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Abstract: We present sufficient conditions for the existence of solutions of Fredholm integral inclusion equations

using new sort of contractions, named as multivalued almost F -contractions and multivalued almost F -contraction

pairs under ı-distance, defined in b-metric spaces. We give its relevance to fixed point results in orbitally complete

b-metric spaces. To rationalize the notions and outcome, we illustrate the appropriate examples.
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1 Introduction

Integral equations appear in numerous scientific and engineering problems. A large class of initial and boundary

value problems can be transformed to Volterra or Fredholm integral equations. Mathematical physics models, such

as diffraction problems, scattering in quantum mechanics, conformal mapping, and water waves contributed to the

creation of integral equations, as well. These equations represent a significant part of mathematical analysis and have

various applications in real-world problems. Numerous studies have considered the integral inclusions that arise in

the study of problems in applied mathematics, engineering and economics, since some mathematical models utilize

multivalued maps instead of single-valued maps, see, e.g., [1–4] and references cited therein.

The advancement of geometric fixed point theory for multivalued mappings was initiated in the work of Nadler,

Jr. in 1969 [5]. He used the concept of Hausdorff-Pompeiu metric to establish the multivalued contraction principle

containing the Banach contraction principle as a special case. Since then, this discipline has been more developed,

and many profound concepts and results have been set up in more generalized spaces.

We construct in this paper a new notion—almost F -contraction for multivalued mappings, by considering the

ı-distance in the frame-work of b-metric spaces [6–8] and a concept of F -contractions which was introduced by

Wardowski [9]. The paper is organized as follows. In Section 3, we introduce the notion of almost F -contraction for

a multivalued mapping J under ı-distance in a b-metric space and originate fixed point results in orbitally complete

b-metric spaces. In Section 4 we introduce the concept of almost F -contraction pair of multivalued mappings J2

and J1 under ı-distance. The existence and uniqueness of their common fixed point is obtained under additional

assumptions on the mappings. We also furnish suitable examples to demonstrate the validity of our results and
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to distinguish them from some known ones. In Section 5 we deal with solutions of a Fredholm integral inclusion

equation, based on the results of Section 3.

Our work improves and extends the works done in the papers [10–13] with the consideration of orbitally

complete b-metric space.

2 Preliminaries

The notion of b-metric space as an extension of metric space was introduced by Bakhtin in [6] and then extensively

used by Czerwik in [7, 8, 14]. Since then, a lot of papers have been published on the fixed point theory of various

classes of single-valued and multi-valued operators in this type of spaces. We recall here just some basic definitions

and notation that we are going to use. RC and R
C
0

will denote the set of all positive, resp. nonnegative real numbers

and N will be the set of positive integers.

A b-metric on a nonempty set E is a function db W E �E ! R
C
0

such that for a constant s � 1 and all x; y; z 2 E

the following three conditions hold true:

(M1) db.x; y/ D 0 ” x D y,

(M2) db.x; y/ D db.y; x/,

(M3) db.x; y/ � s.db.x; z/ C db.z; y//.

The triple .E; db ; s/ is called a b-metric space.

Obviously, each metric space is a b-metric space (for s D 1), but the converse need not be true. Standard

examples of b-metric spaces that are not metric spaces are the following:

1. E D R and db W E � E ! R defined by db.x; y/ D jx � yj2 for all x; y 2 E , with s D 2.

2. `p.R/ WD ffxng � R W
P1

nD1 jxnjp < 1g, 0 < p < 1, db W `p.R/ � `p.R/ ! R given by

db.fxng; fyng/ D

� 1
X

nD1

jxn � ynjp
�1=p

for all fxng, fyng 2 `p.R/. Here s D 21=p .

3. Lp.Œ0; 1�/ 3 f W Œ0; 1� ! R such that
R 1

0
jf .t/jpdt < 1, p > 1, db W Lp.Œ0; 1�/ � Lp.Œ0; 1�/ ! R given by

db.f; g/ D

1
Z

0

jf .t/ � g.t/jp

for all f; g 2 Lp.Œ0; 1�/; here s D 2p�1.

The topology on b-metric spaces and the notions of convergent and Cauchy sequences, as well as the completeness

of the space are defined similarly as for standard metric spaces. However, one has to be aware of some differences.

For instance, a b-metric need not be a continuous mapping in both variables (see, e.g., [15]).

Now, we give a brief background for multivalued mappings defined in a b-metric space .E; db ; s/.

We denote the class of non-empty and bounded subsets of E by Pb.E/, and the class of non-empty, closed and

bounded subsets of E by Pcb.E/. For U ;V;W 2 Pb.E/, we define:

Db.U ;V/ D inffdb.u; v/ W u 2 U ; v 2 Vg and

ıb.U ;V/ D supfdb.u; v/ W u 2 U ; v 2 Vg

with Db.w;W/ D Db.fwg;W/ D inffdb.w; x/ W x 2 Wg.

The following are some easy properties of Db and ıb (see, e.g. [7, 8, 14]):

(i) if U D fug and V D fvg then Db.U ;V/ D ıb.U ;V/ D db.u; v/;
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(ii) Db.U ;V/ � ıb.U ;V/;

(iii) Db.x;V/ � db.x; b/ for any b 2 V;

(iv) ıb.U ;V/ � sŒıb.U ;W/ C ıb.W;V/�;

(v) ıb.U ;V/ D 0 iff U D V D fvg.

Moreover, we will always suppose that

(vi) the function Db is continuous in its variables.

Recall that z 2 E is called a fixed point of a multivalued mapping J W E ! Pb.E/ if z 2 J z.

The concepts of orbit, orbitally complete space and orbitally continuous mapping given in [16–18] for metric

spaces can be extended to the case of b-metric spaces, as follows:

Definition 2.1. Let .E; db ; s/ be a b-metric space and J ;J1;J2 W E ! Pb.E/ be three mappings.

1. An orbit O.x0IJ / of J at a point x0 2 E is any sequence fxng such that xn 2 J xn�1 for n D 1; 2; : : : .

2. If for a point x0 2 E , there exists a sequence fxng in E such that x2nC1 2 J2x2n, x2nC2 2 J1x2nC1,

n D 0; 1; 2; : : : , then the set O.x0IJ1;J2/ D fxn W n D 1; 2; : : : g is called an orbit of .J1;J2/ at x0.

3. The space .E; db ; s/ is said to be .J1;J2/-orbitally complete if any Cauchy subsequence fxni
g of O.x0IJ1;J2/

(for some x0 in E) converges in E . In particular, for J1 D J2 D J , we say that E is J -orbitally complete.

4. The mapping J is said to be orbitally continuous at a point x0 2 E if for any sequence fxngn�0 � O.x0IJ /

and z 2 E , d.xn; z/ ! 0 as n ! 1 implies ıb.J xn;J z/ ! 0 as n ! 1. J is called orbitally continuous in

E if it is orbitally continuous at every point of E .

5. The graph G.J / of J is defined as G.J / D f.x; y/ W x 2 E; y 2 J xg. The graph G.J / of J is called

J -orbitally closed if, for any sequence fxng, we have .x; x/ 2 G.J / whenever .xn; xnC1/ 2 G.J / and

limn!1 xn D x.

In his paper [9], Wardowski introduced a new type of contractions which he called F -contractions. Several authors

proved various variants of fixed point results using such contractions. In particular, Acar and Altun proved in [10] a

fixed point theorem for multivalued mappings under ı-distance.

Adapting Wardowski’s approach to b-metric space, Cosentino et al. used in [13] the set of functions Fs defined

as follows

Definition 2.2. Let s � 1 be a real number. We denote by Fs the family of all functions F W RC ! R with the

following properties:

(F1) F is strictly increasing;

(F2) for each sequence f˛ng of positive numbers, limn!1 ˛n D 0 if and only if limn!1 F.˛n/ D �1;

(F3) for each sequence f˛ng of positive numbers with limn!1 ˛n D 0, there exists k 2 .0; 1/ such that

limn!1 ˛k
nF.˛n/ D 0;

(F4) there exists � 2 R
C such that for each sequence f˛ng of positive numbers, if � C F.s˛n/ � F.˛n�1/ for all

n 2 N, then � C F.sn˛n/ � F.sn�1˛n�1/ for all n 2 N.

Example 2.3. Let F W RC ! R be defined by F.˛/ D ln ˛ or F.˛/ D ˛ C ln ˛. It can be easily checked [13,

Example 3.2] that F satisfies the properties (F1)–(F4).

They proved the following (note that Hb here denotes the b-Hausdorff-Pompeiu metric).

Theorem 2.4. [13, Theorem 3.4] Let .E; db ; s/ be a complete b-metric space and let J W E ! Pcb.E/. Assume that

there exists a continuous from the right function F 2 Fs and � 2 R
C such that

2� C F.sHb.J x;J y// � F.db.x; y//; (1)

for all x; y 2 E , J x ¤ J y. Then J has a fixed point.
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3 Multivalued almost .F; ıb/-contractions and relevance to fixed

point results

We first introduce the notion of multivalued almost .F; ıb/-contraction in a b-metric space and give relevance to

fixed point results.

Definition 3.1. Let .E; db ; s/ be a b-metric space with s > 1. We say that a multivalued mapping J W E ! Pb.E/ is

a multivalued almost .F; ıb/-contraction if F 2 Fs (with parameter � ) and there exists � � 0 such that

� C F.sıb.J x;J y// � F.‚1.x; y/ C �‚2.x; y//; (2)

for all x; y 2 E with minfıb.J x;J y/; db.x; y/g > 0, where

‚1.x; y/ D max

�

db.x; y/;Db.x;J x/;Db.y;J y/;
Db.x;J y/ C Db.y;J x/

2s

�

(3)

and

‚2.x; y/ D minfDb.x;J x/;Db.y;J y/;Db.x;J y/;Db.y;J x/g:

If (2) is satisfied just for x; y 2 O.x0IJ / (for some x0 2 E), we say that J is a multivalued almost orbitally

.F; ıb/-contraction.

We are equipped now to state our first main result.

Theorem 3.2. Let .E; db ; s/ be a b-metric space with s > 1 and let J W E ! Pb.E/ be a multivalued almost orbitally

.F; ıb/-contraction. Suppose that .E; db ; s/ is J -orbitally complete (for the same x0 2 E). If F is continuous and

J x is closed for all x 2 O.x0IJ /, or J has J -orbitally closed graph, then J has a fixed point in E .

Proof. Starting from the given point x0, choose a sequence fxng in E such that xnC1 2 J xn, for all n � 0. Now,

if xn0
2 J xn0

for some n0, then the proof is finished. Therefore, we assume xn ¤ xnC1 for all n � 0. So

db.xnC1; xnC2/ > 0 and ıb.J xn;J xnC1/ > 0 for all n � 0.

Using the condition (2) for elements x D xn; y D xnC1, for arbitrary n � 0 we have

� C F.sdb.xnC1; xnC2// � � C F.sıb.J xn;J xnC1// � F.‚1.xn; xnC1/ C �‚2.xn; xnC1//

where

‚1.xn; xnC1/ D max

(

db.xn; xnC1/;Db.xn;J xn/;Db.xnC1;J xnC1/;
1

2s
ŒDb.xn;J xnC1/ C Db.xnC1;J xn/�

)

� max

�

db.xn; xnC1/; db.xn; xnC1/; db.xnC1; xnC2/;
1

2s
db.xn; xnC2//

�

D max

�

db.xn; xnC1/; db.xnC1; xnC2/;
1

2s
db.xn; xnC2/

�

and

‚2.xn; xnC1/ D min fDb.xn;J xn/;Db.xnC1;J xnC1/;Db.xn;J xnC1/;Db.xnC1;J xn/g D 0:

As 1
2s

db.xn; xnC2/ � maxfdb.xn; xnC1/; db.xnC1; xnC2/g, it follows that

� C F.sdb.xnC1; xnC2// � F.maxfdb.xn; xnC1/; db.xnC1; xnC2/g/: (4)

Suppose that db.xn; xnC1/ � db.xnC1; xnC2/, for some positive integer n. Then from (4), we have

� C F.sdb.xnC1; xnC2// � F.db.xnC1; xnC2//;
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a contradiction with (F1). Hence,

maxfdb.xn; xnC1/; db.xnC1; xnC2/g D db.xn; xnC1/;

and consequently

� C F.sdb.xnC1; xnC2// � F.db.xn; xnC1// for all n 2 N [ f0g: (5)

It follows by (5) and the property (F4) that

� C F.sndb.xn; xnC1// � F.sn�1db.xn�1; xn// for all n 2 N [ f0g: (6)

Denote %n D d.xn; xnC1/ for n D 0; 1; 2; : : : . Then, %n > 0 for all n and, using (6), the following holds:

F.sn%n/ � F.sn�1%n�1/ � � � F.sn�2%n�2/ � 2� � � � � � F.%0/ � n� (7)

for all n 2 N. From (7), we get F.sn%n/ ! �1 as n ! 1. Thus, from (F2), we have

sn%n ! 0 as n ! 1: (8)

Now, by the property (F3) there exists k 2 .0; 1/ such that

lim
n!1

.sn%n/kF.sn%n/ D 0: (9)

By (7), the following holds for all n 2 N:

.sn%n/kF.sn%n/ � .sn%n/kF.%0/ � .sn%n/k.�n�/ � 0: (10)

Passing to the limit as n ! 1 in (10) and using (8) and (9), we obtain

lim
n!1

n.sn%n/k D 0

and hence limn!1 n1=ksn%n D 0. Now, the last limit implies that the series †1
nD1

sn%n is convergent and hence

fxng is a Cauchy sequence in O.x0IJ /. Since E is J -orbitally complete, there exists a z 2 E such that

xn ! z as n ! 1:

Suppose that J z is closed.

We observe that if there exists an increasing sequence fnkg � N such that xnk
2 J z for all k 2 N, since J z is

closed and limk!1 xnk
D z, we deduce that z 2 J z and hence the proof is completed. Then we assume that there

exists n0 2 N such that xn … J z for all n 2 N with n � n0. It follows that ıb.J xn;J z/ > 0 for all n � n0. Using

the condition (2) for x D xn, y D z, we have

� C F.sDb.xnC1;J z// � � C F.sıb.J xn;J z// � F.‚1.xn; z/ C �‚2.xn; z// (11)

where

‚1.xn; z/ D max
n

db.xn; z/;Db.xn;J xn/;Db.z;J z/; Db.xn;J z/CDb.z;Jxn/

2s

o

� max
n

db.xn; z/; db.xn; xnC1/;Db.z;J z/;
Db.xn;J z/Cdb.z;xnC1/

2s

o

! Db.z;J z/; as n ! 1;

and

‚2.xn; z/ D min
n

Db.xn;J xn/;Db.z;J z/;Db.xn;J z/;Db.z;J xn/
o

� min
n

db.xn; xnC1/;Db.z;J z/;Db.xn;J z/; db.z; xnC1/
o

! 0; as n ! 1:
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Since F and Db are continuous, if Db.z;J z/ > 0, passing to the limit as n ! 1 in (11), we obtain

� C F.sDb.z;J z// � F.Db.z;J z//;

which is impossible since � > 0, s � 1 and F is strictly increasing. Hence, Db.z;J z/ D 0 and, since J z is closed,

we have z 2 J z. Thus, z is a fixed point of J .

Suppose that G.J / is J -orbitally closed.

Since .xn; xnC1/ 2 G.J / for all n 2 N[ f0g and limn!1 xn D z, we have .z; z/ 2 G.J / by the J -orbitally

closedness. Hence, z 2 J z.

It is proved that z is a fixed point of J .

The following corollaries follow from Theorem 3.2 by taking F.˛/ D ln ˛, resp. F.˛/ D ˛ C ln ˛ in (2).

Corollary 3.3. Let .E; db ; s/ be a b-metric space with s > 1 and let J W E ! Pb.E/ be a multivalued mapping

satisfying, for some � > 0, x0 2 E , � � 0, the condition

sıb.J x;J y/ � e�� f‚1.x; y/ C �‚2.x; y/g

for all x; y 2 O.x0IJ / with minfıb.J x;J y/; db.x; y/g > 0, where ‚1; ‚2 are given by (3). Suppose that

.E; db ; s/ is J -orbitally complete (for the same x0 2 E). If J x is closed for all x 2 O.x0IJ /, or J has J -orbitally

closed graph, then J has a fixed point in E .

Corollary 3.4. Let .E; db ; s/ be a b-metric space with s > 1 and let J W E ! Pb.E/ be a multivalued mapping

satisfying, for some � > 0, x0 2 E , � � 0, the condition

sıb.J x;J y/

‚1.x; y/ C �‚2.x; y/
esıb.Jx;Jy/�.‚1.x;y/C�‚2.x;y// � e��

for all x; y 2 O.x0IJ / with minfıb.J x;J y/; db.x; y/g > 0, where ‚1; ‚2 are given by (3). Suppose that

.E; db ; s/ is J -orbitally complete (for the same x0 2 E). If J x is closed for all x 2 O.x0IJ /, or J has J -orbitally

closed graph, then J has a fixed point in E .

Example 3.5. This example is inspired by [19, Example 2.3].

Let E D Œ0; 1� be equipped with b-metric db.x; y/ D .x � y/2 (with s D 2). Consider the mapping J W E !

Pcb.E/ given by

J x D

(

f 1
2

g; 0 � x < 1;

Œ0; 1
4

�; x D 1:

If x; y 2 Œ0; 1/ then ıb.J x;J y/ D 0. Let x 2 Œ0; 1/ and y D 1. Then J x D f 1
2

g, J y D Œ0; 1
4

�, ıb.J x;J y/ D 1
4

,

‚1.x; y/ D maxf.1 � x/2; . 1
2

� x/2; . 3
4

/2; 1
4

ŒD.x;J y/ C 1
4

�g � 9
16

;

‚2.x; y/ D minf. 1
2

� x/2; . 3
4

/2;D.x;J y/; 1
4

�g � 0:

Take � D 1
16

C ln 9
8

> 0, F.˛/ D ˛ C ln ˛ and � � 0. Then

� C F.sıb.J x;J y// D
1

16
C ln

9

8
C 2 �

1

4
C ln.2 �

1

4
/

D
9

16
C ln

9

16
D F.

9

16
/ � F.‚1.x; y/ C �‚2.x; y//:

Hence, the conditions of Theorem 3.2 (more precisely, Corollary 3.4) are fulfilled and J has a fixed point (which is

z D 1
2

).

However, in the case x 2 Œ0; 1/, y D 1, it is Hb.J x;J y/ D 1
4

and hence

sHb.J x;J y/ D
1

2
< .1 � x/2 D db.x; y/

for x < 1 � 1p
2

. Thus, no number � and function F 2 Fs exist such that the condition (1) is satisfied. So, Theorem

2.4 cannot be used to obtain the desired conclusion.
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The following corollary is a special case of Theorem 3.2 when J is a single-valued mapping.

Corollary 3.6. Let .E; db ; s/ be a b-metric space with s > 1 and let J W E ! E be a self-mapping such that E is

J -orbitally complete (at some x0). Suppose that F 2 Fs and there exist � > 0, � � 0 such that

� C F.sdb.J x;J y// � F.‚0
1.x; y/ C �‚0

2.x; y//; (12)

for all x; y 2 O.x0IJ / with minfdb.J x;J y/; db.x; y/g > 0, where

‚0
1.x; y/ D max

�

db.x; y/; db.x;J x/; db.y;J y/;
db.x;J y/ C db.y;J x/

2

�

and

‚0
2.x; y/ D minfdb.x;J x/; db.y;J y/; db.x;J y/; db.y;J x/g:

If F is continuous, then J has a fixed point in E .

4 Multivalued almost .F; ıb/-contraction pair and relevance

to common fixed point results

In this section, we prove a common fixed point theorem for a pair of multivalued mappings satisfying certain

conditions.

First we introduce the notion of multivalued almost .F; ıb/-contraction pair in b-metric spaces.

Definition 4.1. Let .E; db ; s/ be a b-metric space with s > 1. Two multivalued mappings J1;J2W E ! Pb.E/ are

said to form a multivalued almost .F; ıb/-contraction pair, if F 2 Fs and there exist � > 0, � � 0 such that

� C F.sıb.J1x;J2y// � F.�1.x; y/ C ��2.x; y//; (13)

for all x; y 2 E with minfıb.J1x;J2y/; db.x; y/g > 0, where

�1.x; y/ D max

�

db.x; y/;Db.x;J1x/;Db.y;J2y/;
1

2s
ŒDb.x;J2y/ C Db.y;J1x/�

�

and

�2.x; y/ D minfDb.x;J1x/;Db.y;J2y/;Db.x;J2y/;Db.y;J1x/g:

If (13) is satisfied just for x; y 2 O.x0IJ1;J2/ (for some x0 2 E), we say that .J1;J2/ is a multivalued almost

orbitally .F; ıb/-contraction pair.

The main result of this section is the following theorem.

Theorem 4.2. Let .E; db ; s/ be a b-metric space with s > 1 and let J1;J2W E ! Pb.E/ form a multivalued

almost orbitally .F; ıb/-contraction pair (for some x0). Assume that E is .J1;J2/-orbitally complete at x0. If F is

continuous and J1 and J2 are orbitally continuous at x0, then J1 and J2 have a common fixed point in E .

Proof. Starting with the given point x0, choose a sequence fxng � E satisfying

x2nC1 2 J2x2n; x2nC2 2 J1x2nC1; for n 2 f0; 1; : : : g

and let an D db.xn; xnC1/. If xn0
2 J2xn0

or xn0
2 J1xn0

for some n0, then the proof is finished. So assume

xn ¤ xnC1 for all n � 0. We claim that

lim
n!1

snan D 0:

Suppose that n is an odd number. Substituting x D xn and y D xnC1 in (13), we obtain

� C F.sdb.xn; xnC1// � � C F.sıb.J1xn;J2xnC1// � F.�1.xn; xnC1/ C ��2.xn; xnC1//; (14)
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where

�1.xn; xnC1/ D max

(

db.xn; xnC1/;Db.xn;J1xn/;Db.xnC1;J2xnC1/;
1

2s
Db.xn;J2xnC1/ C Db.xnC1;J1xn/

)

� max

�

db.xn; xnC1/; db.xn; xnC1/; db.xnC1; xnC2/;
1

2s
db.xn; xnC2/

�

� max fdb.xn; xnC1/; db.xnC1; xnC2/g

as 1
2s

ıb.xn; xnC2/ � maxfıb.xn; xnC1/; db.xnC1; xnC2/g and

�2.xn; xnC1/ D min fDb.xn;J1xn/;Db.xnC1;J2xnC1/;Db.xn;J2xnC1/;Db.xnC1;J1xn/g D 0:

Therefore it follows from (14) that

� C F.db.xn; xnC1// � F.maxfdb.xn�1; xn/; db.xn; xnC1/g/: (15)

Suppose that db.xn�1; xn/ � db.xn; xnC1/. Then from (15), we have

� C F.sdb.xn; xnC1// � F.db.xn; xnC1//;

a contradiction, which means that

maxfdb.xn; xnC1/; db.xnC1; xnC2/g D db.xn; xnC1/:

Consequently, � C F.sdb.xn; xnC1// � F.db.xn�1; xn//, that is

� C F.san/ � F.an�1/: (16)

In a similar way, we can establish inequality (16) when n is an even number.

It follows by (16) and property (F4) that

� C F.snan/ � F.sn�1an�1/ for all n 2 N [ f0g:

Similarly as in Theorem 3.2, we can prove that the sequence fxng is a b-Cauchy sequence in O.x0IJ1;J2/. Since

E is .J2;J1/-multivalued orbitally complete at x0, there exists a z 2 E such that

xn ! z as n ! 1:

If J2 and J1 are orbitally continuous, then clearly J2z D J1z D z.

Consequences similar to Corollaries 3.3 and 3.4 can be formulated in an obvious way.

If in Theorem 4.2, J1 and J2 are single-valued mappings, we deduce the following result.

Corollary 4.3. Let .E; db ; s/ be a b-metric space with s > 1 and let J1;J2 W E ! E be self-mappings such that E

is .J1;J2/-orbitally complete (at some x0). Suppose that F 2 Fs and there exist � > 0, � � 0 such that

� C F.sdb.J1x;J2y// � F.�1.x; y/ C ��2.x; y//;

for all x; y 2 O.x0IJ1;J2/ (for the same x0) with minfdb.J x;J y/; db.x; y/g > 0, where

�1.x; y/ D max

�

db.x; y/; db.x;J1x/; db.y;J2y/;
db.x;J2y/ C db.y;J1x/

2s

�

and

�2.x; y/ D minfdb.x;J1x/; db.y;J2y/; db.x;J2y/; db.y;J1x/g:

If F is continuous and J1 and J2 are .J1;J2/-orbitally continuous at x0, then J1 and J2 have a common fixed

point.
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We illustrate the preceding result with the following example (inspired by [20, Example 2.10]).

Example 4.4. Let the set E D Œ0; C1/ be equipped with b-metric db.x; y/ D .x � y/2 (s D 2) and define

J1;J2 W E ! E by

J1x D

(

1
2

x; 0 � x � 1
2

;

x; x > 1
2

;
J2x D

(

1
3

x; 0 � x � 1
3

;

x; x > 1
3

:

Take x0 D 1
2

. Then it is easy to show that

O.x0IJ1;J2/ �

�

1

2k � 3l
W k; l 2 N

�

; O.x0IJ1;J2/ D O.x0IJ1;J2/ [ f0g:

We will check that the contractive condition of Corollary 4.3 is fulfilled for x; y 2 O.x0IJ1;J2/ with � D ln 9
8

and

F.˛/ D ln ˛. Indeed, it takes the form

2
�x

2
�

y

3

�2

�
8

9
max

�

.x � y/2;
1

4
x2;

4

9
y2;

1

2

�

�

x �
y

3

�2

C
�

y �
x

2

�2
��

;

which, after the substitution y D tx, t � 0 reduces to

2

�

1

2
�

1

3
t

�2

�
8

9
max

(

.1 � t /2;
1

4
;

4

9
t2;

1

2

"

�

1 �
t

3

�2

C

�

t �
1

2

�2
#)

:

The last inequality can be easily checked by considering possible values of the parameter t � 0.

All other conditions are also fulfilled, and hence, by Corollary 4.3, we conclude that J1 and J2 have a common

fixed point (which is z D 0).

5 Application to Fredholm integral inclusions

In this section we apply the obtained results to achieve the existence of solutions for a certain Fredholm-type integral

inclusion. The application is inspired by [3, 21].

Consider the following integral inclusion of Fredholm type.

x.t/ 2 f .t/ C

b
Z

a

K.t; s; x.s// ds; t 2 Œa; b�: (17)

Here, f 2 C Œa; b� is a given real function and K W Œa; b� � Œa; b� � R ! Pcb.R/ a given set-valued operator;

x 2 C Œa; b� is the unknown function.

Now, for p � 1, consider the b-metric db on C Œa; b� defined by

db.x; y/ D . max
t2Œa;b�

jx.t/ � y.t/j/p D max
t2Œa;b�

jx.t/ � y.t/jp (18)

for all x; y 2 C Œa; b�. Then .C Œa; b�; db ; 2p�1/ is a complete b-metric space. Let Db and ıb have the respective

meanings.

We will assume the following:

(I) For each x 2 C Œa; b�, the operator Kx.t; s/ WD K.t; s; x.s//, .t; s/ 2 Œa; b� � Œa; b� is continuous.

(II) there exists a continuous function ‡ W Œa; b�2 ! Œ0; C1/ such that

jku.t; s/ � kv.t; s/jp

� ‡.t; s/ �

0

B

B

B

B

B

B

@

max

8

ˆ

<

ˆ

:

db.u.s/; v.s//;Db.u.s/;K.t; s; u.s///;

Db.v.s/;K.t; s; v.s///;
Db.u.s/;K.t;s;v.s///CDb.v.s/;K.t;s;u.s///

2p

9

>

=

>

;

C� min

(

Db.u.s/;K.t; s; u.s///;Db.v.s/;K.t; s; v.s///;

Db.u.s/;K.t; s; v.s///;Db.v.s/;K.t; s; u.s///

)

1

C

C

C

C

C

C

A
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for all t; s 2 Œa; b�, all u; v 2 C Œa; b� and all ku.t; s/ 2 Ku.t; s/, kv.t; s/ 2 Kv.t; s/, where � � 0, p > 1;

(III) there exists � 2 Œ1; C1/ such that

sup
t2Œa;b�

b
Z

a

‡.t; �/ d� �
e��

2p�1
:

Theorem 5.1. Under the conditions (I)–(III), the integral inclusion (17) has a solution in C Œa; b�.

Proof. Let E D C Œa; b� (with b-metric db as defined in (18)) and consider the set-valued operator J W E ! Pcb.E/

defined by

J x D

�

y 2 E W y.t/ 2 f .t/ C

b
Z

a

K.t; s; x.s// ds; t 2 Œa; b�

�

:

It is clear that the set of solutions of the integral inclusion (17) coincides with the set of fixed points of the operator

J . Hence, we have to prove that under the given conditions, J has at least one fixed point in E . For this, we shall

check that the conditions of Theorem 3.2 hold true.

Let x 2 E be arbitrary. For the set-valued operator Kx.t; s/ W Œa; b� � Œa; b� ! Pcb.R/, it follows from the

Michael’s selection theorem that there exists a continuous operator kx W Œa; b� � Œa; b� ! R such that kx.t; s/ 2

Kx.t; s/ for each .t; s/ 2 Œa; b� � Œa; b�. It follows that f .t/ C
R b

a
kx.t; s/ ds 2 J x. Hence, J x ¤ ;. Since f and

Kx are continuous on Œa; b�, resp. Œa; b�2, their ranges are bounded and hence J x is bounded, i.e., J W E ! Pcb.E/.

We will check that the contractive condition (2) holds for J in E with some � > 0, � � 0 and F 2 Fs , i.e.,

� C F.sıb.J x1;J x2// � F

 

max
n

db.x1; x2/;Db.x1;J x1/;Db.x2;J x2/; Db.x1;Jx2/CDb.x2;Jx1/

2p

o

C� minfDb.x1;J x1/;Db.x2;J x2/;Db.x1;J x2/;Db.x2;J x1/g

!

(19)

for elements x1; x2 2 E . Let y1 2 J x1 be arbitrary, i.e.,

y1.t/ 2 f .t/ C

b
Z

a

K.t; s; x1.s// ds; t 2 Œa; b�

holds true. This means that for all t; s 2 Œa; b� there exists kx1
.t; s/ 2 Kx1

.t; s/ D K.t; s; x1.s// such that y1.t/ D

f .t/ C
R b

a
kx1

.t; s/ ds for t 2 Œa; b�.

For all x1; x2 2 E , it follows from (II) that

jkx1
.t; s/ � kx2

.t; s/jp � ‡.t; s/

0

B

B

B

B

B

B

@

max

8

ˆ

<

ˆ

:

db.x1.s/; x2.s//;Db.x1.s/;K.t; s; x1.s///;

Db.x2.s/;K.t; s; x2.s///;
Db.x1.s/;K.t;s;x2.s///CDb.x2.s/;K.t;s;x1.s///

2p

9

>

=

>

;

C� min

(

Db.x1.s/;K.t; s; x1.s///;Db.x2.s/;K.t; s; x2.s///;

Db.x1.s/;K.t; s; x2.s///;Db.x2.s/;K.t; s; x1.s///

)

1

C

C

C

C

C

C

A

:

It means that there exists z.t; s/ 2 Kx2
.t; s/ such that

jkx1
.t; s/ � z.t; s/jp � ‡.t; s/

0

B

B

B

B

@

max

(

db.x1.s/; x2.s//;Db.x1.s/;Kx1
.t; s//; db.x2.s/; z.t; s//;

db.x1.s/;z.t;s//CDb.x2.s/;Kx1
.t;s//

2p

)

C� min

(

Db.x1.s/;Kx1
.t; s//; db.x2.s/; z.t; s//;

db.x1.s/; z.t; s//;Db.x2.s/;Kx1
.t; s//

)

1

C

C

C

C

A

DW R.t; s/;

for all t; s 2 Œa; b�.

Denote by U.t; s/ W Œa; b� � Œa; b� ! Pcb.R/ the operator defined by

U.t; s/ D Kx2
.t; s/ \ f u 2 R W db.kx1

.t; s/; u// � R.t; s/ g:
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Since, by (I), U is lower semicontinuous, it follows that there exists a continuous operator kx2
W Œa; b� � Œa; b� ! R

such that kx2
.t; s/ 2 U.t; s/ for t; s 2 Œa; b�. Then y2.t/ WD f .t/ C

R b

a
kx2

.t; s/ ds satisfies that

y2.t/ 2 f .t/ C

b
Z

a

K.t; s; x2.s// ds; t 2 Œa; b�;

i.e., y2 2 J x2 and

db.y1; y2/ � max
t2Œa;b�

b
Z

a

jkx1
.t; s/ � kx2

.t; s/jp ds

� max
t2Œa;b�

b
Z

a

‡.t; s/

0

B

B

B

B

@

max

(

db.x1.s/; x2.s//; db.x1.s/; kx1
.t; s/; db.x2.s/; kx2

.t; s///;
db.x1.s/;kx2

.t;s//Cdb.x2.s/;kx1
.t;s//

2p

)

C� min

(

db.x1.s/; kx1
.t; s//; db.x2.s/; kx2

.t; s//;

db.x1.s/; kx2
.t; s//; db.x2.s/; kx1

.t; s//

)

1

C

C

C

C

A

ds

�
e��

2p�1

 

max
n

db.x1; x2/;Db.x1;J x1/;Db.x2;J x2/; Db.x1;Jx2//CDb.x2;Jx1/

2p

o

C� minfDb.x1;J x1/;Db.x2;J x2/;Db.x1;J x2/;Db.x2;J x1/g

!

:

for all t; s 2 Œa; b�.

Thus, we obtain that

ıb.J x1;J x2/ �
e��

2p�1

 

max
n

db.x1; x2/;Db.x1;J x1/;Db.x2;J x2/; Db.x1;Jx2/CDb.x2;Jx1/

2p

o

C� minfDb.x1;J x1/;Db.x2;J x2/;Db.x1;J x2/;Db.x2;J x1/g

!

:

(This shows again that the sets J x1 and J x2 are bounded.) By passing to logarithms, we write

ln.sıb.J x1;J x2// � ln e��

 

max
n

db.x1; x2/;Db.x1;J x1/;Db.x2;J x2/; Db.x1;Jx2/CDb.x2;Jx1/

2p

o

C� minfDb.x1;J x1/;Db.x2;J x2/;Db.x1;J x2/;Db.x2;J x1/g

!

:

Taking the function F 2 Fs defined by F.˛/ D ln ˛, we obtain that the condition (19) is fulfilled.

Using Theorem 3.2, we conclude that the given integral inclusion has a solution.
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