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Sensor grid is a platform that combines wireless sensor networks and grid computing with the aim of exploiting the complementary
advantages of the two systems. Proper integration of these distinct systems into effective, logically single platform is challenging.
This paper presents an approach for practical sensor grid implementation and management. The proposed approach uses a
metamodeling technique and performance analysis and tuning as well as a middleware infrastructure that enable practical sensor
grid implementation and management. The paper presents our implementation and analysis of the sensor grid.

1. Introduction

Recently, the concept of sensor grid is gaining attention
among researchers [1-4]. Sensor grid is a platform that unifies
wireless sensor networks (WSNs) and grid computing infras-
tructures to enable the collection, processing, sharing, visu-
alization, archiving, and searching of large amounts of sensor
data. Grid computing is a conglomeration of geographically
distributed, disparate computational, and storage resources
interconnected by high-speed networks. In contrast, WSNs
consists of a collection of sensor nodes capable of sensing
and wireless communication. WSNs are commonly deployed
for collection of real-time data about a given environment
and physical processes. The main advantage of WSNs is its
accessibility, scalability, and flexibility. The advantages of the
combined WSN and grid computing (i.e., sensor grid) are that
it is capable of collecting, processing, sharing, visualizing,
storing, and searching vast amount of wireless sensor data.
Sensor grid makes it possible for sharing of computing
resources among geographically distributed groups. The fun-
damental service model and robust publish-subscribe mes-
saging ability of the sensor grid provides greater management
capabilities and scalability than traditional sensor nets as dis-
cussed in [5]. Sensor grid can be used for many applications
such as healthcare, agriculture, disaster management, and

other applications involving analysis and processing of large
amount of data in terms of images, video, and audio in a
distributed environment.

The main challenge addressed in this paper is how to
develop a practical sensor grid platform to enable real-time
information gathering, processing, correlating, and sharing
efficiently. Integrating the two disparate systems efficiently
requires a mechanism that enables each system to work both
independently and integratively to achieve the design aims
of the integrated system. There are several frameworks that
support sensor grid development and deployment. Tham and
Buyvya introduced some early works in the field by introduc-
ing the implementation of distributed information fusion and
distributed autonomous decision-making algorithms into
the sensor grid community as discussed in [4]. Fan et. al.
[6] proposed a solution for the storage of growing sensor
data which included, HBase, the Hadoop cloud computing
framework for database storage and management, and the
Zookeeper for coordination services. Kousiouris et al. [7]
proposed the collaborative sensor grid framework that pro-
vided a grid builder tool for the purpose of discovering and
managing grid services along with distributed sensors which
were used in environmental monitoring. Hohwald et al. [8]
proposed a distributed-computing architecture that allows
for the efficient processing of massive and heterogeneous
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FIGURE 1: Sensor grid overall architecture.

sensor datasets based on map/reduce. The proposed architec-
ture addressed the challenges of scalability, reusability, and
domain independence for constructing user models from
large heterogeneous sensor data generated from pervasive
environments. The architecture used metamodels to provide
a user desired model for designing purposes. Evaluation of
performance and scalability of the architecture was measured
in terms of number of CPUs and user model size. However,
existing frameworks have not been tuned for performance.
Also, many of these frameworks do not have components
that facilitate the management and visualization as well as
flexibility, extensibility, and scalability. Ituen and Sohn [9]
have set up a sensor network with wireless sensor motes and
have used a monitoring tool such as Moteview to monitor
the deployed wireless sensors. In order to utilize the collected
sensor data effectively, it must be provided with a grid
computing facility. This major disadvantage of sensor data
accessibility was rectified through our proposed work.

In this paper, we propose a framework for the design and
deployment of efficient sensor grid infrastructure. The sensor
grid framework requires a workflow model to visualize the
sensor grid setup that is to be implemented. The proposed
approach uses a metamodeling technique and performance
analysis and tuning as well as a middleware infrastruc-
ture that enable practical sensor grid implementation and
management. The overall contributions of this paper are as
follows.

(i) A workflow model to visualize the sensor grid setup
based on a metamodeling technique.

(ii) An efficient middleware to couple WSN and grid for
the collection, storage, and analysis of large set of data.

(iii) A performance analysisand tuning technique that can
provide a proper evaluation of the sensor grid and
tune it to meet the needs of the applications.

The rest of the paper is organized as follows. In Section 2,
the sensor grid architecture and its components are dis-
cussed in brief. Section 3 highlights the performance analysis
used for the proposed framework and performance tuning
techniques with experimental results. Section 4 provides a
brief discussion about the proposed work and its advantages.
Section 5 concludes the paper.

2. Sensor Grid Architecture

Figure 1 shows the overall architecture of the proposed sensor
grid framework. The proposed sensor grid architecture is
based on open geospatial consortium (OGC) protocol [10].
The architecture comprises a data computing grid, a sensor
web enablement, a sensor grid middleware, sensor nodes, and
end users. The end users can access information about sensor
processes through the SWE standards. The SWE component
includes encoding and web service standards defined by
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OGC. Each of the proposed sensor grid system components
is discussed in the following subsections.

2.1. Grid Web Users. The end users can access the features of
the sensor grid middleware through the web service inter-
face. The end user applications are agriculture, healthcare,
and disaster management. A personalized middleware was
designed in [11], which provided an intelligent collection
of physiological data for healthcare purposes. The proposed
middleware offered medical services to their users through
uHealth providers.

2.2. Sensor Nodes. Sensor nodes denote the geographically
deployed wireless sensor motes for collecting environmental
details such as humidity, light, and temperature. Indriya
[12] provided research possibilities in sensor network pro-
gramming environments, communication protocols, system
design, and applications by implementing the sensor network
testbed named Indriya. One of the main features of Indriya
testbed is that it allows users to schedule the deployed
wireless sensors to collect data. It also provided a permanent
framework for the development and testing of sensor network
protocols and applications. Registered Indriya users inter-
acted with the testbed through a web-based interface based
on Harvard’s Motelab’s interface.

2.3. Data Computing Grid. The data computing grid com-
prises data grid nodes and the grid interface service. The data
grid nodes are used to store and maintain the collected data
in a distributed manner. The grid interface service acts as an
interface to utilize the data through data grid nodes.

2.4. Sensor Web Enablement. Sensor web enablement (SWE)
is a suite of standard encodings and web service defined
by OGC. SWE enables discovery of sensors, their processes,

and observations followed by tasking of sensors. SWE allows
access to observations and observation streams as well as
publish-subscribe capabilities for alert system. SWE specifi-
cations for interfaces, protocols, and encodings which enable
the implementation of interoperable and scalable service-
oriented networks of heterogeneous sensor systems and
client applications are further classified as encoding and
web service specifications as discussed in [13]. Encoding
specifications provided by OGC are sensor model language
(SensorML), observations & measurements (O&M), and
transducer markup language (TML). Web service specifica-
tions are sensor observation service (SOS), sensor planning
service (SPS), sensor alert service (SAS), and web notification
service (WNS). 52° North [14] provided an open source
software set based on SWE standards designed to access
sensor data through Java web services. It was an initiative
sponsored by the Institute for Geoinformatics at the Uni-
versity of Munster, Germany. These Java web services were
based on the specifications and data encodings. SWE clients
were capable of communicating with services and visualizing
observational data through the initiative.

2.5. Sensor Grid Middleware. The main purpose of the sensor
grid middleware is to maintain and manage the growing
sensor data through scalability. The core components of the
middleware are wireless sensor motes, Moteview, MySQL,
Hadoop, and user interface as shown in Figure 2.

In the middleware, Hadoop [15] is used to manage the
cluster. The fair share scheduler that comes with Hadoop is
used in our case. The wireless sensor network setup consisted
of Micaz motes deployed geographically. The Micaz motes
collect data such as temperature, light, and humidity. The
Moteview is the primary user interface for monitoring the
deployed network of wireless sensors. Moteview provide a
graphical analysis of the monitored wireless sensors with
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FIGURE 3: Generated result from GME.

real-time data. The collected real-time sensor data were
stored in MySQL database and then transferred to HBase
from MySQL using the Sqoop tool [16]. HBase plays a vital
role in storing large scale sensor data [17]. We used a data
query mechanism similar to SQL called HiveQL [18]. The user
interface provided by the Hadoop framework could not be
handled easily by each and every user. In order to ease the
user’s work, a simple user interface was developed in Java. The
web user interface designed for Hadoop provided features
such as alerts and scheduling of wireless sensor networks
within the sensor grid system.

2.6. Metamodeling. Metamodel is an abstraction of a model,
which highlights the model properties and it depends on
model driven architecture (MDA) [19]. The metamodeling
tool used for representing the abstract of a model is the GME,
which is used for domain specific modeling as discussed
n [20]. The main reason for choosing the GME tool over
others for metamodeling is its advantage in reusability of
the generated workflow model rather than beginning from
scratch. Metamodeling acts as a preprocess for sensor grid
middleware implementation by providing metamodel for the
sensor grid workflow. Figure 3 shows the workflow model
for the sensor grid framework generated using the GME
modeling tool. It depicts a rough sketch for the sensor grid
framework which serves as an initial step in the imple-
mentation of this model in real-world applications. The
workflow from metamodeling acts as a front end to develop
the sensor grid application. Due to the reusability factor of
metamodeling workflows, the sensor grid application can
be altered by adding or removing features based on user
requirements. The metamodeling process is based on the
open standard protocols provided by open GIS consortium
(OGC) [21, 22] for interoperability and integration facilities
for the sensor grid.

TaBLE 1: Queries used for performance analysis.

Short
notation Full query
Select avg(temp) from hbase_xbw_latest where light

Avg. temp 850 & P &
Count Select count(*) from hbase_xbw _latest
Max temp  Select max(temp) from hbase_xbw_latest

- Select * from hbase_xbw_latest distribute by time
Distribute

sort by time asc

2.7. Performance Analysis and Tuning. The performance of
the system is analyzed using the evaluation metrics such
as total runtime and CPU time. Based on the performance
analysis, the performance tuning is used to tune the system
to provide better and efficient results. The performance
tuning techniques that can be used to improve the system
performance are code optimization, load balancing, caching
strategy, distributed-computing, and self-tuning. In this work
we used starfish and collect tools from Hadoop [15] for
performance tuning. Starfish is a tool which does autotuning
for the configurations in Hadoop based on the load, data,
cluster, and so forth and provides the best performance [23].
It provides three levels of tuning with a what-if engine,
optimizer, scheduler, and a data manager. The collectl tool is a
performance monitoring and benchmark tool that monitors
a broad set of subsystem performance. We used collectl to
gather CPU usage details on each node of the cluster.

2.8. User Interface. The user interface written in Java provides
a simple and easy way of accessing sensor data information.
The two features made available are scheduling and alerts.



International Journal of Distributed Sensor Networks

TABLE 2: Queries with their total runtime and CPU time with respect to rows.

Metrics Slots Total runtime (s) CPU time (ms)

Query Avg. Temp  Count  Max Temp Distribute Avg. Temp Count  Max Temp Distribute
1 24 23 41 22 8.8 8.4 12.8 9.9

25000 Rows 2 22 21 39 24 8.9 8.8 12.5 10.3
3 26 23 39 23 9.01 8.3 12.4 10.3
4 23 21 38 23 9.01 8.8 12.8 10.4
1 48 60 43 49 15.8 13.9 15.8 18.5

50000 Rows 2 42 51 41 55 15.5 14.6 15.4 18.9
3 44 55 42 52 15.1 14.3 15.8 17.5
4 50 48 52 53 14.6 14.6 13.9 17.1
1 53 74 57 62 18.3 17.3 15.9 21.2

75000 Rows 2 57 59 51 80 18.9 17.8 18.3 21.6
3 66 65 6l 62 18.1 18.1 15.8 21.2
4 76 57 57 88 17.1 18.9 15.9 21.8
1 95 111 94 118 25.8 26.9 24.5 29.9

100000 Rows 2 86 109 92 112 21.8 245 235 30.9
3 93 98 92 122 24.1 23.8 235 29.2
4 87 109 80 118 21.9 26.5 21.4 29.9

Note: CPU time—8821 ms is rounded off to 8.8 ms.

3. Performance Analyses

3.1. Testbed Environment. The testbed environment consists
of the micaz motes, MDA100CB sensor motes for measuring
temperature, MDA300CA for measuring humidity, MIB520
is a gateway for connecting these sensor motes with a system
through USB, and an HP workstation for monitoring and
storing collected sensor data. There were totally 8 micaz
motes which send data to a database managed by Moteview
through micaz USB base station. The cluster configuration
is comprised of four nodes, including one master and three
slave nodes. Each node runs an Ubuntu 11.04 operating
system with 4 GB ram and 4 core CPUs each. The micaz
motes with MDAI0OCB/MDA300CA sensors collected the
temperature and humidity data and sent it to the system
through MIB520 gateway. The collected data were stored in
MySQL for later use in Hadoop framework’s HBase. Hadoop
cluster consisted of one master node and three slave nodes.
The data was stored as regions within HBase which was split
between the master and slave nodes for processing. With a
user interface, users can schedule the sensor motes for alert
or the user can collect the historical data of the sensor motes
for reference.

3.2. Workload. We used two scenarios with 25000, 50000,
75000, and 100000 rows of data stored in HBase database.
Scenarios I and II deal with the evaluation metrics such as
total runtime and CPU time, respectively. Both the scenarios
are discussed in detail under Section 3.4.

These scenarios require queries to test the functionality
of Hadoop setup. In our case, the four queries used for
performance analysis are shown in Table 1. Table 2 depicts
details for each query or map/reduce job with their total

runtime and CPU time shows the values obtained by running
the four types of queries with respect to increase in number
of rows.

3.3. Performance Metrics. The evaluation metrics used for
performance analysis were CPU time and total runtime of
a sensor similar to the analysis performed in [24]. CPU
time represents the amount of CPU time consumed by
the map/reduce job to complete the job and total runtime
represents the total time taken from the map/reduce job
to complete within the Hadoop cluster. The coefficient of
variation, CV, for the total running time t can be derived
based on the standard deviation o and the mean y for total
number of nodes N as follows as discussed in [25]:

1Y 5
o= ﬁi;(ti—u) : )

3.4. Performance Analysis

Scenario 1. The experimental setup for scenario I comprised
the Hadoop cluster with one master and three slave nodes.
Sensor data were stored using HBase which was integrated
with a Hive query mechanism to enable SQL-based query
from HBase tables. Four types of queries used for the analysis
purpose of the Hadoop framework are given in Table 1.



Query versus total runtime (avg temp)

100
90 . \/\
80
- 70
[
£
50| e
-
= 40 N R
£ 30 R
\/_\
20 e
10
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows
(a)
100 Query versus total runtime (max temp)
90
80
= 70
L
£ o
E 40 e ...
2
30
20
10
0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows

(c)

International Journal of Distributed Sensor Networks

Query versus total runtime (count)
120

100 . w

Total runtime (s)
b (o)) [es]
o o o

|

0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows
(b)
140 Query versus total runtime (distribute)
120 e
100
[
§ 80
=
B 60| T
= I
£ 40
20
0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows

(d)

FIGURE 4: Query versus total runtime (Sec). (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

Scenario I shows the performance comparison of the four
queries with respect to the total runtime of each query.

The graph in Figures 4(a), 4(b), 4(c), and 4(d) shows
the comparison of total runtime for four queries, namely,
Avg. temp, count, max temp, and distribute with respect to
increase in number of rows. Each query was executed four
times, and the total runtime for the query each time was
collected for tabulation, as shown in Table 2. In order to test
the performance of the Hadoop framework, each query was
executed against increasing number of rows, as shown in
Table 2. The graphs depict that with an increase in the number
of rows, the query or a map/reduce job consumes more time
to complete the map/reduce job. In other words, the total
runtime of a map/reduce job increases with an increase in the
number of rows in the table to be queried.

The graph shows irregularity of job completion time, even
when the query and total number of rows in the database
are unchanged. The main reason for such irregularity in

the graphs for a total runtime of a map/reduce job might
be caused due to factors such as workload, increase in
the number of processes, and node unavailability due to
hardware problems on the cluster node that executed the
map/reduce job. Such problems can be managed by using a
proper cluster monitoring technique that alerts the user with
user-defined triggers such as when a node is down and when
the number of processes exceeds the trigger limit.

Scenario II. The experimental setup for scenario II was similar
to that of the Scenario I. The main difference between these
two scenarios was that Scenario I analyzed the Hadoop
framework performance with respect to the total runtime
of the map/reduce job, whereas the Scenario II analyzes the
Hadoop framework with respect to total CPU time consumed
for the map/reduce job. The graph in Figures 5(a), 5(b),
5(c), and 5(d) shows the comparison of CPU time consumed
for four queries, namely, Avg. temp, count, Max temp, and
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FIGURE 5: Query versus CPU time (ms). (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

distribute as given in Table1 with respect to increase in
number of rows. The graphs depict that with an increase
in the number of rows, the query or a map/reduce job
consumes more CPU time to complete the map/reduce job.
In other words, the CPU time consumed for a map/reduce
job increases with an increase in the number of rows in the
table to be queried.

The increase in the number of rows affects the perfor-
mance of the cluster in terms of total running time and CPU
time of the map/reduce job. One of the main reasons for such
irregularity in graphs might be due to heterogeneous nodes
within the cluster. But the Hadoop cluster setup consists of
each node with equal processing capability and memory. The
other reasons for irregularity in the graphs for CPU time for a
map/reduce job are the same as the factors such as workload,
increase in the number of processes, and node unavailability
due to hardware problems on the cluster node which executed
the map/reduce job. In order to overcome such a drawback

due to workload or increase in the number of processes, the
problematic map/reduce job must be tuned. The strategy to
overcome the performance issue is discussed in Section 3.5.
The node unavailability issue can be managed by using cluster
monitoring techniques but in this case we are concentrating
on the other two issues using a tuning tool such as starfish.

3.5. Performance Tuning. We used starfish tool to optimize
the execution of the map/reduce job. The main advantage of
starfish is that it performs in-depth job analysis with profiles,
predicts the behavior of hypothetical job executions, and
optimizes arbitrary map/reduce programs. Starfish’s what-
if engine shows that adding a new node to the Hadoop
cluster can provide better results. In order to improve Hadoop
performance, a new node was added to the existing Hadoop
cluster. The results of tuning are shown as the graph in Figures
6(a), 6(b), 6(c), and 6(d) with respect to the total runtime
evaluation metric.
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FIGURE 6: Query versus total runtime (Sec) after tuning. (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

Figures 6(a), 6(b), 6(c), and 6(d) show the decrease in
total runtime for each query after tuning when compared
to the total runtime before tuning. The tuning technique
provided better results when compared with before-tuning
graphs. In this case, better and stable results were produced
due to the addition of a node to the Hadoop cluster as per the
starfish’s what-if engine strategy. The proper characterization
of Hadoop jobs can also provide better results as discussed in
[26].

4. Discussion

In comparison to Table 3, which shows the features imple-
mented in past works, our methodology proves to be effective
in implementing all the features as a whole whereas those past
works implements only part of the features. The advantages
of the features implemented will prove the significance of our
methodology.

Table 3 shows the list of related works based on the imple-
mentation features such as metamodeling, Hadoop, HBase,
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performance analysis factors, and performance tuning. The
proposed methodology in this paper implements all the
features listed when compared to other works.

The advantages of the proposed sensor grid framework
are as follows. (1) Use of GME for metamodeling provides
a workflow of the proposed sensor grid framework. (2)
The Hadoop framework provides a platform for sensor
grid to manage data within the grid system. (3) Hadoop’s
map/reduce engine allows effective processing of sensor data
within the sensor grid system. (4) The use of HBase, a
distributed column-oriented database, allows storage of large
scale sensor data. (5) Hive integration with HBase allows
SQL-like query structure rather than a complex HBase query.
(6) Performance tuning tools such as starfish allows map/
reduce job optimization in order to provide better results.

The summary of our methodology is as follows. Sensor
grid architecture was proposed based on the OGC standards.
The metamodeling tool, namely, GME was used to generate
a model for the proposed sensor grid framework which
served as a model for implementing real world applications.
The specifications of the OGC’s SWE standard were dis-
cussed. Real-time wireless sensor data collected through
Moteview were stored in MySQL and later imported into
HBase using Sqoop in order to use with Hadoop. The open
source framework Hadoop was implemented as the sensor
grid middleware and its other components such as HBase,
hive, and schedulers were discussed. Performance analysis
was done in the implemented Hadoop framework based on
evaluation metrics such as total runtime and CPU time. The
performance analysis of the sensor grid framework shows
irregularities due to workload on a node in the cluster,
number of processes running, and cluster node unavailability.
Such irregularities can be reduced by implementing a proper
cluster monitoring system which sends alerts to the user
during these situations. Performance tuning tool such as
starfish with a brief discussion and how it manages to tune
the Hadoop framework performance has been discussed.
The combination of metamodeling, OGC standards, and
sensor grid for the first time is the main significance of
our methodology. Our methodology has implemented the
rapidly growing Hadoop framework as a sensor grid middle-
ware along with the metamodeling technique based on OGC
standards.

5. Conclusions

In this paper, a sensor-grid architecture is proposed. The
proposed architecture demonstrates the efficiency, effective-
ness, and feasibility of implementing wireless sensor grid
services based on the open geospatial consortium standards.
The Hadoop framework implemented in the sensor grid
network had the capability of withstanding hardware failures
when compared to existing grid middleware due to its
scalability, accessibility, and robustness. The performance of
the proposed architecture was analyzed based on evaluation
metrics such as total runtime and CPU time with respect to
increase in the number of data read rows. The performance
tuning tools such as collectl and starfish were used to collect
system data, while Hadoop executed a map/reduce job and to
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enhance map/reduce job optimization through profilers and
what-if engines, respectively. Future work can be done by pro-
viding advanced security mechanisms and applying different
evaluation metrics for performance analysis and optimizing
the map/reduce job accordingly. Also, an efficient cluster
monitoring technique can avoid performance deflection of
sensor grid framework in future.
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