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Abstract

Shadow detection is a challenging and essential task for interpreting the scene. Regardless

of encouraging findings from current Deep Learning (DL) approaches used for shadow

detection, the methods are also dealing with inconsistent situations where the visual rep-

resentation of non-shadow and shadow regions is equivalent. In this article, a DL based

approach is introduced for image pixel-level shadow detection. The proposed CNN-based

approach, pattern conserver convolutional neural network (PCPerturNet) profits from a

new design where shadow features are defined utilizing an effective skip-connection map-

ping arrangement. To make PCPerturNet robust from the change in brightness and con-

trast, several perturbed instances are generated by using a fuzzy-logic based method to train

the system. Also, five types of augmentations are applied to images during training to make

the system robust from the change in scale, orientation and flip. PCPerturNet derives and

conserves shadow patterns in manifold layers and uses those layers progressively in several

units to produce the shadow mask. The output of the proposed method is tested on two

freely accessible databases and one self-created database where the accuracy rate obtained

is 96.4%, 96.8%, and 89.4% which indicates that the proposed method outperforms the

other shadow detection approaches used in the literature.

1 INTRODUCTION

Shadow is a natural radiance effect, induced by the obstruc-

tion of light by other obstructs, arising in variations in inten-

sity and colour of local areas. Shadow is an unavoidable occur-

rence in maximum images, and so grappling with the shadow

is an inevitable phase in many image processing assignments.

Irrespective of the role where shadow areas are either exam-

ined or ignored, shadow holds some useful information about

the structure and properties of the scene components and their

connection with one another. Using this type of information

could have a major influence on the efficacy and consistency

of any image processing technique in the existence of shad-

ows. If detected and perceived accurately, shadows may pro-

vide details about the orientation of the light and scene layout.

Although in some situations, shadows offer valuable informa-

tion, like the relative position of the source element, they cre-

ate problems in machine vision applications like object detec-

tion, segmentation, and counting objects. For example, in many

cases, the object detection system detects shadows together with
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people in a video sequence (rather than detecting just the per-

son) [1, 2]. As a consequence, the approach is unsuccessful to

detect a particular individual in video sequence when that per-

son’s shadow is connected to other objects in the scene. In addi-

tion to this, if there are several objects in a scene (like some

people close to one another, or several vehicles on a road), the

shadow of one can obstruct other object parts and decrease the

efficiency of the detection system [3]. Needless to say, shadows

may have also been a source of unpredictability. Shadow areas

appear to have alike characteristics to obstructions. This may

misguide object recognition techniques. The shadow of trees,

clouds, man-created structures (such as walkways) on the roads

etc. may make it increasingly challenging to detect roads in satel-

lite images [4–6] and it affects the accuracy and the quality of

such application results. Object recognition, edge extraction,

change direction, image matching etc. needs shadow-free satel-

lite images. Therefore, it is essential to detect shadow from these

type of images before further processing.

For all the steps being taken throughout many years to solve

the issue of image shadow detection, it remains an ongoing and
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very motivating research topic. One explanation of this is that

there is almost no background knowledge about the source of

light or the barriers on the scene. Shadow characteristics differ

from one image to another depending on the composition of

the scene, leaving researchers, in several cases, empty-handed.

Early shadow detection procedures are typically based on graph-

ical models that deal with primarily light chromaticity or light-

ing invariant hypotheses and utilize hand-crafted attributes such

as illumination indicators, hue, and others. Also, most of the

shadow detection networks redesigned to detect local patches.

The association between various patches of the image is often

segmented as images are decomposed into patches. The patch

segmentation is typically centred on the sliding pane, irrespec-

tive of the conceptual meaning of the image. Resultantly, certain

possible relationships within the original image are removed by

the features that are derived from patches. In order to create

a finished shadow area detection result, more optimization for

local patch results is required. The network can only learn the

internal relationships between various parts of the images by

utilizing the entire original image as the network input. With

the advent of deep convolutionary neural networks (CNN),

researchers are using these networks in recent years to conduct

several machine vision tasks. The issue of shadow detection per-

haps can be now best handled utilizing modern deep learning

(DL) techniques.

Inspired by the above findings, and in order to avoid the rea-

soning procedures, a DL approach is proposed for the detec-

tion of the entire shadow regions automatically. The original

image is the input of the proposed network, and the output

is the probability distribution representation for the shadow

regions. The proposed approach profits from pattern conserver

CNN trained by image perturbation (PCPerturNet). PCPer-

turNet can detect “self and cast shadow” (henceforth will be

referred to as “shadow”). The shadow can be divided into

penumbra (soft) and umbra (hard) region. From the penum-

bra region, the texture of the background information can be

retained. But as the umbra region is too dark, so it is very dif-

ficult to differentiate the shadow part from the dark objects

present. PCPerturNet intends not only to detect global and local

shadow perspectives but also to conserve these patterns with

the purpose that they may not be lost in this dense and deep

framework. As a consequence, this model’s well-trained weights,

which have previously collected characteristics of shadow, will

reliably determine pixels of shadow in any unobserved images.

To deal with variants in shadow area characteristics, the use of

perturbed image instances is proposed. Perturbed instances are

slightly altered forms of the original image that varies in bright-

ness and contrast which may be unnoticeable to the human

visual system. Perturbed instances have an important contribu-

tion to the advancement of more reliable deep neural networks

and researchers have shed light on the process of precisely

understanding the different features of these network inputs

[7, 8]. Inspired by the abovementioned evidence, perturbed

instances are used to train the system along with the original

training images. Thus, PCPerturNet is trained with more varied

instances, which induce learning different types of shadow fea-

tures as opposed to the training with only the original training

images.

Here a framework is built to produce a range of per-

turbed instances for the shadow detection model (PCPertur-

Net) by using fuzzy rules. These freshly created image instances

are modified forms of the original images. Before train the

system, the perturbed instances are developed in the pre-

processing phase of the shadow detection model. Consequently,

the training phase of PCPerturNet is pretty straightforward. The

proposed perturbed data creator may be utilized for other pro-

grams with minimal data of training.

The major two contributions of this article are as described

in the following:

1. Development of a new perturbed instance creator by vary-

ing the brightness and contrast of the original image which

is based on fuzzy logic that will allow the proposed net-

work to work better than other shadow detection proce-

dures reported in the literature by using publicly accessible

datasets. The proposed model is resilient to different factors

such as variations in light and faint grey low-contrast shad-

ows in the environment.

2. Proposing a novel CNN network (PCPerturNet) that specif-

ically captures local and global shadow features in an image

through several down-sampling and up-sampling units.

PCPerturNet incorporates precise mapping in its down-

sampling units by using the proposed encoder pattern

conserver and convolution mapping to maintain acquired

shadow patterns through processing. The proposed decoder

pattern conserver is the branch of up-sampling units that

helps to reconstruct the linguistic shadow information.

The organization of the remaining part of this article is as

follows: a summary of current techniques for shadow detec-

tion research is provided in Section 2. The proposed approach

is explained in detail in Section 3, including the method for

creating perturbed instances using fuzzy logic. The experimen-

tal findings are described in Section 4. Section 5 includes the

performance comparison of the proposed method with other

recent techniques for shadow detection used in the literature.

Lastly, Section 6 concludes the study along with the future

research direction.

2 RELATED WORKS

To date, some studies have been proposed to detect shadows

in a single image. Previous works established physical models

focused on histogram and illumination-based principles [4–6].

Such observations can only perform well on high-resolution

images like satellite images while performing poorly on com-

plicated low-resolution images. The main reason behind the

poor performance of this method when applied to low reso-

lution image is that dark and light objects may be misclassi-

fied as shadow and non-shadow area respectively. Also, it is dif-

ficult to detect deep green grass or tree leaves from shadow.
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Later, pixel and edge details were investigated to detect shad-

ows. For instance, Tian et al. [9] used four shadow proper-

ties (point-wise product of daylight spectral power distribution

with sRGB CMFs, the point-wise product of skylight spectral

power distribution with CMFs, linear sRGB surface pixel val-

ues of illuminated by daylight (in non-shadow regions) and sky-

light (in shadow areas)) along with the edge characteristics of

non-shadow and shadow regions. Four different datasets such

as Zhu, Lalonde, Guo and a self-created dataset and commonly-

used precision, recall, and F-measure are used to check the effi-

ciency of the method. However, the drawback of this approach

is that it cannot accommodate some conditions related to dif-

ficult scenes and lighting, like overexposure areas, noisy areas,

and dense textured areas. Zhang et al. [10] used the ratio edge

property (the ratio of the pixel intensities between two adja-

cent pixels) to detect shadow pixels in the image. The ratio

edge distribution is analysed and a significance test is done

to detect the shadow. Overall accuracy is used as the perfor-

mance measure. Kang et al. [11] suggested a shadow detection

algorithm focused on an extended random walker (ERW) by

incorporating both shadow properties and spatial similarities

between adjacent pixels. The support vector machine is used to

attain an initial detection map, with the classified non-shadow

and shadow pixels. The proposed method is compared with

other shadow detection method like normalized saturation-

value difference index and self-adaptive feature selection and

overall accuracy is used to check the superiority of the proposed

method. Then, instead of utilizing pixel-level indications indi-

vidually, the region level indications were studied. For instance,

Vicente et al. [12] used the least-squares kernel support vec-

tor machine (LSSVM) for the separation of non-shadow and

shadow regions. The leave-one-out confidence values is calcu-

lated for every training sample and is compared with the ground

truth shadow annotation to obtain the leave-one-out error rate.

The proposed method is compared with unary SVM and convo-

lutional nets and balanced error rate is used to check the supe-

riority of the proposed method. Yuan et al. [13] used a local

contour based method to detect the shadow region from the

image. Gao et al. [14] and McFeely et al. [15] used the spatio-

temporal moving shadow detection (STMSD) technique and

colour and texture based methods respectively to detect shadow

regions. Alterations in the texture of the current and neigh-

bouring video frames and background are obtained using the

watershed method, and each sub-area is categorized in terms of

texture to achieve the required moving shadow and target area.

Some researchers used transform domain techniques to detect

shadow region. Nagarathinam et al. [16] used spatial wavelet

transform (SWT) and Zernike moment (ZM) based method to

detect moving shadow. The main drawback of this method is,

SWT cannot capture edges properly and provides limited infor-

mation along vertical, horizontal and diagonal direction. The

major drawback of ZM is, it is not invariant to scale changes.

All of the above approaches are focused on hand-crafted tech-

nologies that are not adequate discriminative in noisy and com-

plicated scenes.

Shadow detection approaches focused on DL have recently

become very common because of its performance. [17]. Initially,

researchers viewed CNN as an effective feature extractor and

produced substantial changes in efficiency for strong deep fea-

tures. Shen et al. [18] used a structured convolution neural net-

work to capture the local shadow structure information. Non-

local measures are used to address shadow retrieval as an opti-

mization issue. The efficiency of this method is compared with

four different methods like boosted decision tree-binary con-

ditional random field model, boosted decision tree-conditional

random field model, unary pairwise, CNN-conditional random

field model. Percentage of accuracy is used as the performance

measure. Later, convolution neural networks were suggested

as a consequence of the creation of fully convoluted networks

(FCNs). For instance, Vicente et al. [19] introduced a semantic-

aware stacked CNN model that combines two neural networks:

image level FCN and a patch-based CNN. During training,

the output of FCN as well as the corresponding RGB image

input is utilized to train the patch-CNN to extract the semantic

shadow. The efficiency of this method is compared with two dif-

ferent methods like Convnets+Conditional Random Field and

LooKOP+Markov Random Field. Balanced error rate is used

as the performance measure. Jiang et al. [20] proposed skip

connection-based Injection networks to detect shadow. Differ-

ent weights are assigned for shadow and non-shadow parts for

efficiently detection of the shadow part from the image. The

efficiency of this method is compared with six different meth-

ods like boosted decision tree-binary conditional random field

model, unary-pairwise, CNN-conditional random field model,

stacked CNN, stacked CNN-LinearOpt and stacked cGAN.

Percentage of accuracy is used as the performance measure.

Zheng et al. [21] suggest a distraction-aware shadow detec-

tion network (DSDNet) by specifically learning and incorpo-

rating the meanings of visual distraction areas into an end-to-

end system. Distraction-aware shadow (DS) module is used to

acquire distraction-aware, discriminatory features for shadow

detection by directly forecasting false positives and false neg-

atives. The efficiency of this method is compared with six dif-

ferent methods like ADNet, bidirectional feature pyramid net-

work with recurrent attention residual module, direction aware

spatial context, stacked conditional generative adversarial net-

works, stacked cGAN and stackedCNN. Balanced error rate is

used as the performance measure. Tang et al. [22] suggested an

end-to-end SDRNet shadow detection and removal network.

The proposed network is based on an encoder–decoder struc-

ture. Encoder downsamples the features and provides semantic

and global shadow information. While decoder upsamples the

features that combines low-level detail with high-level seman-

tic information. Balanced error rate is used as the performance

measure.

More recently, pattern knowledge has been examined. Zhu

et al. [23] introduce a network to detect shadows by investigating

and integrating the regional patterns in dense and deep layers

and the local patterns in shallow layers of the deep CNN. First,

they create a recurrent attention residual (RAR) framework to

merge the patterns in two neighbouring convolution layers and

use an attention map to pick the residual and then optimize the

pattern attributes. Second, they create a bi-directional feature

pyramid network (BFPN) to merge shadow patterns across
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TABLE 1 Pros and cons of different DL based methods mentioned in the literature

Method Pros Cons

Fully convolutional neural

network

Required features are automatically calculated This approach is restricted from accumulating only local attributes from tiny

regions. Thus, they are not able to extract features of shadow from the

adjacent regions that might be meaningful

Injection network Computationally simple The optimal depth of an injection network can vary from one shadow dataset

to another, reliant on the difficulty of the task and the number of labelled

data obtainable for training

DSDNet Distraction semantics (i.e., shape, pattern, objects)

are considered which is vigorous for detecting

shadow on images with complex backgrounds

Some weak shadow images (where shadows have a very comparable brightness

to the background) or some very dark background images (where the

shadows are almost blended into the background) cannot be detected

SDRNet Both shadow detection and removal can be done

by using a single network

Multiscale and global feature method increases the complexity of the overall

network

BFPN-RAR The residual learning technique improves the

feature refinement by learning the residual of

input features

Fail in some extreme cases, such as the soft shadows and shadows with tiny

details

scGAN By using the tunable sensitivity parameter, the

model can be efficiently trained

Suffers from the drawback of its inflexibility

ARGAN Can handle shadows with complex scenes and is

flexible to incorporate adequate unsupervised

shadow images to train a model

Once this type of model is trained, it cannot quickly satisfy the need of a new

requirement

various convolution layers. In [24–26], generative adversarial

networks (GANs) were adopted to collect pattern details. Wang

et al. [24] proposed a stacked conditional GAN model to learn

shadow detection and removal together. Here the authors

proposed a stacked joint learning paradigm that consists of two

conditional GANs. The second GAN is stacked upon the first

one. The generator and discriminator of the first GAN are con-

ditioned on the input shadow image. The discriminator of the

second GAN differentiates the concatenation of outputs from

the generator of the first and second GAN. Balanced error rate

is used as the performance measure. Nguyen et al. [25] proposed

an scGAN model where a sensitivity parameter was added for

the generator to monitor the intensity of the shadow detector.

Balanced error rate is used as the performance measure. Ding

et al. [26] suggested an attentive recurrent adversarial generative

network (ARGAN) for shadow detection. A shadow attention

detector is used in the generator to generate a shadow attention

map. Long- and short-term memory is used to ensure that the

detected shadow regions are accurate. The efficiency of this

method is compared with four different methods like stacked

conditional generative adversarial networks, Direction aware

spatial context, ADNet, and bidirectional feature pyramid net-

work with recurrent attention residual module. Balanced error

rate is used as the performance measure. But the unpredictabil-

ity of GAN still restricts its applications. Though, these pattern-

based methodologies still suffer from images with complicated

backgrounds, as they utilize the pattern to reduce potential vari-

ances between ground truth and predictions, which try to pla-

cate the most common cases whereas neglecting difficult cases.

Although the aforementioned techniques have reported

some good performance, they are still suffering from an absence

of precise global and local shadow patterns in their masks.

Table 1 shows the pros and cons of different DL based methods

discussed here.

FIGURE 1 The overall block diagram of the proposed approach

A new shadow detection network (PCPerturNet) is intro-

duced here, which profits from a new CNN framework trained

on reproductive perturbed instances, contributing to improved

results on two publicly accessible and one self-created dataset.

Before the system is trained, ten perturbed images are generated

from each dataset image using a fuzzy rule-based method. Dur-

ing training, five types of augmentation are applied to make the

system invariant to scale, orientation, and flipping. As a con-

sequence, the network can easily be used in many other image

segmentation applications.

3 PROPOSED APPROACH

This section details the proposed approach to detect shadow

from the image. Figure 1 shows the overall block diagram of the

proposed approach.

First, ten perturbed instances are created from every original

image by using the fuzzy logic approach to deal with the

variants in the shadow area characteristic. These perturbed

images are generated by varying the brightness and contrast of

the original image to make the system robust from handling
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different dark or light images. Then, the proposed pattern con-

server convolutional neural network (PCPerturNet) is trained

using those perturbed instances. The proposed architecture

can be used to detect local as well as global shadow from the

image and it can conserve the patterns generated through the

up-sampling and down-sampling units of the deep framework.

The conservation of the pattern is needed so that they may

not lost in the dense and deep framework. After training, the

test images are fed to PCPerturNet to generate the shadow

mask. The details of every step are mentioned in the following

sections.

3.1 Generating perturbed instances using
fuzzy logic

Literature shows that shadows may be detected by utilizing HSV

colour space as the shadow alters the background light sub-

stantially, whereas the hue or chromaticity varies only moder-

ately. The proposed fuzzy approach utilizes HSV colour space in

which only the V channel is augmented by retaining chromatic

details such as Hue (H) and Saturation (S) to produce perturbed

examples from the original dataset images. This method is used

here precisely to enhance low bright and contrast image. Aug-

mentation of the V channel is done under the guidance of the

augmented parameters E1 and E2. This augmentation will con-

vert the current intensity value PC to the augmented intensity

value PE .

The first step in the proposed approach is to transform the

RGB image of size M × N to HSV and then to compute the

histogram h(P ) where the P ∈ V . h(P ) signifies the number of

image pixels with the intensity value P . The proposed approach

utilizes two augmentation parameters E1 and E2, which reg-

ulates the degree to which the intensity value P needs to be

augmented. The first augmentation parameter E1 is the average

intensity value of the image and can be computed using Equa-

tion (1) from the histogram:

E1 =

∑
P

Ph (P )
∑

P
h (P )

(1)

The parameter E1 divides the histogram h(P ) into two groups

C1 and C2 representing pixel values in the form [0, E1 − 1] and

[E1, 255] respectively. The augmentation of the V channel is

based on two fuzzy membership values of 𝜇1 and 𝜇2, deter-

mined for the pixel groups C1 and C2. Parameter E1 plays a

major role in the calculation of fuzzy membership values, 𝜇1

and 𝜇2.

The second augmentation parameter E2 specifies the aug-

mentation strength to measure the augmented PE intensity val-

ues for both groups C1 and C2. Parameter E2 specifies the

augmentation level to which the values of intensity P can be

altered depending on the quantities of membership 𝜇1 and 𝜇2.

The value of E2 can be determined experimentally by the degree

to which augmentation is needed. From the experimental analy-

sis, 10 different values for E2 ranges from 150 to−40 at the sep-

aration of 20 are used to create 10 different perturbed instances

from a single dataset image. As a consequence, every training

image will have 10 perturbed instances varying in the colour of

the light source and intensity in the image. With these 10 per-

turbed images, the original dataset image is also fed to the sys-

tem during training.

The value of 𝜇1 for group C1 is based on the difference

between P and E1. This can be expressed by using the repre-

sentation mentioned in Equation (2). This means that, if the

difference between P and E1 is large then the augmentation of

the pixel intensity will be small.

(
(P − E1 ) ∶ L arg e

)
⇒

(
IntensityAugmentation ∶ Small

)
(2)

The aforementioned rule suggests that the intensity value of

the pixels near to E1 should be augmented higher, while the

values farther away from E1 will be augmented less. The pixel

values in between would be augmented respectively. The math-

ematical description in Equation (3) is used to implement the

above fuzzy rule.

𝜇1 (P ) =
E1 − P

E1
(3)

where P ∈ C1. When the membership value for P is attained,

the augmented intensity value of PE for group C1 can be deter-

mined using Equation (4).

PE = P + 𝜇1 (P ) E2 (4)

𝜇1(P ) specifies the amount of the augmentation parameter E2

to be applied to P to get the augmented PE value.

The fuzzy membership value 𝜇2 for group C2 is based on

the idea of how far the intensity value P is from the maximum

value of L (for 8-bit image L = 255). The fuzzy rule for group

C2 can be expressed using Equation (5). This means that, if the

difference between P and L is large then the augmentation of

the pixel intensity will be large.

(
(P − L) ∶ Large

)
⇒

(
IntensityAugmentation ∶ Large

)
(5)

The above rule suggests that the values of the pixels clos-

est to L should be augmented less, whereas the values far-

ther away from L will be augmented higher. The pixel values

will be distributed correspondingly. The mathematical expres-

sion of Equation (6) can be used to apply the above fuzzy

rule.

𝜇2 (P ) =
L − P

L
(6)

where P ∈ C2. Once the membership value for P is attained, the

augmented intensity value PE for group C2 can be calculated by

using Equation (7).

PE = P + (𝜇2 (P ) × E2 ) (7)
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FIGURE 2 A pictorial summary of the proposed PCPerturNet model

𝜇2(P ) decides what amount of the intensity value P and aug-

mented parameter E2 has to be used to get the augmented value

PE .

Replacing the old P values of the V channel with the aug-

mented PE values would allow the V channel to be expanded,

resulting in augmented VE channel. This augmented achromatic

details VE can be coupled with the saved chromatic data (Hue

and Saturation channels) to produce an augmented HSVE the

image that is ultimately transformed to an augmented RGBE

image. Thus, perturbed instances are created from every train-

ing image using fuzzy logic.

3.2 PCPerturNet

Appropriate image shadow detection includes a pixel-

level learning system that is able of retrieving both rough

and fine image information. Here, PCPerturNet is proposed

for shadow detection, motivated by U-Net and Res-Net.

The proposed architecture consists of two primary pathways:

contraction and expansion. The contraction path is generally

important for the downsampling of the input image’s linguistic

attributes into a manifold attribute map. This is the encoder

path of the architecture. These deep features are the most

significant shadow properties in the image. To detect the

shadow from these dense features, a different path is needed

to up-sample these attributes and slowly produce an outcome.

The size of the output image is the same as the input. This is

achieved through the expansion path, which is the network’s

decoder path. The paths of the PCPerturNet are linked with

each other utilizing a bridge unit through a long skip con-

nection. Residual units are included in both contraction and

expansion paths, which incorporate short skip connections

(inside the unit) alongside established long skip connections.

Short skip connections make for quicker convergence while

training and require dense models to be learned. Figure 2

illustrates a pictorial summary of the proposed PCPerturNet

model.

As seen in Figure 2, the contraction path comprises of four

units and is called as the contraction path (CP) unit. As the input
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FIGURE 3 (A) Proposed CP unit with novel convolution mapping, (B)

CP unit with convolution-input mapping. (C, D) CP unit with

convolution-convolution-input and with no skip connection

image goes through several consecutive CP units, the depth of

the image will rise and the spatial dimension will reduce. Such

dense attributes provide high-level global image details com-

pared to the shallow feature. There are four units in the expan-

sion path to decode the global and local features. The usage of

such units, defined as expansion path (EP) units, is a crucial

aspect in producing a resultant map of the same spatial scale

as the input. EP unit reduces the depth of the output and raises

its spatial size. The architecture of CP and EP is discussed in

detail in the following section.

3.2.1 Contraction path unit

Figure 3(A) displays the description of the proposed CP unit.

Every CP unit consists of two divisions. The outcome of the

two divisions is connected. The left division is liable for retriev-

ing the necessary attributes from the input image. This divi-

sion is called an attribute extractor division and is represented

using a solid line in Figure 3. The right division includes is a

new skip connection. This is responsible for conserving input

patterns. This division is called an encoder pattern conserver

(EPC) division and is denoted using the dotted line in Figure 3.

The proposed EPC skip connection of Figure 3(A) is not iden-

tical to the skip connection’s identity mapping utilized in the

literature.

The suggested EPC branch pattern adds valuable character-

istics to the shadow detection network. First, it passes compar-

atively low-level input features to output to maintain the key

features of the image and prevent losing them in subsequent

convolution layers. It also allows the model to retain the entire

details learned from the preceding layers. Second, it removes

the issue of gradient vanishing in dense models by enabling the

backpropagation of the gradient flow. As a consequence, con-

vergence in dense models is rendered easily. 1 × 1 kernel is used

in the convolution layer of the EPC branch. The inspiration of

using a 1× 1 kernel to input is that by using this the most appro-

priate and essential attributes are selected from the input and

called a convolution mapping.

There are two outputs for the CP unit. A unit of CP, seen

in Figure 3(A) receipts the attribute map (F ) from its preced-

ing unit and produces two outcomes: OCP and IADD . Here, the

size of the stride of the CP unit is fixed to 1 and the pool in

the max-pooling layer to 2. In the convolution layers, choos-

ing the stride size of more than 1 can decrease the scale of the

outcome quickly. Instantly reducing the scale of the attribute

maps could remove the learning patterns of the network. The

same logic applies to the size of the pool. The depth of OCP is

increased to double the depth of F , whereas the spatial dimen-

sion is decreased to half of F . The outcome, IADD , is utilized

as input for the EP unit. As a consequence, the CP unit collects

the characteristics of its input by integrating the properties of

both the attribute extractor division and the pattern conserver

division.

Three other variations of the CP units are also attempted

as seen in Figure 3. Figure 3(B) and (C) use the convolution-

input and convolution-convolution-input mapping respectively

instead of the only convolution mapping. Figure 3(D) displays a

CP unit without a skip connection. Here just a branch of the

attribute extractor. The design of the convolution-input and

convolution-convolution-input mapping is complex than the

convolution mapping, as the input is concatenated to the con-

volution mapping. However, the convolution mapping provides

the best results in reality as seen in Table 1.

The proposed convolution mapping is having two significant

consequences on the detection of shadows. First, this allows

the model to remember what it has learned in the preced-

ing layers and to retain those patterns. Second, this enables

the flow of the gradient across the units of the network.

The probable explanation of this better efficiency in convolu-

tion mapping relative to convolution-input and convolution-

convolution-input mapping may be the reason that, in con-

volution mapping, the network selects essential input fea-

tures rather than concatenating input to convolution output as

in convolution-input and convolution-convolution-input map-

ping. The concluding row of Table 2 reveals that without

using the EPC division the efficiency of the system greatly

impairs.
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TABLE 2 The training performance of different CP units on SBU and ISTD datasets

SBU training set ISTD training set

ACC (in %) Number of epochs needed ACC (in %) Number of epochs needed

Method O O + P O O + P O O + P O O + P

Convolution mapping

(Figure 3A)

92.4 96.2 9 20 90.1 93.6 5 14

Convolution-input

mapping

(Figure 3B)

87.3 92.1 14 25 84.3 88.2 11 22

Convolution-

convolution-input

mapping

(Figure 3C)

86.8 91.8 17 27 84.9 88.5 13 25

No EPC branch

(Figure 3D)

78.2 84.5 6 15 72.2 78.9 4 12

3.2.2 Expansion path unit

Figure 4(A) demonstrates the components of the proposed

expansion path (EP) unit. Each EP unit consists of two divi-

sions. The outcomes of these two divisions are combined to

generate the final output.

The input of the EP unit is added with a transposed convolu-

tion layer to up-sample the data. The up-sampled data are then

concatenated with the attributes of the respective IADD. There-

after, two consecutive convolution layers are added in the left

branch to reconstruct linguistic information and represented

using the solid line in Figure 4. The right division is a new skip

connection, which is responsible for conserving the patterns of

the up-sampled data. It is named as the decoder pattern con-

server (DPC) branch and is represented using the dotted line in

Figure 4. An addition is then utilized to sum the performance

of the DPC and the second convolution layer of the left divi-

sion. Here the strides are set to 2 and 1 for the transposed con-

volution layer and the convolution layer respectively. Choosing

the size of the transposed convolution layers stride more than

2 raises the attribute maps too fast and prohibits the network

model from retrieving shadow patterns properly. For the trans-

posed convolution, if the stride is 1 no up-sampling is carried

out, and thus the transposed convolution should be greater than

or equivalent to 2. The spatial dimension of O is raised to dou-

ble whereas the depth of O is decreased to half the depth of

the input to the EP unit. O is utilized as input for the subse-

quent EP unit. As a consequence, the EP unit upsamples the

attribute map utilizing transposed convolution layers. This uti-

lizes learned attributes from preceding layers and DPC out-

put to retrieve shadow features and combine these features into

the result produced. 1 × 1 kernel is used in the convolution layer

of the DPC branch to choosing the most appropriate features

from the feature map.

FIGURE 4 (A) Proposed EP unit with novel skip connection, (B, C, D)

Other EP units with and without skip connection
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The other three variants of the EP units are examined as

shown in Figure 4 (B, C, and D respectively). The numeri-

cal findings referring to each type are listed in Table 2. These

outcomes indicate that the efficiency of the shadow detection

method increases with the skip connection of the EP unit (Fig-

ure 4(A)).

As the CP unit with the convolution mapping in Fig-

ure 3(A) and EP unit as seen in Figure 4(A) correspond to the

finest results among all the structures; these unit structures are

selected to be implemented into the proposed network model.

From now, the recorded numerical outcomes are derived uti-

lizing the PCPerturNet with the abovementioned CP and EP

units.

The 3 × 3 kernel size is used for both the convolution

and transposed convolution layers of the CP’s attribute extrac-

tor division and the EP’s left branch. The rectified linear unit

(ReLU) activation function is used for all convolution layers

accompanied by the layer of batch normalization. All addi-

tion units are accompanied by the ReLU feature to maximize

the network’s non-linearity and boost the overall efficiency. In

the bridge unit there is a dropout layer with a 0.20 drop rate.

Research showed that the dropout layer protects the network

model from overfitting by increasing the regularization feature

and growing the generalization error of the network model.

3.3 Training and testing details of
PCPerturNet

Every single image transmitted to the training network is resized

from its original size to 208 × 208. Here five forms of geometric

augmentation are used for all the images in the training phase.

These changes are horizontal flipping, vertical flipping, rotation,

scale-up, and scale-down, and in each epoch are arbitrarily cho-

sen to be off or on in a combination of 1 to 5. The orientation

range is set to [0–360◦] at the separation of 5◦, the scale-up fac-

tor range is set to [1.0–2.0] at the separation of 0.1 and scale-

down factor is set to [1.0–0.5] at the separation of 0.1.

The loss function used to reduce the difference between the

original shadow (STrue) and the resultant shadow (SPred) map

is the soft dice loss (SDL). SDL is defined by using

Equation (8).

SDL (STrue, SPred ) = 1 −
2
∑

pixels
STrueSPred

∑
pixels

S 2
True

+
∑

pixels
S 2

Pred

(8)

This value is repeated and summed over all pixels. This loss

function is utilized to explicitly use the predicted probabilities

instead of thresholding and translating them to a binary mask.

So far as the performance of the neural network is concerned,

the numerator is dealing with specific activations between the

predictor and the true mask, while the denominator is deal-

ing with the number of activations in each mask individually.

This has the effect of normalizing the loss by the scale of the

target mask so that SDL does not fail to learn from groups with

a less spatial presence in the image.

The preliminary learning rate of the model is assigned to

10−3, the optimizer utilized for this experiment is Adam opti-

mizer and the number of Epoch is set to 30. During train-

ing, the model is analysed on a validated dataset after each

epoch. If the performance of the model on the validation

dataset starts to decline (e.g. the loss starts to increase or

the accuracy starts to decrease), the training phase is stopped.

The model is then considered to have good generalization

efficiency.

To achieve a mask for the identified shadow part for every

test image, it is resized to 208 × 208. It is then transmitted to

PCPerturNet and, as an output, the mask or probability map is

produced.

3.4 Performance evaluation

Shadow detection is a segmentation of pixel-level and a

performance measure is needed to assess output accu-

rately. The way for assessing system performance is the

overall accuracy (ACC). Accuracy is computed by using

Equation (9).

ACC =
TP + TN

TN + TP + FP + FN
(9)

where TN, TP, FP, and FN are the number of non-shadow

pixels appropriately recognized as non-shadow, shadow pixels

appropriately identified as a shadow, non-shadow pixels inaccu-

rately identified as a shadow, and shadow pixels wrongly recog-

nized as non-shadow, respectively. Also, two error rates: ER1

(shadow pixel incorrectly identified as non-shadow) and ER2

(non-shadow pixels wrongly recognized as shadow) are calcu-

lated by using Equations (10) and (11). Three more perfor-

mance measure matrices are added to check the efficiency of

the model: precision (PR), recall (RE) and paired t-test (PT) and

are calculated by using Equations (12)–(14). The motivation to

choose PT as one of the performance measures is that PT helps

to measure the difference between two images (in this case,

the target mask and the obtained output mask) with a unique

condition. By using PT, the exactness of the shadow mask

obtained from the proposed approach can be measured very

efficiently.

ER1 =
FN

FN + TP
(10)

ER2 =
FP

FP + TP
(11)

PR = 1 − ER2 (12)

RE = 1 − ER1 (13)

PT = Target_Mask − Obtained_Mask (14)
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FIGURE 5 Sample shadow images from SBU (first two) and ISTD (last

two) dataset

4 EXPERIMENTATIONS AND
RESULTS

For training of PCPerturNet, Intel Core i7 9th Generation pro-

cessor, 12 GB DDR4 RAM, NVIDIA GeForce GTX 1600 Ti

Graphics (6GB), is used which minimizes the time of training.

The implementation of the proposed approach is done utilizing

TensorFlow.

4.1 Datasets

The details of the used datasets to check the performance of the

system are mentioned in this section.

4.1.1 The Stony Brook University (SBU) dataset
[27]

This is probably the biggest freely accessible shadow detection

dataset, comprising of 4085 and 638 images as a train and a test

set. The images in this dataset contain a wide variety of scenes,

such as ocean, town, highways, forest, parks, water, automobiles,

wildlife, and buildings. It also comprises various image types

such as landscape, aerial, selfies, close range, etc. A shadow-

mask of every training and test image is contained within the

SBU dataset.

4.1.2 The image shadow triplets (ISTD) dataset
[28]

This data set comprises of a shadow, a shadow-free image, and a

shadow mask to fulfil the requirement of learning. It comprises

1870 image triplets under 135 different scenarios, in which

1330 is allocated for train, while 540 for the test. Here, vari-

ous shapes of shadows are constructed by various objects, like

boards, umbrellas, twigs, persons etc.

Some images from SBU (first two) and ISTD (last two)

datasets are shown in Figure 5.

4.1.3 Self-created dataset

The effectiveness of the proposed approach is tested on a self-

created dataset comprises of two hundred shadow images that I

captured utilizing Nikon Digital SLR 5200 camera.

FIGURE 6 Sample images from the self-captured dataset

FIGURE 7 Perturbed instances generated from the original image; (first

row) Original image, (second and third row) Generated perturbed instances by

varying the value of E2 from 150 to −40 at a separation of 20

The captured image size is 4496 × 3000 pixels in JPEG

format. This includes images of statue, utensils, furniture, and

plants. Along with this the dataset images contains some chal-

lenging combination of image shadows like overlapping shadow

and multi object shadow. To raise the speed of the computation,

the images are rescaled to 208× 208 pixels. Some sample images

are shown in Figure 6.

4.1.4 The expanded dataset created from the
original dataset

The synthetic perturbed instances are generated from 4085 SBU

images and added them with the original SBU training images

and thus a total of 44,935 number of images are there in the

expanded training image set. As a consequence, 40,850 per-

turbed images are added to the original training image set. For

the ISTD training set, 20,570 is the total number of training

images, after including the perturbed instances.

Figure 7 shows the original dataset image and 10 perturbed

instances created from the original dataset image by varying the

value of E2.

4.2 Performance evaluation

The proposed shadow detection methodology is trained on

the two expanded datasets: SBU and ISTD. First, PCPertur-

Net is tested on the SBU, ISTD, and self-created test sets after
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TABLE 3 The training performance of different EP units on SBU and ISTD datasets

SBU training set ISTD training set

ACC (in %) Number of epochs needed ACC (in %) Number of epochs needed

Method O O+P O O+P O O+P O O+P

DPC (Figure 4A) 92.8 95.9 10 20 91.4 94.1 6 15

DPC (Figure 4B) 89.1 93.5 16 29 85.7 89.5 12 22

DPC (Figure 4C) 87.3 92.4 13 24 80.1 83.3 10 20

No DPC branch

(Figure 4D)

77.6 83.1 7 14 73.1 77.3 5 11

TABLE 4 The test performance of PCPerturNet

SBU training

set

ISTD

training set

Test set Performance metric O O + P O O + P

SBU test set ACC (in %) 93.1 96.4 92.6 94.7

ER1 (in %) 4.1 0.5 1.5 1.1

ER2 (in %) 2.8 3.1 5.9 4.2

PR (in %) 97.2 96.9 94.1 95.8

RE (in %) 95.9 99.5 98.5 98.9

PT 0.21 0.17 0.25 0.22

ISTD test set ACC (in %) 91.8 93.4 94.3 96.8

ER1 (in %) 0.7 1.3 0.8 0.2

ER2 (in %) 7.5 5.3 4.9 3

PR (in %) 92.5 94.7 95.1 97

RE (in %) 99.3 98.7 99.2 99.8

PT 0.23 0.22 0.21 0.18

Self-created test data ACC (in %) 85.2 89.4 83.6 88.1

ER1 (in %) 2.5 1.6 6.2 5.2

ER2 (in %) 12.3 9 10.2 6.7

PR (in %) 87.7 91 89.8 93.3

RE (in %) 97.5 98.4 93.8 94.8

PT 0.34 0.24 0.37 0.23

training using the expanded SBU and ISTD training set individ-

ually. Because the size of self-created dataset is relatively small,

PCPerturNet is not trained on it and is only utilized for testing

purposes.

The following tables depict the performance of PCPertur-

Net. Here ‘O’ is the ‘Original’ dataset and ‘O + P’ is the ‘Orig-

inal + Perturbed’ dataset. Table 2 shows the training perfor-

mance of different CP units on SBU and ISTD datasets.

Table 3 shows the training performance of different EP units

on SBU and ISTD datasets.

Table 4 demonstrates the assessment of empirical tests for

the proposed approach (PCPerturNet) over the SBU, ISTD, and

FIGURE 8 SBU test sample shadow mask output; (column 1) Original

test image, (column 2) target mask to be generated from input test image,

(columns 3 and 4) output mask when trained with expanded SBU and ISTD

trained dataset

self-created test sample while trained using the SBU and ISTD

training sets.

From Table 4 it is clear that when the system is trained with

a greater number of training samples then the system is deliver-

ing better performance. When the system delivers a high ER1, it

inclines to recognize more shadow as non-shadow pixels. Also,

when the system delivers a relatively high ER2, it inclines to rec-

ognize more non-shadow as shadow pixels. The vital fact here is

that steadiness between these errors should tend to better per-

formance. While testing the system for every type of test sample

ER2 is greater than ER1. It implies that more non-shadow sam-

ples are recognized as a shadow than vice versa.

Figure 8 shows some detected shadow mask from SBU test

images when trained with expanded SBU and ISTD training

dataset.

Figure 9 shows some detected shadow mask from ISTD test

images when trained with expanded SBU and ISTD training

dataset.

Figure 10 shows some detected shadow mask from self-

created test images when trained with expanded SBU and ISTD

training dataset.
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FIGURE 9 ISTD test sample shadow mask output; (column 1) Original

test image, (column 2) target mask to be generated from input test image,

(columns 3 and 4) output mask when trained with expanded SBU and ISTD

trained dataset

FIGURE 10 Self-created test sample shadow mask output; (column 1)

Original test image, (column 2) target mask to be generated from input test

image, (columns 3 and 4) output mask when trained with expanded SBU and

ISTD trained dataset

5 PERFORMANCE COMPARISON OF
THE PROPOSED METHOD WITH
PREVIOUS METHODS USED BY THE
RESEARCHERS FOR SHADOW
DETECTION

In this section the performance of PCPerturNet is compared

with the previous methods used for shadow detection by the

researchers to check the efficiency of PCPerturNet. Individually

the performance of the different methods is tested by trained

the system using original and expanded SBU and ISTD training

set.

Table 5 depicts the comparison of the performance of dif-

ferent shadow detection methods used by previous researchers.

Here the system is trained with original (O) and expanded

(O + P) SBU training set and tested by using SBU, ISTD, and

self-created test set.

TABLE 5 Comparison of the performance of PCPerturNet with the

shadow detection methods used in the literature

ACC (in %) ER1 (in %) ER2 (in %)

Test set Method O O + P O O + P O O + P

SBU Plain U-Net 75.9 80.1 7.2 8.2 16.8 11.7

IN [20] 79.4 83.5 7.2 5.9 13.3 10.6

ST-CNN [19] 81.6 84.7 7.3 5.8 11.1 9.5

ST-CGAN [24] 90.4 93.7 2.9 5.7 6.7 0.6

scGAN [25] 89.6 92.7 6.2 0.3 4.1 6.8

LSSVM [12] 80.7 84.3 9.6 3.1 9.6 12.6

ERW [11] 75.2 80.1 9.9 10.3 14.8 9.5

DSDNet [21] 87.6 91.5 3.7 2.5 8.9 5.9

ARGAN [26] 90.5 92.8 8.5 5.2 0.9 2

SDRNet [22] 88.4 91.7 2.3 3.1 9.3 5.2

Histogram [5] 61.5 64.3 11.7 6.3 24.1 24

SWT + ZM [16] 65.1 69.7 13.4 13.2 21.5 17.1

PCPerturNet 93.1 96.4 4.1 0.5 2.8 3.1

ISTD ARGAN [26] 86.5 88.2 4.1 4.9 9.5 6.8

PCPerturNet 91.8 93.4 0.7 1.3 7.5 5.3

Self-created ARGAN [26] 80.4 82.6 9.1 7.2 10.5 10.2

PCPerturNet 85.2 89.4 2.5 1.6 12.3 9

*IN: Injection network, ST-CNN: STacked convolutional neural network, ST-CGAN:

STacked conditional generative adversarial network, LSSVM: Least-squares support vec-

tor machine, ERW: Extended random walker, DSDNet: Distraction-aware shadow detec-

tion network, ARGAN: Attentive recurrent generative adversarial network, SWT + ZM:

Stationary wavelet transform + Zernike moment.

It is clear from Table 4 that the proposed method (PCPer-

turNet) outperforms other strategies in ACC and ER1 while

using the SBU training and test data set. The most possible

cause of getting weaker ER2 is that the PCPerturNet is sen-

sitive to the object’s shadow placed on the object portion or

part of some object part having very similar characteristics as of

shadow. This condition has been found in a variety of instances

which is responsible for low accuracy results, as depicted in Fig-

ure 11.

Another parameter is used to check the performance effi-

ciency of the proposed method: computation cost. In this study

execution time is considered as the computational cost. Execu-

tion time depends on various factors like configuration of the

system, training image size, training image resolution, the net-

work architecture etc. Table 6 depicts the comparison of the exe-

cution time of different shadow detection methods used by pre-

vious researchers. Here the system is trained with original (O)

and expanded (O + P) training set of SBU and ISTD shadow

datasets.

The execution time varies depending on the complexity of

the network architecture.

Figure 12 shows the comparison between shadow masks

attained by using the PCPerturNet and different methods men-

tioned in the literature when trained with expanded SBU train-

ing set.
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FIGURE 11 Incorrect SBU test image mask output generated by

PCPerturNet; (column 1) Original image, (column 2) target mask to be

obtained from the system, (column 3) output generated from PCPerturNet

TABLE 6 Comparison of the execution time of PCPerturNet with the

shadow detection methods used in the literature

Method Training time (in days)

SBU ISTD

O O + P O O + P

Plain U-Net, IN [20] 3.5 6.5 2 4.5

ST-CNN [19] 4 7.5 2.5 5.5

ST-CGAN [24], scGAN [25] 4.5 7.5 2.5 5.5

LSSVM [12], ERW [11] 3.5 6.5 2.5 4

DSDNet [21] 4.5 7 3 4.5

SDRNet [22] 4.5 6.5 2.5 4.5

Histogram [5], SWT + ZM [16] 3.5 7.5 2.5 4.5

ARGAN [26], PCPerturNet 4.5 8.5 3.5 6.5

Table 7 depicts the performance of an attentive recurrent

generative adversarial network (ARGAN) as it outperforms

PCPerturNet in ER2. Here the system is trained with original

and expanded ISTD training set and tested by using SBU, ISTD,

and self-created test set.

From Table 7 it is clear that ARGAN can better handle

the non-shadow pixels, but the overall performance concerning

TABLE 7 Performance of AR-GAN on SBU, ISTD and self-created test

set

Test set ACC (in %) ER1 (in %) ER2 (in %)

O O + P O O + P O O + P

SBU 87.4 90.5 8 6 4.6 3.5

ISTD 91.5 93.2 4.7 4 3.8 2.8

Self-created 86.3 89.4 7.4 5.3 6.3 5.3

FIGURE 12 Comparison of the output shadow mask of the proposed

method (PCPerturNet) with the shadow detection methods mentioned in the

literature

accuracy and ER1 of PCPerturNet is good compared to other

techniques used in the literature.

6 CONCLUSIONS

A novel deep learning shadow detection process is proposed

in this article to recognize image shadow pixels. The proposed

PCPerturNet profits from a novel structure that distinguishes

local and global shadow attributes utilizing sophisticated skip

connection mapping. This network can conserve derived pat-

tern structures in manifold layers. These patterns are eventu-

ally being utilized in multiple network units to produce final

masks of shadow. The training phase of PCPerturNet is easy and

can be specifically used or extended for other image segmenta-

tion purposes. The PCPerturNet is trained on several perturbed

images created by fuzzy-logically dependent perturbed instance

generators to make the system robust from the change in bright-

ness and contrast. During training, five forms of augmenta-

tions are applied to images. With this variety of training images,

the proposed network may obtain both rough and smooth

shadow information in regions of shadow. This allows PCPer-

turNet tolerance to variations in the patterns of shadow, bright-

ness, and contrast, orientation, scaling factor, and flipping which

thus contributes to a greater generalization. As a consequence,

PCPerturNet enhanced the literature shadow detection method.

The proposed approach may easily be used in certain computer
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vision systems that could be confused or deceived by the exis-

tence of shadows.

For the future, to increase the ER2 measure of the network,

the design of the PCPerturNet may need to be updated to

enhance the retrieval of shadow areas from derived attributes.

This can include alterations to both the CP and EP units. Also, a

module will be designed to recreate the image part after remov-

ing the shadow part from the image.
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