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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

This study presents a detailed small signal analysis of a DC-DC type double boost converter integrated with SEPIC converter. 
The integrated converter has the features of the conventional boost and SEPIC converters, such as continuous input current, 
low input current ripple with extended step up capability. The converter consists of   seven dynamic elements and hence it 
would be interesting to study the small-signal model of the converter. State-space averaging technique is used to derive the 
small signal model. The duty ratio control to output voltage transfer function is derived. A 50W prototype of the integrated 
double boost SEPIC converter is implemented using PIC 16F887 microcontroller, operating in continuous conduction mode.  
The measured results on the prototype verify the theoretical analysis. 
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1.    Introduction 
 
   Renewable energy sources attract popularity to meet the increased energy demand worldwide. Renewable 
energy sources like photovoltaic (PV) cells and fuel cells produce a low dc output voltage. A high step up dc-dc 
power converter is necessary to convert the low dc output voltage to a boosted dc voltage suitable for an inverter 
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to feed ac load.   
 Traditional dc –dc converter topologies are unable to provide a gain greater than 6 [1-3].Cascaded boost 
converters with a single switch provide high output voltage without extreme duty cycle operation of the switch 
[4-5]. But they are less efficient because the output of the first stage is the input of the second stage and 
cascading increases number of components of the converter. Converters employing coupled inductors provide 
high step up [6-9], however, large input current ripple is a disadvantage. Boost converters modified with voltage 
multiplier cells with single switch are another solution for high output voltage [10-11], but for higher power, the 
current stress of the switch is an issue. Interleaving technique [11-12] is introduced to reduce input current ripple, 
but it suffers from high gain, while achieving less input current ripple.  

 Many integrated topologies by combining the advantages of simple, traditional converters are proposed 
to obtain high gain [13-15]. A buck boost fly-back integrated converter is proposed to achieve a boosted voltage 
from a fuel cell for grid tied applications [13].  A fully-integrated high- conversion-ratio dual-output voltage 
boost converter for obtaining boosted output from low voltage energy sources is proposed [14]. A soft-switched 
dual-boost coupled-inductor-based converter by combining of forward and fly-back converter with required high 
voltage is introduced in [15]. Detailed steady state analysis, principle of operation and design of the above 
modified converters are explained in the literature. But a small signal modelling approach is essential for closed 
loop application such as for low voltage energy harvesting from renewable energy sources.  

A double boost converter integrated with a SEPIC converter is presented in [16] to boost the fuel 
cell/PV output voltage. This converter is suitable for fuel cell/ PV applications because it combines the features 
of conventional boost and SEPIC converter with continuous input current with less ripple content and a better 
voltage conversion ratio [16]. This work focuses on the small signal modeling and controller design of the double 
boost converter integrated with SEPIC presented in [16] using a single switch for PV/ fuel cell applications. 
Small signal modeling for nonlinear pulse width modulated dc-dc converters are a useful tool for controller 
design and better understanding of the circuit performance [17-19]. A detailed small signal analysis and a closed 
loop design using a two-loop average current controller is presented for a zero voltage switched two inductor 
active-clamped current fed isolated DC-DC converters [20]. State space averaging technique is used to derive the 
small signal model [21-22]. Another study presents a small signal model using signal flow graph and Mason’s 
gain formula for open loop SEPIC converter [23]. State space averaging technique is tedious, when the number 
of elements of the converter is too many; hence a signal flow graph approach is discussed [24-25]. 

 The topology of double boost converter integrated with SEPIC presented in [16] is shown in Fig. 1. It 
consists of seven dynamic elements and hence it would be interesting to study the small-signal model of the 
converter. State-space averaging technique is used to derive the small signal model, though the number of state 
variables is high. The control to output transfer function is derived. The measured results in a 50W prototype 
operating in continuous conduction mode are in good agreement with the theoretical predictions. It is verified 
that the converter is capable of providing continuous input current with reduced ripple with a better voltage 
conversion ratio than traditional topologies. The remaining part of the paper is organized as follows: Section 2 
describes the small signal modelling of the double boost converter integrated with SEPIC. Section 3 discusses the 
experimental results. Section 4 concludes the paper. 

 
2. Small Signal Modelling  
The double boost converter integrated with SEPIC converter is shown in Fig.1 [16]. It consists of a switch Q , 

four diodes,( ,, 21 DD 43 , DD ) two inductors ( ,L1 2L ) and five capacitors ,1C ,2C ,3C 4C and 5C . In this 
section, state-space equations for each mode of operation of the converter are described. Then small signal model 
is presented based on state-space averaging technique. The averaged state space model   can be obtained by 
computing the required derivatives and output equations separately for the switch Q  ON and OFF times, 
multiplying those equations by the duty ratio )(D  and its complement )1( D  and summing them together. 
Analysis of the converter is based on the following assumptions: 
 The MOSFET switch and diodes are ideal. 
 The capacitors are large enough, thus capacitor voltages are considered constant in one switching period. 
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Fig1.  Double boost converter integrated with SEPIC converter  

The switch Q  is operating at a switching frequency 
T

f
1

  with duty ratio of the switch is given by
T

Ton
D  , 

where onT is the ON time of the switch.  Operation of the converter is assumed to be in the continuous 
conduction mode (CCM). The circuit operation is divided into two modes in one switching cycle.  

2.1 State Equations for Mode 1 
During mode 1, the switch Q  is turned on, as shown in Fig. 2.  

 
Fig.2. Equivalent circuit for Mode 1. 

Diode 2D  is turned on simultaneously when switch Q  is on. Diode 1D  is open –circuited by the capacitor 

voltage 1CV .Diodes 3D  and 4D  are reverse biased, since voltages )( 31 CC VV   and ( oC VV 4 ) appear across 

them respectively. The current through  1L  ( 1Li ) increases linearly.  In this mode, capacitor 1C  charges 

capacitor 2C  while capacitor 4C  is being charged by inductor current 2L ( 2Li ). The voltage across capacitors 

1C  and 2C  are equal, while the difference between the capacitor’s voltages 3CV  and 4CV  is equal to the input 

voltage, i.e. 21 CC VV                                                              (1) 

 43 CCg VVV                                                            (2) 
At the end of this interval, the switch is turned-off initiating the next subinterval. State variables defined for the 
small signal modeling of the converter are (i) Currents through the boost inductors 1Li  and 2Li . (ii) Voltage 

across the capacitors ,1C ,2C ,3C ,4C and ,5C  i.e, )t(v 1C , )t(v 2C , )t(v 3C , )t(v 4C and )t(v 5C .The 

state vector is defined as 
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 )()( 1 titx L )(2 tiL )(1 tvC )(2 tvC )(3 tvC )(4 tvC )(5 tvC ] T         (3)                                        

The input voltage is chosen as the input variable so that the input vector is given by 
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The differential equations governing the dynamics of state vector )t(x  for switch-ON period can be written in 

state space form as )(1)(1)( tuBtxAtx 

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respectively. When switch is in ON, output voltage 5Co VV           (13) 

 and the output vector is  )()( 1 txCty       where  10000001 C                (14) 
2.2 State Equations for Mode 2 
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inductor currents 1Li  and 2Li   reduces in proportion to the voltage )( 1Cg VV   and )( 03 VVC  respectively. From 

Fig.3, it is clear that the capacitors 1C  and 3C  are being charged by the currents, )( 421 CCL iii   and   

)( 23 LD ii   respectively. During this mode, the output capacitor 5C   is being charged by the 

current )( 42 CL ii  . 
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The state equations for switch OFF duration can be written in state space form as 
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The output matrix is given by  
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The output voltage gain K of the double boost converter integrated with SEPIC is   given by equation (26) [16].  
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Therefore it is suitable for harvesting energy from low voltage renewable energy sources. 
 
2.3. State space averaging approach: 
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The next step in the modeling of the converter is the introduction of small ac signals in the average value of the 
variables, aiming to analyze the behaviour of the converter subjected to these perturbations. Thus, the average 
variables become approximation of the system is obtained. The dc terms are neglected since they are already 
represented by the steady state model. Hence the small signal analysis is focused only on the ac behaviour. 
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The next step in the modeling of the converter is the introduction of small ac signals in the average value of the 
variables, aiming to analyze the behaviour of the converter subjected to these perturbations. Thus, the average 
variables become approximation of the system is obtained. The dc terms are neglected since they are already 
represented by the steady state model. Hence the small signal analysis is focused only on the ac behaviour. 
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      (33) 
      The derived small signal model leads the control to output voltage transfer function. By using Laplace 
transform in equation (33), and making the perturbations of the input voltage variations be zero, the transfer 
function from the duty cycle to the output voltage is derived. 

The design equations for the converter elements in order to operate the converter   in continuous 
conduction mode are explained from equations (37) to (42). The design of the inductances 1L , 2L is same of the 
classical boost converter.  
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Where 1Li =current ripple through 1L ; 2Li =current ripple through 2L ; cV = capacitor voltage ripple 

oP =output power. 
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In this work, 1Li  and 2Li  are taken as 0.96 A  and 1.066 A  respectively. The capacitor voltage ripple is 
1.6 .V To verify the above theoretical analysis, simulation results are carried out for the converter using 
MATLAB/SIMULINK [26] according to the converter specifications mentioned in Table-1. 

Table-1 Specifications of the Converter 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The transfer function of the system is obtained, as given in equation (39), by substituting the above parameters 
mentioned in Table-1. 
 

12537510*04.410*424.210*545.67637610*011.1
10*902.310*2.1691.410*102.110*409.310*36.410*359.4)( 243841356107
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
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

sssssss
sssssssGvd  (39) 

The pole–zero plot of the above transfer function is shown in Fig.5 which has two zeros on the right half sides of 
the s-plane and hence it is a non minimum phase system.  

 
Fig.5: The pole-zero plot. 

Capacitors, 1C , 2C , 3C                       10µF 

       Capacitor, 4C , 5C                             1000µF 

Inductor, 1L                                        330µH 

Inductor, 2L                                       660µH 

Load Resistor, LR                            128Ω 

Diodes 321 ,, DDD and 4D             MUR860 
MOSFET                                          IRF250N 

MOSFET driver                               TLP250 

Voltage sensor                                  LV25P 
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            3      Experimental Results 
 
To verify the performance of the switching converter, a prototype delivering an output power of   50 W has been 
fabricated with the specifications given in Table-1.  The prototype is tested for open loop and closed loop for an 
input voltage of 20V with a duty ratio of 40%. The converter operates with a switching frequency of 25 .kHz    
Diodes utilized in the converter circuit are MUR860. It has the features of low leakage current and low forward 
voltage drop with low switching losses. The MOSFET switch for the converter utilizes IRF250N. TLP250 driver 
IC is used for stepping up the voltage level necessary for triggering the MOSFET.  The PIC16F887 is a 40-pin 
integrated circuit (IC) and houses mainly 256 bytes of EEPROM data memory, 2 Comparators, 14 channels of 
10-bit Analog-to-Digital (A/D) converter, PWM generator, synchronous serial port, and Universal Asynchronous 
Receiver Transmitter (USART)[26]. The performance of the converter is verified in both open loop condition. 
Converter waveforms in open loop are presented in Fig. 6 which shows the pulses generated to the switch Q, 
inductor current ripples, output voltage, output current and voltage stress across the switch Q. The current 
through the inductors clearly demonstrate CCM operation. The output voltage is 80V which satisfies the gain 
equation (26) for a duty ratio of 40%.  It can be seen that the output current is ripple free from Fig. 6(c) and it 
makes the converter suitable for PV and fuel cell applications. The voltage stress across the switch Q is lesser 
than that of a classical double boost and SEPIC converter [16].  The voltage stress across the switch is shown in 
Fig. 6 (d). It is seen from Fig.6 (d) that  1, CQstress VV   = 33.3 V.  
 

 
Fig 6.   Waveforms in open loop (a) pulses generated to switch Q (b) ripple current through inductors (c) Output voltage and output current 

(d) voltage across the switch Q. 

3,21, CCC VVV  and 4CV  are  shown in Fig.7. These capacitor voltages agree with the steady state equations (1), 

(2), (13), (15) and (16) described in section 2. The voltages across the diodes 1D , 2D , 3D and 4D  can be 
determined by equations (47) to (50) and are  shown in Fig.8.  These values are in good agreement with the 
theoretical calculations as given by equations (40) to (43). 

11 * CD VDV                                                                                  (40)                                                                                                           

 22 *)1( CD VDV                        (41)                                                                                       

)(* 133 CCD VVDV                                                       (42)                                                           

)(* 44 COD VVDV                                                                   (43)    
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Fig. 7. The voltage across the capacitances (a) 1CV (b) 2CV (c) 3CV (d) 4CV  

 

Fig. 8. Voltage stress across the diodes (a) 1D  (b) 2D  (c) 3D  (d) 4D  

3  Conclusion 
 

This paper presents small signal modeling for a dc-dc type double boost converter integrated with SEPIC 
converter which is useful for controller design for PV and fuel cell applications. State-space averaging technique 
is used to derive the small signal model. The duty ratio control to output voltage transfer function is derived. A 
50W prototype of the converter is implemented using PIC 16F887 microcontroller, operating in continuous 
conduction mode.  The measured results on the prototype verify the theoretical analysis. 
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This paper presents small signal modeling for a dc-dc type double boost converter integrated with SEPIC 
converter which is useful for controller design for PV and fuel cell applications. State-space averaging technique 
is used to derive the small signal model. The duty ratio control to output voltage transfer function is derived. A 
50W prototype of the converter is implemented using PIC 16F887 microcontroller, operating in continuous 
conduction mode.  The measured results on the prototype verify the theoretical analysis. 
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