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We introduce a new Stancu type generalization of Srivastava-Guptaimgps to approximate integrable functions on the interval
(0, ) and estimate the rate of convergence for functions having derivativesuoideal variation. Also we present simultenaous

approximation by new operators in the end of the paper.

1. Introduction

To approximate integrable functions on the inter\@l ) ,
Srivastava and Gupta][introduced a general sequence of
linear positive operators  as follows:

, = G w5 () O
=1 0 0
t oG ) (0,
for a function (0,) ,where (0,)( 0) is

the class of locally integrable functions de ned@; ) and
satisfying the growth condition

0) (>0; O ) ()
G )=T) Y0, O
S , =

O a+ ¥ N=p23.3 U

e general sequence of operators has many inter-
esting properties in approximation theory, which is an
interesting area of research in the present era, and several
researchers have studied these operators; we can mention
some important studies on these operators (see]]. In
[ ], author introduced King and Stancu type generalization
of Srivastava-Gupta operators and presented some direct
results. Also, Verma and Agrawal][introduced a new
generalization of Srivastava-Gupta operators and studied the
rate of convergence for the functions having the derivatives
of bounded variation (BV). e rate of convergence for the
functions having the derivatives of (BV) is an active area
of research and many researchers studied this direction. We
refer the readers to [... ] and references therein.

Stancu [, ] introduced generalizations of Bernstein
polynomials with one and two parameters (resp.), satisfying
the conditionO ,as
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.= : 15)S &o0)=1,
- S+ ($+(+$) )
&’ = + — ,
o 1 N TSI
0 1+
forany "[0,1] . Stancu type generalization of approxi- & 5, ()=— (V ) 5
mation operators present better approach depending on (SE+))(S($+ ) +
erefore, this kind of generalizations and their approxima-
tion properties have been studied intensively. We refer the +< S + — (E+(+$) ) 2
readersto[ ... ]and references therein. Mishraetal.| ], + (S@E+)) +
V. N. Mishra, and L. N. Mishra [ ] have established very
- : al : - (L+$+(+$) )
interesting results on approximation properties of various .
functional classes using dierent types of positive linear (S@E+2) +
summability operators.
e purpose of this paper is to introduce a new Stancu +@—S + — G+(+$) ) -
type generalization of the operators de ned iff ps + (S($+y ) +
G .- AU )+ )S8+) . x & +
SR #( )+D#( ) o Y 5 3
-0 § + § + §
+ + Z 5
x ssp.+s (0) (S@©E+3) +
0 0
e o . (’) . .
By t.h_e de nltlc_m of operators, it is cleazotgat LG s Furthermore& ' () is polynomial of degrééin and
positive and linear. For = = 0, "7(;) reduces .
to operators de ned in []. In this study we obtain the rate .
of convergence for the functions having the derivatives of & ()=BC + (02l gy O

bounded variation. Also, in the end of the paper, we study

the simultaneous approximation.
PP Proof.By de nition of &’ (), taking the derivative of

2. Auxiliary Results &' (),weget
In order to prove our main results, we need the following
lemmas. & ()4
Lemma . Let the%th order moment be de ned as =8(88)% . ()
& ()= (8); =0
3 s+ . &
_(S$)=o + G Xo gsy,+s1 () " S
. + - ~
Ly senes () S H(8$) L () ()
0 -

where,% N'{0}, and then, for > (% + $ + 1) , we have % cen as () t g
the following recurrence relation: S(SD.+s1 R +

(S@+%+)) + & . () S%8. 5%
= S%&’ « + :
= (1+ )*_&”' ()4 +%& & ()5 ., 51 ()+( ):0 + G)

+& +
. O X gsy,+s1 ()

S

xq%+$+(+$) ) + S + +
(S @+2%+3 )7 Hence, using the identity
+&,’,S1 ()
% S + 39 3§ + 1+ )+ GI=(S(+3)) + )

x8 - 9, | 0
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we have
I+ )*&' ()4+%& &5 ()5
=(S$) (S(+3%)) .. ()
=0
+ .
X ssp,+a1 () —/—S
=(S$) + ) O
=0
+ .
X gsy,+s1 (5) +—S
S(+$)& ' ()
=ES(+$)& " ().
We can writeEas
E=8(S$) + G
=0
x [ +$S1S(SBSY )] gz, +51
+ .
(b)) /=S
+(S$)(S($S)) + G
=0 ()
+
x gsy,+s1 () S
S@B$SI(S$) « G
=0
+ o
x ssp.+s1 (0) —/—S 9

=E+BES(3S)& ().
To estimateg, using = ((+ ))[((( +)/(+)S)S

((/(+)S) ,wehave
%:(§($33)) +
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+ T
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S S
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+ -
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+
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xF&' ., ()8 —8 & 1 ()G.

Next to estimatdg using the equality

I+ ) gap,+5 )

+1

)

=[(+$S1S(S(SY) 1 gsp.+s1 ().

we have
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Putting = ((+)/)I((( +)/(+)S)S((/(+))S)]

we get

><8(§$)_ « G)
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x ssn,+51 () - S
S S (Ss) L. ()
+ y
=0
. + -
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Now integrating by parts, we get
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0
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Proceeding in a similar manner, we obtain the estinlbje&s

JZ:gM&Hﬂ ()
2 (%+1 .
L2 00D+ —S& () O
% + 2
3 —S &g ()

Combining the equations, we have

(SE+%+)) + & ' ()
= A+ )& ()A+%& 5 ()5

()

xG%+$+(+$) ) + S +

+&

x(S($+2%+) )7+& & ()

% S +
><805 9

)

which is the desired result.
Moments for% = 0, 1, Zcan be easily obtained by using

the above recurrence relation. O
Remark . For su ciently large ,">2,and (0,) ,it
can be seen frohemma that
, H ()
&,() ——, ()
whereH' () =[(1+ )+ (+ +3$(1+ ))] for the

convenient notation.

Remark . By using Cauchy-Schwarz inequality, it follows

from Remark that, for su ciently large ," > 2, and
(01 ) il
(S$) . ()
=0
. + <
x ssp.+s1 (0) —/—S 0)
H ()

1/2
: K
1& ', () -
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Lemma . Let
large , we have

©.)

and" > 2; then, for su ciently

L .M=(S$) . ()
=0

gy, +s1 ()

" +
SELCLED VI
SM

()

1SL (\N)=(S$) .. ()
=0

x gsy,+s1 ()
A+ )
(NS )’

Proof.We give the proof for only rst inequality, and the
other is similar. UsingRemark with = = 0, for
su ciently large and0 M and(( +)/( +)) ,
we have

L M=(S$) . ()

=0
x gs1,+81 (5)
(S$) . () ()
=0
(S )
x s(s1),+51 (5 ) ——
S(S1),+S1 3 2
Cat )
~ 2 .
SM
O
Lemma . Suppose is times dierentiable orf0, ) such
that (Y() = B( ), for some integer> 0 as
en,forany $, Ny and > maxX,$+ },we have
() - ()
0 = = ), o0, ()
Proof. Using the identity
(=6 ca ()S L G ()

One can observe that, even in case0 , the above identity is
true with the condition . negaivd . ) = O . Us, applying
() ,we have

or Wy

#U)+9#((/ )S$+D g
#((1 )+ D#( )

. G)

X
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which means that the identity is satis ed for= 1. Let us
suppose that the result holds for %; that is,
0 ()
= " ( +) (@)
- +
x#((/)+$+%)#((/)S$S%+;
#((! Y+D#( )
x +(+), ( ; )
=0
+
x S(+S1),++8S1 (;)0 n
()
Also, from( ) we can write
O+1 (,)
- +

X#((/)+$+%)#((/)é$é%+1
#((/ )+ D#( )

0 4,
=0

;)

§(+81),++81 (;)0O

+

CHEU ) +S+N#(/ )SSS%N+)
#((/ )+D#( )

x (+($+99)
=0

G )7

+

X6 +(++1), 81 (- )S +(++1),

X

S(+81),++81 (;)0O

+

# (] )+$+%+D#(/ )S$S%+]
#(( )+ D#(/ )

G )

+(++1),
=0

X

o 6 g+31),++ ()

- +
S §(+81),++851 (;)70
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=S

+

y # (] )+$+%+D#((/ )S$S%+]
#((1 )+ D#(/ )

X +(++1), (; )
=0
< @) %(+),++ ] (; )O +
0 S$+%S) +
()
and, integrating by parts the last integral, we have
o™t () ,
+1
- +
x#((/)+$+%+J)#((/)S$é%
#((1 )+D#()
X +(++1), (; )
=0
3 ) +1 +
X S(+),++ (1 )O +
()
Hence we have
+1
o™t () -
* ()
x (o0 a,

in which the result is true for = % + 1, and hence by math-
ematical induction the proof of the lemma is completed.]

3. Main Results

roughout the paper by OP (0, ) we denote the class of
absolutely continuous functions on (0, ) (whereQis a
some positive integer) satisfying the conditions:

O1Or " 1

(ii) the function has the rst derivative on the interval
(0, ) which coincide almost everywhere with a
function which is of bounded variation on every
nite subinterval of (0, ) . It can be observed that
for all functions OP (0,) we can have the
representation

and" ; >0,

()= O+ RO, 0. ()
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eorem . Let OP (0,) ,Q>0Qand (0,) . en,
for" > 2 and su ciently large , we have
GIUD) R
#((1)+9H(1 )SY
" [T+ )
AT ) s L (Jat— s - ()4
=1 S(/) S/ )

AT o8 ()8 e ()

+ 2
S (5 sy + 45
(§6+y) + i

)

we have

(S$) .. ()
=0
+ S
XY (V) V?

X <W()§

X gen,+s () =0

Q)

us, using the above identities, we can write

U )?
#((1)+9#((/ )S9

G s ()

@ (S$) .. ()
0 =0
X gzy,+s1 ()

+ 4 S

XVV#'F— 4(\/))( VA

where" is a constant which may be di erent on each occur-

rence.

Proof. Using the mean value theorem, we have

#( )

) . &
B ) +9#( Sy - > O

=(S$) .,

S ()G

X gsy,+s1 (5)F "

(+)(+) -
(88) .. ()

0 =0
X gsap.+s1 () (MVA .

()

Also, using the identity
+ S
+ -

4\

Nt

V) =

+ & S

S -
+—————sgn(v$ ) ()

+ S

+W ()S XY V),

where

Y(V):O ()

+ @ (S$) .. ()

0 =0

X gzy,+s1 ()
+ & S

x\l\lsfsgn(vé )X VA
()
Also, it can be veri ed that
@ (S$) .. ()
0 -0

X gsn,+s ()
& S

S i
X W ———sgn(V S )X VA

+ & S

6& , ()77,
()
(S$) .+ )
0 =0
X gy, +s1 (5)
+ S ()

i X V?
XxW—— X VS
2
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Combining( ) ..( ) ,we get

GACD) S S B
#((/)+9#((1 )S9 -

()
MV (S$)

x o, ) ssy,+s G)

=0

+0 MV (S%$)

x o ) sy, e G) ()

6& , ()77

& 1 ()

+ S

x68 ; ()P 8 ().

ApplyingRemark andLemma in above equation, we have

#())* G . &
B +9#(H)Sy - o O
\ + P

S (S ($+)+23% + + %

X < ?.

(S@©¢+y) +

()

In order to complete the proof of the theorem, it su ces
to estimate the terms * (, ) and P’ (,) . Applying

Remark with = =0 ,we get
\’v
= VMV (S$)
X 0 G) sy e G)
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x OS () sep+sm )+ :

x(S$) L+ ()
=0
2 ~
x gsy,+s1 G)S)

v MV 15L (,2)

+ () ~1SL ()
2

x gsy,+s1 ()"

+— (§$)_ .G

=0
. S 2
x , sy.+s1 (;)(S)

+ +(é$)_ « G)

=0

X s+ G)IS |
) oysys

" [ T+0()
+ @a+ )

S - ()4
=1
/)
+— S ()4
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For estimating the integral
($$) &+, G ) sspes G)1”
=0 2
()
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we proceed as follows: since2 impliesthat 2( S )

so by Schwarz inequality aligemma

. n 2
gy, +s1 ()"

(88) . G

=0

T2(88) . ()

=0
X s es G )" 1 (S )

"2& , ()=B ° as

()
By using Hblderss inequality an®Remark ( = =0 ), we
get the estimate as follows:
T(S8) ., ()
=0
X 88D, +81 IS |
x@S$) . ()
=0
1/2
X senes G)(S ) A
Pyt @)
()

Collecting the estimates fron) ..( ) , we obtain

LUl @), mas )
x 2)5 ()S T+ ()

" [ T+u)
+ﬁ S - ()4

=1

/)

+— S - ()4

Q)

On the other hand, to estimaté' (, ) by applying
Lemma withM = S (/ T)) and integration by parts, we
have

P: ,
= M L )
0
+ (L )
0
T @A) S - 44 Vl 5
0 (S)
+ S - 44
- @A+ ) S - 44V
sy
+— S - 44
T s
" [ 1
Gl e
=1 §(/)
+— S - 44,
T S/ )

()

whereV =(/( S)) .
Combining( ) ,( ) ,and( ) , we getthe desired result.
O

Corollary . Let O OP (0,) ,Q > Qand
en,for ">2 and su ciently large, one has

©.)

#())? +
#((1 )+9#(/ )S9

xo 05 ()

" (1+ )[ T +(1)

S -0"4 4
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