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Abstract In this paper, we study the solution of fractal energy integral equation for one-

dimensional compressible flows without body force using measure of noncompactness. We also dis-

cuss the solution of the local fractal equation of losing energy system using the notion of local frac-

tal differential idea. For this, a new notion of v-D-set contraction condition under simulation

function is defined and two main fixed point and coupled fixed point results are obtained.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).

1. Introduction and preliminaries

Compressible flow (or gas dynamics) is a subarea of fluid

mechanics that studies flows consuming important fluctuations

in fluid density. Whereas all flows are compressible, flows reg-

ularly preserved as organism incompressible when the Mach

numeral is less than 0:3. The investigation of compressible flow

is related to high-speed aircraft, rocket engines, plane engines,

high-speed entrance into an environmental atmosphere, gas

tubes, profit-making applications such as rough carpeting,

and many other areas [7–14]. One-dimensional 1�Dð Þ flow

rises to flow of gas through a duct or canal in which the flow

parameters are considered for adjustment suggestively

lengthways-solitary one spatial dimension, namely, the duct

length.

The idea is based on imposing the energy integral equation

for 1-D compressible flows without body force. Our methodol-

ogy is based on the locally arbitrary calculus [16]. We consider

the integral operator of the energy given by the formula of

locally arbitrary integral

K
rð Þ
W tð Þ ¼

1

C 1þ rð Þ

Z b

a

W tð Þ dtð Þr; ð1:1Þ

where W tð Þ ¼ w2
r tð Þ, where wr represents the fractal sub-band

signal, which is a local fractional continuous in J ¼ a; b½ �. In
this connection, we use the concept of fixed point theory under

measure of noncompactness (MNC, for short) to get the solu-

tion of Eq. (1.1).
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In 1930, Kuratowski [6] discussed a new direction of

research with the notion of MNC that combines with some

algebraic arguments are useful for studying the mathematical

formulations, particularly for solving the existence of solutions

of some nonlinear problems under certain conditions. The

Kuratowskii and Hausdorff MNC in a metric space are well-

known in the literature. Fixed point theory has two main

branches: Constructive fixed point theorems in the line of

Banach Contraction Principle, and nonconstructive fixed point

theorems, where results are obtained by using topological

properties in the direction of Brouwer’s/Schauder’s/Darbo’s

fixed point theorem. Schauder discussed the convexity of

domains and the compactness of operators. Darbo relaxed

the strong condition of compactness of operators with the

use of MNC and defined appropriate classes of operators [3].

Throughout the paper, R = the set of real numbers, N =

the set of natural numbers, Rþ ¼ 0;þ1½ Þ and N
� ¼ N [ 0f g.

Let X; k � kð Þ be a real Banach space and h be its zero ele-

ment. B #; fð Þ will denote the closed ball with center # are

radius f and Bf will stand for B h; fð Þ. Moreover, MX will

denote the family of nonempty bounded subsets of X and

NX its subfamily consisting of all relatively compact sets.

Definition 1.1. [1] A mapping v : MX ! Rþ is said to be a

MNC in X if it satisfies the following conditions

(Y;Y1;Y2 2 MX):

1�ð Þ kerv :¼ Y 2 MX : v Yð Þ ¼ 0f g –£ and kerv � NX,

2�ð Þ Y1#Y2 ) v Y1ð Þ 6 v Y2ð Þ,

3�ð Þ v Y
� �

¼ v Yð Þ,

4�ð Þ v ConvY
� �

¼ v Yð Þ,

5�ð Þ v kY1 þ 1� kð ÞY2ð Þ 6 kv Y1ð Þ þ 1� kð Þv Y2ð Þ for

k 2 0; 1½ �,
6�ð Þ v Y1 [Y2ð Þ ¼ max v Y1ð Þ; v Y2ð Þf g,
7�ð Þ If Ynð Þ is a decreasing sequence of non-empty closed

sets in MX and limn!1v Ynð Þ ¼ 0, then the set

Y1 ¼
T1

n¼1Yn is non-empty and compact.

A map a : MX ! Rþ is said to be a Kuratowski MNC [6] if

a Yð Þ ¼ inf � > 0 : Y �
[n

k¼1

Sk;Sk � X; diam Skð Þ < � k 2 Nð Þ

( )
:

ð1:2Þ

The following extensions of topological Schauder fixed point

theorem and classical Banach fixed point theorem were proved

by Darbo (resp. Sadovskii) in 1955 (resp. 1972).

We denote K Xð Þ a nonempty, bounded, closed and convex

set on Banach space X.

Theorem 1.2. [3] Let X be a Banach space, Y 2 K Xð Þ and

T : Y ! Y be a continuous operator such that there exists a

k 2 0; 1½ Þ with

v T Að Þð Þ 6 kv Að Þ

for any £ –A � Y, where v is the Kuratowski MNC on X.

Then we have T has a fixed point.

Theorem 1.3. [15] Let X be a Banach space, Y 2 K Xð Þ and

T : Y ! Y be a continuous operator such that

v Að Þ > 0 ) v T Að Þð Þ < v Að Þ;

for any£ –A � Y, where v is the Kuratowski MNC on X.

Then we can conclude that T has a fixed point.

The paper is organized as follows. In Section 1, we give

some preliminaries. In Section 2, we give a new v-D-set

contraction condition under simulation function and derive

two main fixed point while Section 3 is devoted for cou-

pled fixed point results. In the final Section 4, we study

the solution of fractal energy integral equation for one-

dimensional compressible flows without body force using

measure of noncompactness while in SubSection 4.2, we

discuss the solution of the local fractal equation of

losing energy system using the notion of local fractal

differential.

2. Main results

Definition 2.1. [2] A continuous mapping F : R
2
þ ! R is called

a C-class function if it is satisfies

(1) F s; tð Þ 6 s,

(2) F s; tð Þ ¼ s implies that either s ¼ 0 or t ¼ 0, for all

s; t 2 Rþ.

Definition 2.2. [2] A C-class function has a property CF, if

there exists a CF P 0 such that

(1) F s; tð Þ > CF ) s > t,

(2) F t; tð Þ 6 CF , for all s; t 2 Rþ.

Definition 2.3. [2]. Let D H;CFð Þ be the family of extended CF-

simulation functions H : R
2
þ ! R satisfying following

conditions:

(D1) H s; tð Þ < F t; sð Þ for all s; t > 0, where F 2 C with prop-

erty CF ;

(D2) if snf g; tnf g 2 0;þ1ð Þsuch that limn!1sn ¼ limn!1tn ¼
‘, where ‘ 2 0;þ1ð Þ and tn > ‘ for all n 2 N, then

lim sup
n!1H sn; tnð Þ < CF ;

(D3) if snf g 2 0;þ1ð Þ such that limn!1sn ¼ ‘ 2 0;þ1ð Þ;
H sn; ‘ð ÞP CF implies ‘ ¼ 0.

Denote W by a collection of continuous and strictly increas-

ing function w : Rþ ! Rþ.

We define that a notion of v-D-set contractive operator in

K.

Definition 2.4. A self operator T on U 2 K Xð Þ is said to be

v-D-set contractive if there exist H 2 D H;CFð Þ and the

function w 2 W such that

H v TVð Þ þ w v TVð Þð Þ; v Vð Þ þ w v Vð Þð Þð ÞP CF

for every £ –V#U, where vis an arbitrary MNC.

Theorem 2.5. A continuous v-D-set contractive self operator T

on U 2 K has at least one fixed point in U.

4102 H.K. Nashine et al.



Proof. Starting with the assumption U0 ¼ U, we define a

sequence Unf g such that Unþ1 ¼ Conv TUnð Þ, for n 2 N
�. If

v Un0ð Þ þ w v Un0ð Þð Þ ¼ 0, that is, v Un0ð Þ ¼ 0 for some natural

number n0 2 N, then Un0 is compact and since

T Un0ð Þ#Conv TUn0ð Þ ¼ Un0þ1#Un0 . Thus we conclude

the result from Schauder theorem. For all n 2 N
�, we assume

that v Unð Þ þ w v Unð Þð Þ > 0. Then from v-D-set contractivity

and Definition 1.1 (40), we get

H v Unþ1ð Þ þ w v Unþ1ð Þð Þ; v Unð Þ þ w v Unð Þð Þð Þ

¼ H v Conv TUnð Þ
� �

þ w v Conv TUnð Þ
� �� �

;
�

v Unð Þ þ w v Unð Þð ÞÞ

¼ H v TUnð Þ þ w v TUnð Þð Þ; v Unð Þ þ w v Unð Þð Þð Þ

P CF;

ð2:1Þ

that is,

C F 6 H v Unþ1ð Þ þ w v Unþ1ð Þð Þ; v Unð Þ þ w v Unð Þð Þð Þ

6 F v Unð Þ þ w v Unð Þð Þ; v Unþ1ð Þ þ w v Unþ1ð Þð Þð Þ

v Unð Þ þ w v Unð Þð Þ > v Unþ1ð Þ þ w v Unþ1ð Þð Þ ð2:2Þ

for all n 2 N.

This indicate that v Unð Þ þ w v Unð Þð Þf g is a decreasing

sequence of positive real numbers. Thus there exists cP 0 such

that v Unð Þ þ w v Unð Þð Þf g ! c as n ! 1. Assume c > 0. Using

property of Definition 2.3 (D2), for sequence fn ¼ v Unþ1ð Þþ
w v Unþ1ð Þð Þ and nn ¼ v Unð Þ þ w v Unð Þð Þ then fn; nn ! c and

nn > c,

CF 6 lim sup
n!1

H v Unþ1ð Þ þ w v Unþ1ð Þð Þ; v Unð Þ þ w v Unð Þð Þð Þ

¼ lim sup
n!1

H fn; nnð Þ < CF;

a contradiction, thus c ¼ 0 and v Unð Þ þ w v Unð Þð Þ ! 0 as

n ! 1. That is, lim
n!1

v Unð Þ ¼ 0; lim
n!1

w v Unð Þð Þ ¼ 0. Since

Un � Unþ1 and TUn#Un for all n ¼ 1; 2; . . ., then by (70)

of Definition 1.1, U1 ¼
T1

n¼1Un is nonempty convex closed

set, invariant under T and belongs to kerv. So, Schauder’s

fixed point theorems gives the requested result. h

Corollary 2.6. A continuous self operator T on U 2 K Xð Þ
satisfying

H v TVð Þ þ w v TVð Þð Þ; v Vð Þ þ w v Vð Þð Þð ÞP 0

for every £ –V#U, where W 3 w has at least one fixed

point in U and vis an arbitrary MNC, H 2 D H;CFð Þ .

Proof. If we set D H;CFð Þ with CF ¼ 0 in Theorem 2.5, we get

the result. h

Proposition 2.7. A continuous self operator T on U 2 K Xð Þ
satisfying

H diam T Vð Þð Þ þ w diam T Vð Þð Þð Þ;ð

diam Vð Þ þ w diam Vð Þð ÞÞP CF; ð2:3Þ

for any £ –V of U, where H 2 D H;CFð Þ and w 2 W, then

T admits a unique fixed point in U.

Proof. Theorem 2.5 and Proposition 3.2 [4] claim the existence

of a T-invariant nonempty closed convex subset U with

diam U1ð Þ ¼ 0, that is, U1 has singleton element, hence fixed

point of T–£.

Next suppose m – # 2 X is different fixed point, then we

define that the set U :¼ m; #f g. Moreover, in this case

diam Uð Þ ¼ diam T Uð Þð Þ ¼ km� #k > 0, by using (2.3), we

have

CF 6 H diam T Uð Þð Þ þ w diam T Uð Þð Þð Þ; diam Uð Þ þ w diam Uð Þð Þð Þ

6 F diam Uð Þ þ w diam Uð Þð Þ; diam Uð Þ þ w diam Uð Þð Þð Þ;

a contradiction from Definition 2.2 and hence the result.

Next, we show a classical fixed point theorem in the follow-

ing theorem.

Theorem 2.8. A continuous self operator T on U 2 K Xð Þ
satisfying

H kTx�Tx̂k þ w kTx�Tx̂kð Þ; kx� x̂k þ w kx� x̂kð Þð ÞP CF

ð2:4Þ

for all x; x̂ 2 U, where H 2 D H;CFð Þ and w 2 W. Then T

admits a unique fixed point.

Proof. Suppose that v Uð Þ ¼ diamU, where diamU ¼
sup kx� x̂k : x; x̂ 2 Uf g is the diameter of U. Clearly, in

the sense of Definition 1.1, we have v is a MNC in a space

X. Therefore, since (2.4) we obtain

Proposition 2.7 implies that T has a unique fixed point.

CF 6 sup
x;x̂2U

H kTx�Tx̂k þ w kTx�Tx̂kð Þ; kx� x̂k þ w kx� x̂kð Þð Þ

6 H sup
x;x̂2U

kTx�Tx̂k þ sup
x;x̂2U

w kTx�Tx̂kð Þ; sup
x;x̂2U

kx� x̂k þ sup
x;x̂2U

w kx� x̂kð Þ

 !

¼ H diam T Uð Þð Þ þ w diam T Uð Þð Þð Þ; diam Uð Þ þ w diam Uð Þð Þð Þ:
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3. Coupled fixed point results

Definition 3.1. [5] An argument m; #ð Þ 2 X
2 is said to be a

coupled fixed point (CFP) of a mapping H : X
2 ! X if

H m; #ð Þ ¼ m and H #; mð Þ ¼ #.

Theorem 3.2. Let U 2 K Xð Þ and H : U
2 ! U is continuous

operator satisfying

2H v H W i 	W j

� �� �
; v W ið Þ þ v W j

� �� �
P CF; i– j 2 1; 2f g

ð3:1Þ

for all W 1;W 2 in U, where H 2 D H;CFð Þ with

H PþQ;Rð ÞP H P;Rð Þ þH Q;Rð Þ, for P;Q;R 2 Rþ, then

H admits at least a CFP.

Proof. Consider the map cH : U
2 ! U

2 having the definition

cH f; nð Þ ¼ H f; nð Þ;H n; fð Þð Þ. Define MNC in U
2 by

bv Wð Þ ¼ v W 1ð Þ þ v W 2ð Þ,where W ¼ W 1 	W 2 and

W i; i ¼ 1; 2 denote the natural projections of U. Assume

£–W , from (3.1) and Definition 1.1 (20),

that is,

H bv cH Wð Þ
� �

; bv Wð Þ
� �

P CF:

Hence, from Theorem 2.5 for w tð Þ ¼ 0;cH has at least one

fixed point, i.e., H admits a CFP.

Theorem 3.3. Let U 2 K Xð Þ and H : U
2 ! U is continuous

operator satisfying

H v H W i 	W j

� �� �
;max v W ið Þ; v W j

� �� �� �

P CF; i– j 2 1; 2f g ð3:2Þ

for all W 1;W 2 in U, where H 2 D H;CFð Þ, then H admits at

least a CFP.

Proof. Consider the map H : U
2 ! U

2 having the definition

cH t; mð Þ ¼ H t; mð Þ;H m; tð Þð Þ. Define MNC in U
2 by

bv Wð Þ ¼ max v W 1ð Þ; v W 2ð Þf g, where W i; i ¼ 1; 2 denote the

natural projections of U. Assume £–W , from (3.1) and

Definition 1.1 (20),

that is,

H bv cH Wð Þ
� �

; bv Wð Þ
� �

P CF:

Hence, from Theorem 2.5 for w tð Þ ¼ 0;cH has at least one

fixed point, namely, H admits a CFP.

4. Applications

This section is devoted into two parts. The first part is regard-

ing the existence solution of local fractional integral equation.

While, the second is about the solvability of local fractional

differential equation.

4.1. Local fractional integral equation

We consider the integral operator of the energy given by the

formula of locally arbitrary integral

K
rð Þ
W tð Þ ¼

1

C 1þ rð Þ

Z b

a

W tð Þ dtð Þr; ð4:1Þ

H bv cH Wð Þ
� �

; bv Wð Þ
� �

¼ H bv H W 1 	W 2ð Þ 	H W 2 	W 1ð Þð Þ; v W 1ð Þ þ v W 2ð Þð Þ

¼ H v H W 1 	W 2ð Þ þ v H W 2 	W 1ð Þð Þ; v W 1ð Þ þ v W 2ð Þð Þð Þ

P H v H W 1 	W 2ð Þ; v W 1ð Þ þ v W 2ð Þð Þð Þ

þH v H W 2 	W 1ð Þð Þ; v W 1ð Þ þ v W 2ð Þð ÞÞ

P CF;

H bv cH Wð Þ
� �

; bv Wð Þ
� �

¼ H bv H W 1 	W 2ð Þ 	H W 2 	W 1ð Þð Þ;max v W 1ð Þ; v W 2ð Þf gð Þ

¼ H max v H W 1 	W 2ð Þð Þ; v H W 2 	W 1ð Þð Þf g;max v W 1ð Þ; v W 2ð Þf gð Þ

¼ max
H v H W 1 	W 2ð Þð Þ;max v W 1ð Þ; v W 2ð Þf gð Þ;

H v H W 2 	W 1ð Þð Þ;max v W 2ð Þ; v W 1ð Þf gð Þ

� 	

P CF;

4104 H.K. Nashine et al.



where W tð Þ ¼ w2
r tð Þ, where wr represents the fractal sub-band

signal, which is a local fractional continuous in J ¼ a; b½ �.
Assume that the local fractional integral of W tð Þ on the closed

interval J be equal to R. And for each q > 0 there occurs . > 0

such that jt1 � t2j < .r implies

jR� K
rð Þ
W tð Þj ¼ jR�

1

C 1þ rð Þ

Z b

a

W tð Þ dtð Þrj

< qr; 0 < r 6 1: ð4:2Þ

In the following theorem, we present a result about a unique

fixed point.

Theorem 4.1. Let s : X ! X be a self mapping achieving the

following assumption with X; k:kð Þ be a complete metric space

1

C 1þ rð Þ

Z ksv�syk

0

W tð Þ dtð Þr 6 kv� yk; ð4:3Þ

where W : 0;1½ Þ ! 0;1½ Þ is an integrable function fulfilling

the integral inequality

Z ksv�syk

0

W tð Þ dtð Þr :¼

Z qr

0

W tð Þ dtð Þr > qr: ð4:4Þ

This leads that s admits a unique fixed point.

Proof. Define the function ! : 0;1½ Þ 	 0;1½ Þ ! R by

! t; 1ð Þ ¼ 1�
1

C 1þ rð Þ

Z t

0

W mð Þ dmð Þr; t; 1 2 0;1½ Þ:

Consequently, we get the following facts


 ! 0; 0ð Þ ¼ 0;


 ! t; 1ð Þ < 1� qr

C rþ1ð Þ
;


 ! 1; 1ð Þ < 0; 1 < qr

C rþ1ð Þ
.

Thus, ! is a simulation function. Now, we proceed to

complete all the conditions of Theorem 2.8. A computation

implies that

sup
x;x̂2U

! ksx� sx̂k þ w ksx� sx̂kð Þ; kx� x̂k þ w kx� x̂kð Þð Þ

¼ sup
x;x̂2U

ksx� sx̂k þ w ksx� sx̂kð Þ � 1
C 1þrð Þ

R kx�x̂kþw kx�x̂kW mð Þ dmð Þrð Þ

0

�

¼ sup
x;x̂2U

ksx� sx̂k þ w ksx� sx̂kð Þ � sup
x;x̂2U

1
C 1þrð Þ

R kx�x̂kþw kx�x̂kW mð Þ dmð Þrð Þ

0

 

6 ! sup
x;x̂2U

ksx� sx̂k þ sup
x;x̂2U

w ksx� sx̂kð Þ; sup
x;x̂2U

kx� x̂k þ sup
x;x̂2U

w kx� x̂kð Þ

 !

¼ ! diam s Uð Þð Þ þ w diam s Uð Þð Þð Þ; diam Uð Þ þ w diam Uð Þð Þð Þ > 0:

Therefore, s has a unique fixed point.

Example 4.2.


 Consider W tð Þ ¼ C, where C is a constant such that

diam Uð Þ > Ctr

C 1þrð Þ
. This implies that

1

C 1þ rð Þ

Z t¼sv

0

C dmð Þr ¼
Ctr

C 1þ rð Þ

and hence,

! t; 1ð Þ ¼ kx� x̂k �
Ctr

C 1þ rð Þ
:

Consequently, we obtain ! t; kx� x̂kð Þ > 0. In view of

Theorem 4.1, a self map sv ¼ v. has a unique fixed point.


 We have the following data W tð Þ ¼ sinr trð Þ where

diam Uð ÞP 1. This yields that

1

C 1þ rð Þ

Z t¼sv

0

sinr mrð Þ dmð Þr ¼ 1� cosr trð Þ

and thus,

! t; 1ð Þ ¼ kx� x̂k � 1� cosr mrð Þð Þ > 0; m 2 0;1½ Þ:

From the above results, we can conclude that sv ¼ v also

has a fixed point and it is unique.


 Assume the following data W tð Þ ¼ cosr trð Þ where

diam Uð ÞP 1. This gives that

1

C 1þ rð Þ

Z sv

0

cosr mrð Þ dmð Þr ¼ sinr trð Þ:

Therefore, we obtain

! t; 1ð Þ ¼ kx� x̂k � sinr trð Þ > 0; m 2 0;1½ Þ:

This leads that sv ¼ v also has a fixed point and it is unique.

4.2. Local fractional differential equation

In this place, we consider a local fractional differential equa-

tion by using the following local derivative (see [16], P18) for

a function u in the continuous fractal space:

D
rf tð Þ ¼

C rþ 1ð Þ f tð Þ � f 0ð Þ½ �

t� t0ð Þr
; r 2 0; 1ð �:

By using the local fractal differential idea, we suggest the local

fractal equation of losing energy as follows:

D
r f tð Þ ¼ F t; f tð Þð Þ; ð4:5Þ

where f is the power function in the interval 0; j½ � such that

f 0ð Þ ¼ f0. And F is the conductance of the dielectric material.

The variation of F can be recognized from f (power function)

limits to be autonomous of frequency that is there occurs a

positive constant d such that

d 6 sup
t2 0;j½ �

jF t; fð Þj 6 djfj; d 2 0;1ð Þ:

We have the following result:

Theorem 4.3. Define the self mapping P : X ! X, where

X; k:kð Þ is a complete metric space fulfilling the conditions

1

C 1þ rð Þ

Z kPx�Pyk

0

F t; fð Þ dtð Þr 6 kx� yk; ð4:6Þ

and

Z kPx�Pyk

0

F t; fð Þ dtð Þr :¼

Z dr

0

F t; fð Þ dtð Þr > d: ð4:7Þ
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Then P indicates a unique fixed point.

Proof. In the same manner of Theorem 4.1, we define the func-

tion k : 0;1½ Þ 	 0;1½ Þ ! R by

k t; tð Þ ¼ t�
1

C 1þ rð Þ

Z t

0

F m; f mð Þð Þ dmð Þr; t; t 2 0;1½ Þ:

It is clear that


 k 0; 0ð Þ ¼ 0;


 k t; tð Þ < t � d
C rþ1ð Þ

;


 k t; tð Þ < 0; t < d
C rþ1ð Þ

.

Thus, k is a simulation function. A calculation leads to

sup
x;x̂2U

k kPx� Px̂k þ w kPx� Px̂kð Þ; kx� x̂k þ w kx� x̂kð Þð Þ

¼ sup
x;x̂2U

kPx� Px̂k þ w kPx� Px̂kð Þ � 1
C 1þrð Þ

R kx�x̂kþw kx�x̂kF m;f mð Þð Þ dmð Þrð Þ

0

�

¼ sup
x;x̂2U

kPx� P x̂k þ w kPx� Px̂kð Þ � sup
x;x̂2U

1
C 1þrð Þ

R kx�x̂kþw kx�x̂kF m;f mð Þð Þ dmð Þrð Þ

0

 

¼ sup
x;x̂2U

kPx� P x̂k þ w kPx� Px̂kð Þ � sup
x;x̂2U

d
C 1þrð Þ

R kx�x̂kþw kx�x̂k dmð Þrð Þ

0

 

6 k sup
x;x̂2U

kPx� P x̂k þ sup
x;x̂2U

w kPx� P x̂kð Þ; sup
x;x̂2U

kx� x̂k þ sup
x;x̂2U

w kx� x̂kð Þ

 !

¼ k diam s Uð Þð Þ þ w diam s Uð Þð Þð Þ; diam Uð Þ þ w diam Uð Þð Þð Þ > 0:

Therefore, in view of Theorem 2.8, P has a unique fixed point.

h

5. Conclusion

In this work, we consider the fractal energy integral equation

for one-dimensional compressible flows without body force

using measure of noncompactness followed by an example.

We also use local fractal differential idea, to solve the local

fractal equation of losing energy system. For this we introduce

a new notion of l-D-set contraction condition under the simu-

lation function. Moreover, we also show two main fixed point

and coupled fixed point results.
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