Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2014, Article ID 805708, 12 pages
http://dx.doi.org/10.1155/2014/805708

Research Article

Sensor Grid Middleware Metamodeling and Analysis

Srimathi Chandrasekaran,' Eunmi Choi,” Jemal H. Abawajy,’ and Rajesh Natarajan'

T School of Computing Science and Engineering, VIT University, Vellore, Tamil Nadu 632 014, India
2 Department of Information Systems, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea
3 School of Information Technology, Deakin University, 221 Burwood, Melbourne, Victoria 3125, Australia

Correspondence should be addressed to Srimathi Chandrasekaran; csrimathi@vit.ac.in

Received 18 December 2013; Accepted 15 March 2014; Published 17 April 2014

Academic Editor: Mohammad Mehedi Hassan

Copyright © 2014 Srimathi Chandrasekaran et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Sensor grid is a platform that combines wireless sensor networks and grid computing with the aim of exploiting the complementary
advantages of the two systems. Proper integration of these distinct systems into effective, logically single platform is challenging.
This paper presents an approach for practical sensor grid implementation and management. The proposed approach uses a
metamodeling technique and performance analysis and tuning as well as a middleware infrastructure that enable practical sensor
grid implementation and management. The paper presents our implementation and analysis of the sensor grid.

1. Introduction

Recently, the concept of sensor grid is gaining attention
among researchers [1-4]. Sensor grid is a platform that unifies
wireless sensor networks (WSNs) and grid computing infras-
tructures to enable the collection, processing, sharing, visu-
alization, archiving, and searching of large amounts of sensor
data. Grid computing is a conglomeration of geographically
distributed, disparate computational, and storage resources
interconnected by high-speed networks. In contrast, WSNs
consists of a collection of sensor nodes capable of sensing
and wireless communication. WSNs are commonly deployed
for collection of real-time data about a given environment
and physical processes. The main advantage of WSNs is its
accessibility, scalability, and flexibility. The advantages of the
combined WSN and grid computing (i.e., sensor grid) are that
it is capable of collecting, processing, sharing, visualizing,
storing, and searching vast amount of wireless sensor data.
Sensor grid makes it possible for sharing of computing
resources among geographically distributed groups. The fun-
damental service model and robust publish-subscribe mes-
saging ability of the sensor grid provides greater management
capabilities and scalability than traditional sensor nets as dis-
cussed in [5]. Sensor grid can be used for many applications
such as healthcare, agriculture, disaster management, and

other applications involving analysis and processing of large
amount of data in terms of images, video, and audio in a
distributed environment.

The main challenge addressed in this paper is how to
develop a practical sensor grid platform to enable real-time
information gathering, processing, correlating, and sharing
efficiently. Integrating the two disparate systems efficiently
requires a mechanism that enables each system to work both
independently and integratively to achieve the design aims
of the integrated system. There are several frameworks that
support sensor grid development and deployment. Tham and
Buyvya introduced some early works in the field by introduc-
ing the implementation of distributed information fusion and
distributed autonomous decision-making algorithms into
the sensor grid community as discussed in [4]. Fan et. al.
[6] proposed a solution for the storage of growing sensor
data which included, HBase, the Hadoop cloud computing
framework for database storage and management, and the
Zookeeper for coordination services. Kousiouris et al. [7]
proposed the collaborative sensor grid framework that pro-
vided a grid builder tool for the purpose of discovering and
managing grid services along with distributed sensors which
were used in environmental monitoring. Hohwald et al. [8]
proposed a distributed-computing architecture that allows
for the efficient processing of massive and heterogeneous

Performance tuning

Sensor grid
middleware

Metamodeling

International Journal of Distributed Sensor Networks

Sensor web
based on OGC
standard

Embedded web

sensor gateway

Sensor network

SAS: sensor alert service

SPS: sensor planning service
WNS: web notification service

SOS: sensor observation service

SensorML: sensor model language

TML: transducer markup language
O&M: observation and measurement

<—>: web connection with model transformation

FIGURE 1: Sensor grid overall architecture.

sensor datasets based on map/reduce. The proposed architec-
ture addressed the challenges of scalability, reusability, and
domain independence for constructing user models from
large heterogeneous sensor data generated from pervasive
environments. The architecture used metamodels to provide
a user desired model for designing purposes. Evaluation of
performance and scalability of the architecture was measured
in terms of number of CPUs and user model size. However,
existing frameworks have not been tuned for performance.
Also, many of these frameworks do not have components
that facilitate the management and visualization as well as
flexibility, extensibility, and scalability. Ituen and Sohn [9]
have set up a sensor network with wireless sensor motes and
have used a monitoring tool such as Moteview to monitor
the deployed wireless sensors. In order to utilize the collected
sensor data effectively, it must be provided with a grid
computing facility. This major disadvantage of sensor data
accessibility was rectified through our proposed work.

In this paper, we propose a framework for the design and
deployment of efficient sensor grid infrastructure. The sensor
grid framework requires a workflow model to visualize the
sensor grid setup that is to be implemented. The proposed
approach uses a metamodeling technique and performance
analysis and tuning as well as a middleware infrastruc-
ture that enable practical sensor grid implementation and
management. The overall contributions of this paper are as
follows.

(i) A workflow model to visualize the sensor grid setup
based on a metamodeling technique.

(ii) An efficient middleware to couple WSN and grid for
the collection, storage, and analysis of large set of data.

(iii) A performance analysisand tuning technique that can
provide a proper evaluation of the sensor grid and
tune it to meet the needs of the applications.

The rest of the paper is organized as follows. In Section 2,
the sensor grid architecture and its components are dis-
cussed in brief. Section 3 highlights the performance analysis
used for the proposed framework and performance tuning
techniques with experimental results. Section 4 provides a
brief discussion about the proposed work and its advantages.
Section 5 concludes the paper.

2. Sensor Grid Architecture

Figure 1 shows the overall architecture of the proposed sensor
grid framework. The proposed sensor grid architecture is
based on open geospatial consortium (OGC) protocol [10].
The architecture comprises a data computing grid, a sensor
web enablement, a sensor grid middleware, sensor nodes, and
end users. The end users can access information about sensor
processes through the SWE standards. The SWE component
includes encoding and web service standards defined by

International Journal of Distributed Sensor Networks

Geographically : Real-time Real-time
deployed i wireless sensor data stored in
wireless ! monitoring in MySQL
|
|

Sensors moteview

MySQL
database
storage

) Moteview
Wireless sensor

motes

Hadoop user
web interface

Hadoop cluster
components

Interface tools
(HUE, Oozie)
Data management
(HBase, Hive, Sqoop,

zookeeper)

User web
interface

Cluster management

FIGURE 2: Interpretation of the core components.

OGC. Each of the proposed sensor grid system components
is discussed in the following subsections.

2.1. Grid Web Users. The end users can access the features of
the sensor grid middleware through the web service inter-
face. The end user applications are agriculture, healthcare,
and disaster management. A personalized middleware was
designed in [11], which provided an intelligent collection
of physiological data for healthcare purposes. The proposed
middleware offered medical services to their users through
uHealth providers.

2.2. Sensor Nodes. Sensor nodes denote the geographically
deployed wireless sensor motes for collecting environmental
details such as humidity, light, and temperature. Indriya
[12] provided research possibilities in sensor network pro-
gramming environments, communication protocols, system
design, and applications by implementing the sensor network
testbed named Indriya. One of the main features of Indriya
testbed is that it allows users to schedule the deployed
wireless sensors to collect data. It also provided a permanent
framework for the development and testing of sensor network
protocols and applications. Registered Indriya users inter-
acted with the testbed through a web-based interface based
on Harvard’s Motelab’s interface.

2.3. Data Computing Grid. The data computing grid com-
prises data grid nodes and the grid interface service. The data
grid nodes are used to store and maintain the collected data
in a distributed manner. The grid interface service acts as an
interface to utilize the data through data grid nodes.

2.4. Sensor Web Enablement. Sensor web enablement (SWE)
is a suite of standard encodings and web service defined
by OGC. SWE enables discovery of sensors, their processes,

and observations followed by tasking of sensors. SWE allows
access to observations and observation streams as well as
publish-subscribe capabilities for alert system. SWE specifi-
cations for interfaces, protocols, and encodings which enable
the implementation of interoperable and scalable service-
oriented networks of heterogeneous sensor systems and
client applications are further classified as encoding and
web service specifications as discussed in [13]. Encoding
specifications provided by OGC are sensor model language
(SensorML), observations & measurements (O&M), and
transducer markup language (TML). Web service specifica-
tions are sensor observation service (SOS), sensor planning
service (SPS), sensor alert service (SAS), and web notification
service (WNS). 52° North [14] provided an open source
software set based on SWE standards designed to access
sensor data through Java web services. It was an initiative
sponsored by the Institute for Geoinformatics at the Uni-
versity of Munster, Germany. These Java web services were
based on the specifications and data encodings. SWE clients
were capable of communicating with services and visualizing
observational data through the initiative.

2.5. Sensor Grid Middleware. The main purpose of the sensor
grid middleware is to maintain and manage the growing
sensor data through scalability. The core components of the
middleware are wireless sensor motes, Moteview, MySQL,
Hadoop, and user interface as shown in Figure 2.

In the middleware, Hadoop [15] is used to manage the
cluster. The fair share scheduler that comes with Hadoop is
used in our case. The wireless sensor network setup consisted
of Micaz motes deployed geographically. The Micaz motes
collect data such as temperature, light, and humidity. The
Moteview is the primary user interface for monitoring the
deployed network of wireless sensors. Moteview provide a
graphical analysis of the monitored wireless sensors with

International Journal of Distributed Sensor Networks

e y————— || i Metamodeling window GME browser
B PEYrae T 2
feetiens e — - T
A S| ———— R e O #apesse [betnes| o .
T v
- ’ s -
b b s
b L
Tl Hadoop
< 1 Mo 1
Ul Moe 2
e I Moo 3
Vo2 B
- 1] o maet
- Usert a:mwmm
‘ Userts Ul ey ,_i W v
< e e
R s
= & e —_— e B
s uea L = | Humew
u,: - - — =
Web_Ul Base Station d P .
s d roperties
. . e et Moo I
Panning window e Hoto5 oo per -
‘l [pasbre s K
e | e &— b e ume
-“ v =}
T 3 st Userns Ul H
. | N . E
e e T %/‘ \\T) o)
= . _J
. =]
Clients Web UI Hadoop Sensor Wireless Sensor motes J
for sensor grld data SelleOI.' COH.ECtll’\g o
clients framework storage monitoring real-time data
and collection
{12t B
2
| Consale == ————— - = —
Ela £10]
e UM 8

FIGURE 3: Generated result from GME.

real-time data. The collected real-time sensor data were
stored in MySQL database and then transferred to HBase
from MySQL using the Sqoop tool [16]. HBase plays a vital
role in storing large scale sensor data [17]. We used a data
query mechanism similar to SQL called HiveQL [18]. The user
interface provided by the Hadoop framework could not be
handled easily by each and every user. In order to ease the
user’s work, a simple user interface was developed in Java. The
web user interface designed for Hadoop provided features
such as alerts and scheduling of wireless sensor networks
within the sensor grid system.

2.6. Metamodeling. Metamodel is an abstraction of a model,
which highlights the model properties and it depends on
model driven architecture (MDA) [19]. The metamodeling
tool used for representing the abstract of a model is the GME,
which is used for domain specific modeling as discussed
n [20]. The main reason for choosing the GME tool over
others for metamodeling is its advantage in reusability of
the generated workflow model rather than beginning from
scratch. Metamodeling acts as a preprocess for sensor grid
middleware implementation by providing metamodel for the
sensor grid workflow. Figure 3 shows the workflow model
for the sensor grid framework generated using the GME
modeling tool. It depicts a rough sketch for the sensor grid
framework which serves as an initial step in the imple-
mentation of this model in real-world applications. The
workflow from metamodeling acts as a front end to develop
the sensor grid application. Due to the reusability factor of
metamodeling workflows, the sensor grid application can
be altered by adding or removing features based on user
requirements. The metamodeling process is based on the
open standard protocols provided by open GIS consortium
(OGC) [21, 22] for interoperability and integration facilities
for the sensor grid.

TaBLE 1: Queries used for performance analysis.

Short
notation Full query
Select avg(temp) from hbase_xbw_latest where light

Avg. temp 850 & P &
Count Select count(*) from hbase_xbw _latest
Max temp Select max(temp) from hbase_xbw_latest

- Select * from hbase_xbw_latest distribute by time
Distribute

sort by time asc

2.7. Performance Analysis and Tuning. The performance of
the system is analyzed using the evaluation metrics such
as total runtime and CPU time. Based on the performance
analysis, the performance tuning is used to tune the system
to provide better and efficient results. The performance
tuning techniques that can be used to improve the system
performance are code optimization, load balancing, caching
strategy, distributed-computing, and self-tuning. In this work
we used starfish and collect tools from Hadoop [15] for
performance tuning. Starfish is a tool which does autotuning
for the configurations in Hadoop based on the load, data,
cluster, and so forth and provides the best performance [23].
It provides three levels of tuning with a what-if engine,
optimizer, scheduler, and a data manager. The collectl tool is a
performance monitoring and benchmark tool that monitors
a broad set of subsystem performance. We used collectl to
gather CPU usage details on each node of the cluster.

2.8. User Interface. The user interface written in Java provides
a simple and easy way of accessing sensor data information.
The two features made available are scheduling and alerts.

International Journal of Distributed Sensor Networks

TABLE 2: Queries with their total runtime and CPU time with respect to rows.

Metrics Slots Total runtime (s) CPU time (ms)

Query Avg. Temp Count Max Temp Distribute Avg. Temp Count Max Temp Distribute
1 24 23 41 22 8.8 8.4 12.8 9.9

25000 Rows 2 22 21 39 24 8.9 8.8 12.5 10.3
3 26 23 39 23 9.01 8.3 12.4 10.3
4 23 21 38 23 9.01 8.8 12.8 10.4
1 48 60 43 49 15.8 13.9 15.8 18.5

50000 Rows 2 42 51 41 55 15.5 14.6 15.4 18.9
3 44 55 42 52 15.1 14.3 15.8 17.5
4 50 48 52 53 14.6 14.6 13.9 17.1
1 53 74 57 62 18.3 17.3 15.9 21.2

75000 Rows 2 57 59 51 80 18.9 17.8 18.3 21.6
3 66 65 6l 62 18.1 18.1 15.8 21.2
4 76 57 57 88 17.1 18.9 15.9 21.8
1 95 111 94 118 25.8 26.9 24.5 29.9

100000 Rows 2 86 109 92 112 21.8 245 235 30.9
3 93 98 92 122 24.1 23.8 235 29.2
4 87 109 80 118 21.9 26.5 21.4 29.9

Note: CPU time—8821 ms is rounded off to 8.8 ms.

3. Performance Analyses

3.1. Testbed Environment. The testbed environment consists
of the micaz motes, MDA100CB sensor motes for measuring
temperature, MDA300CA for measuring humidity, MIB520
is a gateway for connecting these sensor motes with a system
through USB, and an HP workstation for monitoring and
storing collected sensor data. There were totally 8 micaz
motes which send data to a database managed by Moteview
through micaz USB base station. The cluster configuration
is comprised of four nodes, including one master and three
slave nodes. Each node runs an Ubuntu 11.04 operating
system with 4 GB ram and 4 core CPUs each. The micaz
motes with MDAI0OCB/MDA300CA sensors collected the
temperature and humidity data and sent it to the system
through MIB520 gateway. The collected data were stored in
MySQL for later use in Hadoop framework’s HBase. Hadoop
cluster consisted of one master node and three slave nodes.
The data was stored as regions within HBase which was split
between the master and slave nodes for processing. With a
user interface, users can schedule the sensor motes for alert
or the user can collect the historical data of the sensor motes
for reference.

3.2. Workload. We used two scenarios with 25000, 50000,
75000, and 100000 rows of data stored in HBase database.
Scenarios I and II deal with the evaluation metrics such as
total runtime and CPU time, respectively. Both the scenarios
are discussed in detail under Section 3.4.

These scenarios require queries to test the functionality
of Hadoop setup. In our case, the four queries used for
performance analysis are shown in Table 1. Table 2 depicts
details for each query or map/reduce job with their total

runtime and CPU time shows the values obtained by running
the four types of queries with respect to increase in number
of rows.

3.3. Performance Metrics. The evaluation metrics used for
performance analysis were CPU time and total runtime of
a sensor similar to the analysis performed in [24]. CPU
time represents the amount of CPU time consumed by
the map/reduce job to complete the job and total runtime
represents the total time taken from the map/reduce job
to complete within the Hadoop cluster. The coefficient of
variation, CV, for the total running time t can be derived
based on the standard deviation o and the mean y for total
number of nodes N as follows as discussed in [25]:

1Y 5
o= ﬁi;(ti—u) :)

3.4. Performance Analysis

Scenario 1. The experimental setup for scenario I comprised
the Hadoop cluster with one master and three slave nodes.
Sensor data were stored using HBase which was integrated
with a Hive query mechanism to enable SQL-based query
from HBase tables. Four types of queries used for the analysis
purpose of the Hadoop framework are given in Table 1.

Query versus total runtime (avg temp)

100
90 . \/\
80
- 70
[
£
50| e
-
= 40 N R
£ 30 R
\/_\
20 e
10
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows
(a)
100 Query versus total runtime (max temp)
90
80
= 70
L
£ o
E 40 e ...
2
30
20
10
0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows

(c)

International Journal of Distributed Sensor Networks

Query versus total runtime (count)
120

100 . w

Total runtime (s)
b (o)) [es]
o o o

|

0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows
(b)
140 Query versus total runtime (distribute)
120 e
100
[
§ 80
=
B 60| T
= I
£ 40
20
0
1 2 3 4
Slots
—— 25krows 75k rows
—— 50k rows —— 100k rows

(d)

FIGURE 4: Query versus total runtime (Sec). (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

Scenario I shows the performance comparison of the four
queries with respect to the total runtime of each query.

The graph in Figures 4(a), 4(b), 4(c), and 4(d) shows
the comparison of total runtime for four queries, namely,
Avg. temp, count, max temp, and distribute with respect to
increase in number of rows. Each query was executed four
times, and the total runtime for the query each time was
collected for tabulation, as shown in Table 2. In order to test
the performance of the Hadoop framework, each query was
executed against increasing number of rows, as shown in
Table 2. The graphs depict that with an increase in the number
of rows, the query or a map/reduce job consumes more time
to complete the map/reduce job. In other words, the total
runtime of a map/reduce job increases with an increase in the
number of rows in the table to be queried.

The graph shows irregularity of job completion time, even
when the query and total number of rows in the database
are unchanged. The main reason for such irregularity in

the graphs for a total runtime of a map/reduce job might
be caused due to factors such as workload, increase in
the number of processes, and node unavailability due to
hardware problems on the cluster node that executed the
map/reduce job. Such problems can be managed by using a
proper cluster monitoring technique that alerts the user with
user-defined triggers such as when a node is down and when
the number of processes exceeds the trigger limit.

Scenario II. The experimental setup for scenario II was similar
to that of the Scenario I. The main difference between these
two scenarios was that Scenario I analyzed the Hadoop
framework performance with respect to the total runtime
of the map/reduce job, whereas the Scenario II analyzes the
Hadoop framework with respect to total CPU time consumed
for the map/reduce job. The graph in Figures 5(a), 5(b),
5(c), and 5(d) shows the comparison of CPU time consumed
for four queries, namely, Avg. temp, count, Max temp, and

International Journal of Distributed Sensor Networks

Query versus avg. temp (CPU time)

30000
- 20000 . .
E
(5}
£ 15000 B S e
=
O 10000
5000
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows
()
Query versus max temp (CPU time)
30000
25000 : R
B 20000 |
g
[} P
£ 15000 T
5 -
&
O 10000
5000
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows

(c)

Query versus count (CPU time)

30000
25000
2020000 |
)
[
£ 15000 f - - - - BERESSERE RIS
=)
~
QO 10000 | - - -
5000 ..
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows
(b)
Query versus distribute (CPU time)
35000
30000 e T
B 25000 |
L
£ 20000 |«
- ’_\
=
B L5000 | o
10000
5000
0
1 2 3 4
Slots
—— 25k rows 75k rows
—— 50k rows —— 100k rows

(d)

FIGURE 5: Query versus CPU time (ms). (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

distribute as given in Table1 with respect to increase in
number of rows. The graphs depict that with an increase
in the number of rows, the query or a map/reduce job
consumes more CPU time to complete the map/reduce job.
In other words, the CPU time consumed for a map/reduce
job increases with an increase in the number of rows in the
table to be queried.

The increase in the number of rows affects the perfor-
mance of the cluster in terms of total running time and CPU
time of the map/reduce job. One of the main reasons for such
irregularity in graphs might be due to heterogeneous nodes
within the cluster. But the Hadoop cluster setup consists of
each node with equal processing capability and memory. The
other reasons for irregularity in the graphs for CPU time for a
map/reduce job are the same as the factors such as workload,
increase in the number of processes, and node unavailability
due to hardware problems on the cluster node which executed
the map/reduce job. In order to overcome such a drawback

due to workload or increase in the number of processes, the
problematic map/reduce job must be tuned. The strategy to
overcome the performance issue is discussed in Section 3.5.
The node unavailability issue can be managed by using cluster
monitoring techniques but in this case we are concentrating
on the other two issues using a tuning tool such as starfish.

3.5. Performance Tuning. We used starfish tool to optimize
the execution of the map/reduce job. The main advantage of
starfish is that it performs in-depth job analysis with profiles,
predicts the behavior of hypothetical job executions, and
optimizes arbitrary map/reduce programs. Starfish’s what-
if engine shows that adding a new node to the Hadoop
cluster can provide better results. In order to improve Hadoop
performance, a new node was added to the existing Hadoop
cluster. The results of tuning are shown as the graph in Figures
6(a), 6(b), 6(c), and 6(d) with respect to the total runtime
evaluation metric.

100 Query versus total runtime (avg temp)

90

80

70

60

50

40

Total runtime (s)

30

20

10

Slots

—— 25k rows
--- 25k rows after tuning
—— 50k rows
--- 50k rows after tuning

()

Query versus total runtime (max temp)

—— 75k rows

--~- 75k rows after tuning
100k rows
100 k rows after tuning

100

90

80

70

60

50

40

Total runtime (s)

30

20

10

Slots

—— 25k rows —— 75k rows

- -~ 25k rows after tuning - -~ 75k rows after tuning
—— 50k rows 100k rows

- -~ 50k rows after tuning 100k rows after tuning

(c)

International Journal of Distributed Sensor Networks

Query versus total runtime (count)

120
100
—~ 80
©
£
g 60
-
|
o
B g0
20
0
1 2 3 4
Slots
—— 25k rows —— 75k rows
- -~ 25k rows after tuning - -~ 75k rows after tuning
—— 50k rows 100k rows
- -~ 50k rows after tuning 100 k rows after tuning
(®)
140 Query versus total runtime (distribute)
120
100
bt
E 80
=
=
-
i B R R ks
] —
40
20 0 - T
0
1 2 3 4
Slots
—— 25k rows —— 75k rows
- -~ 25krows after tuning - -~ 75k rows after tuning
—— 50k rows 100 k rows

--- 50k rows after tuning

(d)

100 k rows after tuning

FIGURE 6: Query versus total runtime (Sec) after tuning. (a) Average temperature, (b) count, (c) maximum temperature, and (d) distribute.

Figures 6(a), 6(b), 6(c), and 6(d) show the decrease in
total runtime for each query after tuning when compared
to the total runtime before tuning. The tuning technique
provided better results when compared with before-tuning
graphs. In this case, better and stable results were produced
due to the addition of a node to the Hadoop cluster as per the
starfish’s what-if engine strategy. The proper characterization
of Hadoop jobs can also provide better results as discussed in
[26].

4. Discussion

In comparison to Table 3, which shows the features imple-
mented in past works, our methodology proves to be effective
in implementing all the features as a whole whereas those past
works implements only part of the features. The advantages
of the features implemented will prove the significance of our
methodology.

Table 3 shows the list of related works based on the imple-
mentation features such as metamodeling, Hadoop, HBase,

International Journal of Distributed Sensor Networks

X

X X

\p

[¢] wioperd

Pnop pue NSM UO paseq waisAs
aoue[IeAIns 19)sestp e Surdofoasg
[9¢€] spnop pue spriS ur pajonpuod
SUOTJB[NUTS [[)IM SWD)SAS UOTINQLIISIP
I9JeM UBQIN UB UT UOIO)IP JedIY],
[s€] waoperd NSM

[2A0U & 107 Juawdo[aaap a1EMYOS

[8] s19seiep I0SUSS

QAISSBU WOJJ S[PPOW Jasn dAIseATad
Surpmgq 10§ 21Mj0AIYOIR UY (qNIIV
[¥e]

u01}5939p 211 0) uonjesrdde—syIomiau
JIOSUDS SSIIIIM J[IqOUT

ur urzruedio-j[os pue SurpPpon

[£¢] Burssaooad ureans

own-Teas Joy Suruuerd juatwiordop pue
stsATeue 2ouew10§19d USALIP-[OPOIA
[2€] apou 10su3s aIEMB-30IN0SIT

pue a[qeidepe 105 yoeorddy
uoneIaudd Juade usALIp-[oPOIN

[T€] s>{10MIaU JOSUDS 10J INJI)IYDIR
9o1A19s Junndwoo pnop y—ysDD
[0€] priSo1oru JO [0IUOD USALIP-IIST
03 yoeoidde Jurroourdus aremyos y
[62] seImdNIISLIJULIIQAD

UIIPOW UT UOIIOIP 18I}

I9)eM UBQIN UO ApPN)S UOHJB[NWIS Y
[11] sao1419s Yireaw snoymbiqn

10J aIema[pprur pazijeuosiad y

[82] Sunndwoo

PO J9AO0 WA)SAS JTEMI[PPIW (IIY
yuawdunr pue udrsap 03 yoeordde uy
[£7] sureans payur| Jo JuswAGEURU
9[qe[eos 10J YIOMIWEI] dIeMI[PPIW
[1] erep

S1q pue ‘sao1a10s Sursuas ‘sSuryy jo
J9UIUT) JOJ INIOAIYDIE JNISTOY Y
[¢] uonjeidajur pno-10sUIS

10J S[ouUeYD BIep J[qIXS[J JO UIsop y

St

4!

€l

4!

11

01

Suruny soueULIOND

doueurojrod
nddo

uondwnsuod
A310ug
$10)0J SISATRUR JOURTIONISJ

JUIT) UONNIIXG

Jjer
IoJsueI) eje(]

asegy doopey Surppouwreloly

oidoy,

ou-

*sa1n)edJ pajusura[duir o) uo paseq yrom pasodord oy yyim syrom Ised jo uostredwo) ¢ aI9V],

International Journal of Distributed Sensor Networks

10

[2¥] Suriojiuowr waysAs

X X X M X X S X PAAINQLISIP UT SUOIIR[IIIO0D JUIAD 1T
Sururuwr 10§ yoeoidde pazieryuadop v
[1%] 2onpar/dew Guisn

X X X M X X M X 0T
$19)sN[> 93T6] WO UOTJRZI[eNSIA [[[ete]
[0%] spnopo Ayrunwiwrod pue

4 * x * x % 4 x ayear1d 1oy sonpai/dews onse[a-uIIsRY ol
[6¢] sonpar/dewr

% % x * % x + x Jo [opow doueuriojdd reondeue uy 81
(8¢]

M X X X X X P X Sunnduros pnop ur s1aysnp dooper] /1
$N02U3012)aY JO SINSST ADUBTUIOFIDJ
[££] doopep] uo paseq

X X X X X P S X Surmjoenuew pno ur yIomauresy 91
JUSWSBUR BJEP JOSUDS JAISSEIA

soueuriojrad uondwnsuod Jer
AS1oug Wn HopnoSxy Iojsuell eje
Suruny soueULI0)I0d ndo asegy doopey Surepourejoly oidoy, ou-g

$10)0B] SISATRUR 9OURWLIONISJ

"panunuoy) :¢ A19V],

International Journal of Distributed Sensor Networks

performance analysis factors, and performance tuning. The
proposed methodology in this paper implements all the
features listed when compared to other works.

The advantages of the proposed sensor grid framework
are as follows. (1) Use of GME for metamodeling provides
a workflow of the proposed sensor grid framework. (2)
The Hadoop framework provides a platform for sensor
grid to manage data within the grid system. (3) Hadoop’s
map/reduce engine allows effective processing of sensor data
within the sensor grid system. (4) The use of HBase, a
distributed column-oriented database, allows storage of large
scale sensor data. (5) Hive integration with HBase allows
SQL-like query structure rather than a complex HBase query.
(6) Performance tuning tools such as starfish allows map/
reduce job optimization in order to provide better results.

The summary of our methodology is as follows. Sensor
grid architecture was proposed based on the OGC standards.
The metamodeling tool, namely, GME was used to generate
a model for the proposed sensor grid framework which
served as a model for implementing real world applications.
The specifications of the OGC’s SWE standard were dis-
cussed. Real-time wireless sensor data collected through
Moteview were stored in MySQL and later imported into
HBase using Sqoop in order to use with Hadoop. The open
source framework Hadoop was implemented as the sensor
grid middleware and its other components such as HBase,
hive, and schedulers were discussed. Performance analysis
was done in the implemented Hadoop framework based on
evaluation metrics such as total runtime and CPU time. The
performance analysis of the sensor grid framework shows
irregularities due to workload on a node in the cluster,
number of processes running, and cluster node unavailability.
Such irregularities can be reduced by implementing a proper
cluster monitoring system which sends alerts to the user
during these situations. Performance tuning tool such as
starfish with a brief discussion and how it manages to tune
the Hadoop framework performance has been discussed.
The combination of metamodeling, OGC standards, and
sensor grid for the first time is the main significance of
our methodology. Our methodology has implemented the
rapidly growing Hadoop framework as a sensor grid middle-
ware along with the metamodeling technique based on OGC
standards.

5. Conclusions

In this paper, a sensor-grid architecture is proposed. The
proposed architecture demonstrates the efficiency, effective-
ness, and feasibility of implementing wireless sensor grid
services based on the open geospatial consortium standards.
The Hadoop framework implemented in the sensor grid
network had the capability of withstanding hardware failures
when compared to existing grid middleware due to its
scalability, accessibility, and robustness. The performance of
the proposed architecture was analyzed based on evaluation
metrics such as total runtime and CPU time with respect to
increase in the number of data read rows. The performance
tuning tools such as collectl and starfish were used to collect
system data, while Hadoop executed a map/reduce job and to

1

enhance map/reduce job optimization through profilers and
what-if engines, respectively. Future work can be done by pro-
viding advanced security mechanisms and applying different
evaluation metrics for performance analysis and optimizing
the map/reduce job accordingly. Also, an efficient cluster
monitoring technique can avoid performance deflection of
sensor grid framework in future.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology. (Grant no. 2011-0011507). This work is a part of
a funded project sponsored by DST (NRDMS), New Delhi,
India.

References

[1] D. Tracey and C. Sreenan, “A holistic architecture for the inter-
net of things, sensing services and big data,” in Proceedings of
the 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGRID ’13), 2013.

[2] J. Cen, T. Yu, Z. Li, S. Jin, and S. Liu, “Developing a disaster
surveillance system based on wireless sensor network and cloud
platform,” in Proceedings of the IET International Conference
on Communication Technology and Application (ICCTA ’I11), pp.
757-761, 2011.

[3] J. Melchor and M. Fukuda, “A design of flexible data channels
for sensor-cloud integration,” in Proceedings of the 21Ist Interna-
tional Conference on Systems Engineering (ICSENG 11), pp. 251~
256, 2011.

[4] C. K. Tham and R. Buyya, Sensor Grid: integrating sensor
networks and grid computing, Computer Society of India (CSI)
Communications, Mumbai, India, 2005.

[5] H.B.Lim, Y. M. Teo, P. Mukherjee, V. T. Lam, W. F. Wong, and S.
See, “Sensor Grid: integration of wireless sensor networks and
the grid,” in Proceedings of the 30th Anniversary IEEE Conference
on Local Computer Networks (LCN "05), pp. 91-99, 2005.

[6] T. Fan, X. Zhang, and E Gao, “Cloud storage solution for
WSN based on internet innovation union,” in Proceedings of the
2nd International Conference on Cloud-Computing and Super-
Computing (CCSC ’13), vol. 22, pp. 164-169, ASTL.

[7] G. Kousiouris, G. Vafiadis, and T. Varvarigou, “A front-end,
Hadoop-based data management service for efficient federated
clouds,” in Proceedings of the 3rd IEEE International Conference
on Cloud Computing Technology and Science (CloudCom ’11), pp.
511-516, December 2011.

[8] H. Hohwald, E. Frias-Martinez, and N. Oliver, “ARBUD: an
architecture for building pervasive user models from massive
sensor datasets,” in Proceedings of the Pervasive User Modeling
and Personalization (PUMP ’10), 2010.

[9] L. Ttuen and G. Sohn, “The environmental applications of
wireless sensor networks,” International Journal of Contents, vol.
3, no. 4, pp. 1-7, 2007.

12

[10] Open Geospatial Consortium, 2008, http://www.opengeospa-
tial.org/.

[11] Z.Ji, X. Zhang, 1. Ganchev, and M. O’'Droma, “A personalized
middleware for ubiquitous mHealth services,” in Proceedings of
the IEEE 14th International Conference on e-Health Networking,
Applications and Services (Healthcom ’12), pp. 474-476, 2012.

[12] Indriya, 2013, http://indriya.comp.nus.edu.sg/motelab/html/
index.php.

[13] SWE (Sensor Web Enablement), 2013, http://www.opengeospa-
tial.org/projects/groups/sensorwebdwg/.

[14] North, http://52north.org/communities/sensorweb/.

[15] Apache Hadoop, 2013, http://hadoop.apache.org/.

[16] Apache Sqoop, 2013, http://sqoop.apache.org/.

[17] Apache HBase, 2013, http://hbase.apache.org/.

[18] Apache Hive, 2013, http://hive.apache.org/.

[19] Y. Liu and Y. Wang, “A study of metamodeling based on MDA,
in Proceedings of the IEEE 3rd International Conference on
Computer Research and Development, pp. 171-173, 2011.

[20] A. Ledeczi, M. Maroti, A. Bakay et al., The Generic Modeling
Environment, Workshop on Intelligent Signal Processing, 2001.

[21] J.-P. Schneide, J. Champeau, D. Kerjean, O. K. Zein, Y. Auffret,
and L. Dufrechou, Domain Specific Modeling Applied To Smart
Sensors, IEEE OCEANS, 2011.

[22] N. Chen and C. Hu, “A sharable and interoperable meta-
model for atmospheric satellite sensors and observations,” IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensinglssue, vol. 5, no. 5, pp. 1519-1530, 2012.

[23] Starfish, 2013, http://www.cs.duke.edu/starfish/.

[24] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar,
“MapReduce with communication overlap (MaRCO),” Journal
of Parallel and Distributed Computing, vol. 73, no. 5, pp. 608-
620, 2013.

[25] H. Gonzalez-Velez and M. Kontagora, “Performance evaluation
of MapReduce using full virtualization on a departmental
cloud;” International Journal of Applied Mathematics and Com-
puter Science, vol. 21, no. 2, pp. 275-284, 2011.

[26] S. Phadke, S. Aggarwal, and M. Bhandarkar, “Characterization
of hadoop jobs using unsupervised iearning,” in Proceedings
of the 2nd IEEE International Conference on Cloud Computing
Technology and Science, 2010.

[27] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M.
Hauswirth, “A middleware framework for scalable management
of linked streams,” Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 16, pp. 42-51, 2012.

[28] W. Tian, X. Dong, H. Wang, and R. Xue, “An approach to design
and implement RFID middleware system over cloud comput-
ing,” International Journal of Distributed Sensor Networks, vol.
2013, Article ID 980962, 13 pages, 2013.

[29] L. Wang, D. Chen, Z. Deng, and R. Ranjan, “A simulation
study on urban water threat detection in modern cyber-
infrastructures,” in Proceedings of the IEEE 26th International
Parallel and Distributed Processing Symposium Workshops ¢
PhD Forum (IPDPSW ’12), pp. 1040-1047, 2012.

[30] M. Allison, A. A. Allen, Z. Yang, and P. J. Clarke, “A software
engineering approach to user-driven control of microgrid,” in
Proceedings of the 23rd International Conference on Software
Engineering & Knowledge Engineering (SEKE ’11), 2011.

[31] Z.Guo, C. Liu, Y. Feng, and F. Hong, “CCSA: a cloud computing
service architecture for sensor networks,” in Proceedings of the
Conference on Cloud and Service Computing (CSC ’12), pp. 25—
31, 2012.

International Journal of Distributed Sensor Networks

[32] A. Di Marco, S. Pace, S. Marchesani, and L. Pomante, “Model-
driven agent generation approach for adaptable and resource-
aware sensor node,” in Proceedings of the 3rd International
Workshop on Software Engineering for Sensor Network Applica-
tions (SESENA ’12), pp. 64-65, 2012.

[33] K. An and A. Gokhale, “Model-driven performance analysis
and deployment planning for real-time stream processing;’
in Proceedings of the 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’13), 2013.

[34] E. T. Fute and E. Tonye, “Modeling and self-organizing in
mobile wireless sensor networks—application to fire detection,”
International Journal of Applied Information SystemsFebruary,
vol. 5, no. 3, pp. 1-7, 2013.

P. Volgyesi, J. Sallai, A. Ledeczi, P. Dutta, and M. Maroti, “Soft-
ware development for a novel WSN platform,” in Proceedings
of the Workshop on Software Engineering for Sensor Network

Applications (ICSE ’10), pp. 20-25.

[36] G. Von Laszewski, L. Wang, F. Wang, G. C. Fox, and G. K.
Mahinthakumar, “Threat detection in an urban water dis-
tribution systems with simulations conducted in grids and
clouds,” in Proceedings of the Second International Conference on
Parallel, Distributed, Grid and Cloud Computing for Engineering
(PARENG ’11), 2011.

[37] Y. Bao, L. Ren, L. Zhang, X. Zhang, and Y. Luo, “Massive sensor
data management framework in cloud manufacturing based
on hadoop,” in Proceedings of the 10th IEEE International
Conference on Industrial Informatics (INDIN ’12), pp. 397-401,
2012.

[38] B. T. Rao, N. V. Sridevi, V. K. Reddy, and L. S. S. Reddy,
“Performance issues of heterogeneous hadoop clusters in cloud
computing,” Global Journal of Computer Science and Technology,
vol. 11, no. 8, 6 pages, 2011.

[35

[39] X. Yang and J. Sun, “An analytical performance model of
MapReduce,” in Proceedings of IEEE International Conference on
Cloud Computing and Intelligence Systems (CCIS ’11), pp. 306-
310, 2011.

P. Riteau, Ancutalordache and Christine Morin, Resilin—Elastic
MapReduce For Private and Community Clouds, INRIA, 2011.

[41] H. T. Vo, J. Bronson, B. Summa, J. L. D. Comba, and J. Freire,
“Parallel visualization on large clusters using map reduce;” in
Proceedings of the IEEE Symposium on Large Data Analysis and
Visualization (LDAV ’11), pp. 81-88.

[42] G. Wu, H. Zhang, M. Qiu, Z. Ming, J. Li, and X. Qin, “A
decentralized approach for mining event correlations in dis-
tributed system monitoring,” Journal of Parallel and Distributed
Computing, vol. 73, no. 3, pp- 330-340, 2013.

[40

Copyright of International Journal of Distributed Sensor Networks is the property of Hindawi
Publishing Corporation and its content may not be copied or emailed to multiple sites or
posted to alistserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

