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  Abstract : Heat and mass transfer effects on MHD three dimensional flow of Casson fluid 

over an exponentially stretching surface with slip conditions is examined. The similarity 

transformations are used to convert the governing equations into a set of nonlinear ordinary 
differential equations and are solved numerically using fourth order Runge-Kutta method 

along with shooting technique. The effects of Casson parameter, Hartmann number, heat 

source/sink,chemical reaction and slip factors on velocity, temperature and concentration are 

shown graphically. The skin friction coefficient and the Nusselt number are examined 

numerically. 

 

 

1. Introduction 

The study of boundary layer flow by stretching surface is related in industrial and engineering 
applications such as drawing of copper wires, condensation process, die forging and extrusion of 

polymer in melt spinning, metal extrusion, paper production and fiber production. Prabhakaret al. [1] 

studied effects of inclined magnetic field and chemical reaction on flow of a Casson Nanofluid with 
second order velocity slip and thermal slip over an exponentially stretching sheet. Hayat et al. [2] 

reported on diffusion of chemically reactive species in third grade fluid flow over an exponentially 

stretching sheet considering magnetic field effects.Gireeshaet al. [3]investigate MHD three dimensional 
double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a 

stretching surface. Sharma et al. [4] presented on MHD slip flow and heat transfer over an exponentially 

stretching permeable sheet embedded in a porous medium with heat source.Nadeemet al. [5] discussed 

non aligned stagnation point flow of radiating Casson fluid over a stretching surface.Tasawar Hayat et 
al. [6-8] developed radiative three dimensional flow with soret and dufour effects. MHD stagnation 

point flow accounting variable thickness and slip conditions and three dimensional flow of CNTs 

nanofluids with heat generation/absorption effect: A numerical study. 
Krishna Murthy [9] studied MHD three dimensional flow of Jeffrey fluid over an exponentially 

stretching sheet. MHD three dimensional flow by an exponentially stretching surface with convective 

boundary condition was analyzed by Hayat et al. [10]. Nayaket al. [11] established three dimensional 

MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary 
conditions.Tasawar Hayat et al. [12-15] addressed soret and dufour effects in three dimensional flow 

mailto:madhusudhana@hct.edu.com
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over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. 

Three dimensional mixed convection flow of viscoelastic nanofluid over an exponentially stretching 

surface. Thermally stratified stagnation point flow of Casson fluid with slip conditions and three 

dimensional flow of Eyring Powel nanofluid over an exponentially stretching sheet. Chung Liu et al. 
[16] developed flow and heat transfer for three dimensional flow over an exponentially stretching 

surface. Magyariet al. [17] examined Heat and mass transfer in the boundary layer on an exponentially 

stretching continuous surface. Butt et al. [18] obtained three dimensional flow of a 
magnetohydrodynamic Casson fluid over an unsteady stretching sheet embedded into a porous medium. 

Hayat et al. [19-20] discussed Unsteady MHD flow over exponentially stretching sheet with slip 

conditions and MHD flow of Casson fluid over a stretching cylinder. 

The present study slip effects on MHD three dimensional flow of Casson fluid over an 
exponentially stretching surface.  The governing equations are solved numerically using fourth order 

Runge- Kutta method along with shooting technique. The effects of governing parameters on velocity, 

temperature, concentrationobtained graphically. The skin friction coefficient and nusselt number are 
examined numerically. 

2. Mathematical formulation of the problem 
Consider the steady three dimensional flow of Casson fluid over an exponentially stretching surface. 

The sheet isstretched along the xy -planewhile fluid is placed along the z -axis. Moreover the constant 

magnetic field is applying normal to the fluid flow and the induced magnetic field assumed to be 

negligible. The sheet at z = 0 is stretched in the x - and y -directions with velocities wU and wV  

respectively. The rheological equation of state for an isotropic flow of a Casson fluid can be expressed 

as follows 

,
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in the above equation ije  and ije denotes the  ,
th

i j component of the deformation rate,  be the 

product of the component of deformation rate itself, c be a critical value of this product based on the 

non-Newtonian model, B be the plastic dynamic viscosity of the Casson fluid and zp be the yield stress 

of the fluid. The governing boundary layer equations are as follows 
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where ,u  and w are  the velocity components corresponding to x -, y - and z - directions respectively.

 is the fluid density, 0B is the magnetic field of strength, v is the kinematic viscosity,  is the Casson 

parameter,  is the electrical conductivity of fluid, m is the thermal diffusivity, Q is the heat 

generation/absorption parameter, pc is the specific heat, T is represents the temperature of fluid, D is 

the diffusion coefficient, C is the concentration, 1K is the reaction rate, C is the concentration far away 

from the surface and T is the is the temperature far away from the surface. 

The associated with boundary conditions of equations (2)-(6) at the wall can be expressed as 
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where wU and wV are the stretching velocities, 0U , 0T , 0C and 0V are constants, A and B are the 

temperature and concentration exponents, wT is the surface temperature, 0T is the reference temperature, 

T  is the ambient temperature, 1L and 2L are  temperature and concentration slip factors and L is the 

reference length. 

In order to transform equations (2)-(7) to the dimensionless form, the following transforms are 
applied  
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 (8) 

where  is the similarity variable. Substituting equation (8) in (3)-(7) equation (2) is satisfied 

automatically and equations (3)-(7) are reduced to the following nonlinear ordinary differential 
equations  
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the transformed boundary conditions can be written as 
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where prime denotes the differentiation with respect to the similarity variable  , 
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Casson parameter. 

The physical quantities of interest are the skin friction coefficients along the                                x - and 

y -directions are given by 
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the skin friction coefficients in dimensionless form are 
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The local Nusselt number xNu and local Sherwood number xSh are defined as 
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where Rexy is the Reynolds number defined by Re w
xy

U L


 . 

3. Results and discussions 

The present chapter heat and mass transfer effects on MHD 3dimensional flow of Casson fluid over an 
exponentially stretching surface with slip conditions is examined. The transformed governing equations 

are solved numerically using shooting technique. The numerical computations are performed for several 

values of dimensionless parameters involved in the equations, viz. M is the magnetic parameter,  is 

the Casson parameter, isthe stretching ratio parameter, Pr  is the Prandtl number and A and B are the 

temperature and concentration exponent. Sc is the Schmidt number,  is the chemical reaction 

parameter, S is the heat source/sink parameter, 1 and 2 are the temperature slip parameter and the 

concentration slip parameter The numerical computations have been carried out for various values of 
the parameters on velocity, temperature and concentration are depicts in figures 1- 10. Variation of 

Casson parameter  on velocities  f  and  g  are shown in figure 1. It is analyzed that the 

velocity and momentum boundary layer thickness reduces for higher values of Casson parameter. In 

fact that the large values of Casson parameter then the yield stress decreases which offers less resistance 

to the fluid motion. Figure 2 depict the impact of magnetic parameter M on velocities  f  and  g 

. It is noticed that an increase in magnetic parameter reduces the fluid velocity and momentum boundary 

layer thickness. In fact that the magnetic parameter corresponds to an increase in Lorentz force creates 

a resistance in fluid flow by which the velocity and momentum boundary layer thickness reduces. The 

influence of ration parameter  on velocity  g  is shown in figure 3. It can be seen that the velocity 

and momentum boundary layer thickness increased when ration parameter increases. The lateral surface 

starts to move in the y -direction when ration parameter increases from zero. This fact the velocity is 

enhanced. 

The impact of Prandtl number Pr, temperature exponent A and temperature slip parameter 1 on 

temperature    are demonstrated in figures 4-6. We observed that the temperature and thermal 

boundary layer thickness reduces with large values of Prandtl number, temperature exponent and 

temperature slip parameter. From figure 4 we note that physically increasing in Prandtl number fluids 

have weaker thermal diffusivity due to this fact the temperature reduces.The temperature    reduces 

with higher values of is shown in figure 5.An increase in thermal slip parameter the heat transfer from 
the surface to the adjacent fluid decreases. Therefore temperature of the fluid decrease is displayed in 

figure 6. 

The variation of Schmidt number Sc , concentration exponent B , chemical reaction parameter 

 and concentration slip parameter 2 on concentration    are shown in    figures 7-10. It is obvious 

that the concentration and concentration boundary layer thickness are decreasing with increasing 

Schmidt number, concentration exponent, chemical reaction parameter and concentration slip 

parameter. From figure 7 it is noted that Schmidt number is inversely proportional to the diffusion 
coefficient. This small diffusion coefficient creates a reduction in concentration when we increase the 

values of Schmidt number. Concentration increases with increasing in chemical reaction is displayed in 

figure 8. The smaller values of concentration exponent tends to stronger concentration field is indicates 
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in figure 9.  Concentration of the fluid is higher for a small value of concentration slip parameter is 

shown in figure 10. 

The numerical values of the skin friction coefficients  
1

1 0f
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 
 and  

1
1 0g
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are displayed in table 1. We have seen that the skin friction coefficients areincreasing for higher values 

of velocity ration parameter . The rate of heat transfer  0 is shown in table 2. It is decays via 

increasing in Prandtl number Pr .Table 1 and Table 2 are displaying the comparing the present results 

with existing available results in a limiting cases. This tables represent have been good agreement with 

the previous available results.  

 

Figure 1.Velocity profiles    ,f g   for different values of   
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Figure 2.Velocity profiles    ,f g   for different values of M  

 

 

Figure 3.Velocity profiles  g   for different values of   
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Figure 4.Temperature     profiles for different values of Pr  

 

Figure 5. Temperature     profiles for different values of A  
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Figure 6. Temperature     profiles for different values of 1  
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Figure 8.Concentration     profiles for different values of B  
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Figure 10. Concentration     profiles for different values of 2  
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