back knuckle surface, (c) ring finger back knuckle surface and (d) little finger back knuckle surface.
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fusion were implemented. Table 7 illustrates the ERR values

obtained from geometric, texture features and integration of

geometric and texture features (using MUL rule).

Fig. 10 depicts DET curves derived from the experimental

results from geometric features, local textures features and

integration of geometric and texture features (using MUL

rule). The experimental results suggests that the integration

of geometric and three local texture features performs phe-

nomenally better by producing lowest error rate of 0.19%

which is 11% and 9% drop when compared to separate anal-

ysis of geometric and three texture features. Also, we can infer

that integration of three local features at score level fusion

using MUL rule yields the error rate of 0.22% which is highly

remarkable, since the derived feature information is the inte-

gration of multi-scale texture representation (obtained through

CLTP), local phase information (obtained from 2DLGF) and

local orientation or local magnitude information (obtained

through F-SIFT).

The proposed integrated feature extraction approach is

compared with two state of art methods, (i) LGIC (local-

global information combination) and (ii) LFI (three local fea-

ture integration) and in this comparative analysis, it has been

found that the proposed approach of integrating geometric

and three local texture features performs better by yielding

the decreasing error rate of 16.12% and 19.75% respectively.

The aforementioned comparative analysis process are also

experimented with PolyU-FBKS (published database), yields

13.45% and 15.56% decrease in error rate respectively. This

drop in error rate is achieved due to (i) incorporating angle ori-

ented shape features as geometric features and (ii) combining

three discriminate local texture features.

8.4. Experiment 4 – Robustness of local texture features toward

deformations

This experiment is conducted to ascertain that the derived

three local features and their integration are robust against

deformed knuckle images. The deformations in finger knuckle

images are very common in security applications since these

applications incorporate peg-free imaging to enhance user

acceptability and in addition, the deformations are also highly

possible with forensics applications. The processing of

deformed finger knuckle images will result in high intra-class

variations which will lead to performance degradation by

increasing the false rejection rate. Hence, it is necessary for

an efficient feature extraction algorithm to be invariant toward

deformations (scaling, rotational and transformational vari-

ances) of finger knuckle images.

For this experiment, the number of gallery images are taken

as 100 (all finger knuckle types) and 600 images probe set were

taken. Let the rotational angle u ¼ ½0; 1; 2; 3; 4; 5�, similar to

the values considered in paper [21]. Each FBKS image is

rotated by the degree within a range of ½�u;u�, in order to cre-

ate virtual dataset with deformed finger knuckle images. These

six virtual datasets were considered for validating the perfor-

mances of local texture features and their integration for scal-

ing, rotational and transformational invariant. The

experimental results were derived in terms of equal error rate

and shown in Table 8.

The tabulated results show that increase in the value of a

increases the error rate of the authentication system. However,

the local features derived by means of F-SIFT and 2DLGF

shows only a meager variation in the error rate. At the same

time, local features obtained through CLTP shows a slightly

higher variation in error rate. In addition, the proposed inte-

grated local features decrease the error rate and exhibits only

smaller variations against each deformation which when

implemented using FBKS-DB and PolyU-FBKS databases

as shown in Tables 8 and 9 respectively.

The deformation considered in this paper is related to only

small rotations. The proposed integrated features suffer from

Table 2 Combined performance analysis of AGAM approach

based on EER (%).

Fingers in fusion AGAM (EER%)

SUS MUL WSS

Index +Middle FBKS 1.49 1.41 1.32

Index + Ring FBKS 1.50 1.43 1.30

Index + Little FBKS 1.54 1.46 1.35

Middle + Ring FBKS 1.49 1.42 1.39

Middle + Little FBKS 1.52 1.47 1.35

Ring + Little FBKS 1.58 1.45 1.32

IF +MF+ RF 1.18 1.14 1.07

IF + MF+ LF 1.38 1.34 1.27

IF + RF+ LF 1.32 1.28 1.22

MF+ RF+ LF 1.38 1.27 1.19

All four finger knuckles 0.92 0.89 0.81

Bold values indicates superior performance exhibited under fusion.

Table 3 Comparative analysis of AGAM approach with

existing geometrical methods based on EER (%).

Methods EER (%) DI FRR (%)

FGFEM 1.987 5.4352 3.898

KGFEM 1.834 4.4828 3.782

DTFEM 1.732 3.3456 3.634

AGAM 1.053 4.1217 1.787
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Figure 7 DET curves reflecting the comparative performance

analysis of AGAM approach with existing geometric methods.
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more intra-class variations which may find its limitations in

handling more non-reversible deformations exhibited by the

finger knuckle surface.

8.5. Experiment 5 – Computational time analysis of proposed

integrated features

The proposed integrated features approach is implemented in

VC++ and executed in the system configuration of Intel core

i5 CPU with 5 GHz processor, 8 GB RAM and compiled using

GNU compiler with the support of openCV library. The com-

putational time taken for deriving integrated features using

FBKS-DB are evaluated by calculating the time taken for

deriving the geometric and three local texture features as illus-

trated in Table 10.

The evaluated computational time for the proposed inte-

grated approach is compared with existing method [39] which

is based on Gabor and band-limited phase-only correlation

Table 4 Performance of texture analysis methods based on EER (%).

Feature extraction methods Index finger knuckle Middle finger knuckle Ring finger knuckle Little finger knuckle

EER (%) DI EER (%) DI EER (%) DI EER (%) DI

CLTP 0.927 2.3452 0.864 2.3452 0.789 2.3452 1.223 2.3452

2DLGF 0.863 3.4521 0.872 3.4521 0.865 3.4521 1.199 3.4521

F-SIFT 0.891 3.5461 0.823 3.5461 0.845 3.4521 1.209 3.5461
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Figure 8 DET curves reflecting the performance analysis of texture analysis methods implemented on (a) index finger back knuckle

surface, (b) middle finger back knuckle surface, (c) ring finger back knuckle surface and (d) little finger back knuckle surface.
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(Gabor-BLPOC). The proposed approach derives integrated

features for the entire finger back region by considering both

the proximal and distal knuckle regions. Hence, the time taken

for the preprocessing and ROI segmentation process is more

when compared with the existing approach (because it consid-

ers only proximal region). The feature extraction step in the

proposed integrated approach is also time consuming when

compared with existing one since the proposed method derives

geometric and three local texture features for both proximal

and distal knuckle regions. However, the total computational

time for deriving the entire integrated features and matching

in our proposed personal authentication system is 1.074 sec-

onds which is fast enough for its deployment in real time

scenario.

Table 5 Combined performance analysis of CLTP, 2DLGF and F-SIFT (TFEM approaches) based on EER (%).

Fingers in fusion CLTP (EER%) 2DLGF (EER%) F-SIFT (EER%)

SUS MUL WSS SUS MUL WSS SUS MUL WSS

Index +Middle FBKS 1.29 1.56 1.14 1.37 1.26 1.12 1.32 1.28 1.22

Index + Ring FBKS 1.28 1.43 1.09 1.35 1.27 1.19 1.22 1.13 1.05

Index + Little FBKS 1.37 1.46 1.22 1.29 1.22 1.16 1.50 1.43 1.30

Middle + Ring FBKS 1.35 1.67 1.29 1.39 1.29 1.17 1.34 1.24 1.17

Middle + Little FBKS 1.39 1.42 1.36 1.43 1.39 1.35 1.54 1.46 1.35

Ring + Little FBKS 1.46 1.39 1.27 1.37 1.23 1.13 1.49 1.42 1.39

IF +MF+ RF 1.09 1.04 0.89 0.98 0.97 0.88 0.88 0.91 0.86

IF + MF+ LF 1.23 1.12 0.98 1.12 0.97 0.88 1.22 1.27 1.15

IF + RF+ LF 1.33 1.22 1.09 1.16 1.07 1.08 1.18 1.15 1.12

MF+ RF+ LF 1.47 1.56 1.12 1.28 1.17 1.13 1.18 1.24 1.17

All four finger knuckles 0.74 0.77 0.59 0.71 0.67 0.43 0.69 0.63 0.51

Table 6 Comparative analysis of TFEM approaches based on

EER (%).

Methods EER (%) Decidability index (DI) FRR (%)

CLTP 0.593 2.3478 1.980

2DLGF 0.426 3.6745 1.765

F-SIFT 0.493 3.7478 1.874
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Figure 9 DET curves reflecting the comparative performance

analysis of TFEM approaches.

Table 7 Comparative analysis of proposed approaches based

on EER (%).

Methods EER

(%)

Decidability

Index (DI)

FRR

(%)

Angular geometric features

(obtained through AGAM

approach)

0.83 4.3478 0.867

Local texture features (combining

three texture features obtained

through TFEM approaches)

0.22 3.6745 0.765

Integration of angular geometric

+ three local texture features

0.19 3.7478 0.874
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Figure 10 Performance of integrated approach (geometric

+ texture features).
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9. Conclusions

This paper has presented a novel geometric and texture feature

integration approach for personal recognition based on finger

back knuckle surface. For an input FBKS image, initially, geo-

metric features were extracted by means of AGAM approach

which incorporates triangulation method for deriving angular

shape information. Secondly, for texture feature extraction,

completed local ternary patterns, 2D log Gabor filter and

Fourier-SIFT algorithms were implemented on the capture fin-

ger dorsal surface. Finally, the integration of geometric and

texture features was done through score level fusion method.

Extensive experiments were conducted and results show that,

the integrated features produce lowest error rate, which is

27% (in average) lesser than the existing approaches. In addi-

tion, this integrated feature derived from FBKS is invariant to

scaling, rotational and transformational changes of the finger

knuckle image. Hence, we conclude that proposed integrated

approach is an step advancement to the existing state-of-art

algorithms for finger knuckle biometrics.

Table 8 Performance analysis of local texture features and

integrated features implemented on the deformed knuckle

images from FBKS-DB (derived in terms of EER (%)).

Features Performance based on EER (%)

u= 0 u= 1 u= 2 u= 3 u= 4 u= 5

Local features

representing

multi-scale

texture

patterns

(obtained

through

CLTP

method)

0.976 1.398 1.783 1.896 1.985 2.134

Local features

representing

phase

information

(obtained

through

2DLGF)

0.873 1.347 1.673 1.890 1.967 2.098

Local features

representing

orientation or

magnitude

information

(obtained

through F-

SIFT method)

0.923 1.234 1.563 1.673 1.765 1.897

Integrated

representing

the

combination

of geometric

and three local

texture

features

(obtained

through

integrated

approach

using score

level fusion)

0.195 0.389 0.542 0.654 0.785 0.984

Table 9 Performance analysis of local texture features and

integrated features Implemented on the deformed knuckle

images from PolyU-FBKS (derived in terms of EER (%)).

Features Performance based on EER (%)

u = 0 u = 1 u = 2 u = 3 u = 4 u = 5

Local features

representing

multi-scale

texture

patterns

(obtained

through

CLTP

method)

1.762 2.356 2.645 2.896 2.972 3.334

Local features

representing

phase

information

(obtained

through

2DLGF)

1.872 2.332 2.341 2.890 3.045 3.998

Local features

representing

orientation or

magnitude

information

(obtained

through F-

SIFT method)

1.923 2.221 2.783 2.873 2.965 3.297

Integrated

representing

the

combination

of geometric

and three local

texture

features

(obtained

through

integrated

approach

using score

level fusion)

0.789 0.934 0.998 1.154 1.251 1.404

Table 10 Computational time analysis of integrated features.

Key processing steps Time (ms)

Image acquisition and loading 90

Preprocessing and ROI Segmentation 232

Extraction and Matching of geometric features 1.2

Extraction and matching of three location features 752
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