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1. Introduction

Bazilevi¢ [3] introduced the class B(a, £, g) of functions which is defined by the integral
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where p € P, the class of analytic function with positive real part and g € §*, the well-known class
of starlike function. The numbers & > 0 and { are real and all powers are chosen so that it remains
single-valued. Apart from the fact that B(a, £, g) is univalent, we have little or no information on these
family of functions. But if we simplify, for example, letting £ = 0 and g(z) = z we get the well-known
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class B(a) which is given by

z 1-a /
%((%) d @) 70

where f € A is the class of functions having a Taylor series expansion of the form
fO=z+) ad GeU={z: [<1). (1.1)
k=2

Let 0 < n < 1, §*(n) and C(n) symbolize the classes of starlike functions of order n and convex
functions of order 7, respectively. Let S*(n,¥) (see [9]) denote the class of functions f € A satisfying
the inequality

f@)

Robertson [18] introduced quasi-subordination unifying the concept of subordination and majorization.
For analytic functions f and g in U, f is quasi-subordinate to g in U, denoted by f <, g, if there exist
a Schwarz function w and an analytic function ¢ satisfying |#(z)| < 1 and f(z) = ¢(z)g(w(z)) in U. If
¢(z) = 1, quasi-subordination reduces to subordination. If we let w(z) = z, then quasi-subordination
reduces to the concept of majorization.

For f € A givenby (1.1) and 0 < g < 1, the Jackson’s g-derivative operator or g-difference operator
is defined by (see [1,2] )

<%(Zf’(Z))<ﬂ, O<p<1<d; zel), (1.2)

f(0), ifz=0,
qu(Z) = {f( —flgn) (1.3)
/e gy 4,

From (1.3), we can easily see that D, f(z) = 1 + Z,‘;‘;ﬂk]qakzk‘l (z # 0), where the g-integer number
[k], is defined by

1 -4
l-g¢
and note that lim,_,;- ©,f(z) = f’(z). Notations and symbols play an very important role in the study
of g-calculus. Throughout this paper, we let ([k],), = [kl [k +1],[k+2],-- - [k+n—1],. Let g-analogue
incomplete beta function y(z) (see [19]) is defined by

([b]q)k—l Zk’ (1.5)
[C]q)k 1

[], = (1.4)

x@) =z+

~
|

AMg

2

where (b€ C, ce C\Z; ={---,-2,-1,0, 1,---}).

Lately, the study of the g — calculus has riveted the rigorous consecration of researchers. The great
attention is because of its gains in many areas of mathematics and physics. The significance of the
q — derivative operator D, is quite evident by its applications in the study of several subclasses of
analytic functions. Initially, in the year 1990, Ismail et al. [5] gave the idea of g — starlike functions.
Nevertheless, a firm base of the usage of the ¢ — calculus in the context of Geometric Function Theory
was efficiently established, and the use of the generalized basic (or g—) hypergeometric functions in
Geometric Function Theory was made by Srivastava (see, for details, [23]).The study of geometric
function theory in dual with quantum calculus was initiated by Srivastava ( [24], also see [25]). After
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that, extraordinary studies have been done by many mathematicians, which offer a significant part in the
encroachment of Geometric Function Theory. In particular, Srivastava et al. [26-32] also considered
some function classes of g — starlike functions related with conic region and focussed upon the classes
of g — starlike functions related with the Janowski functions from several different aspects. Inspired
by aforementioned works on g — calculus we now define the g-analogue of the function which maps U
onto a conic region. Let

vz s 1+qz \
Y(z) = T 0 -q: + \/1 +(—2+(1 —q)z) . (1.6)

The function ¢ defined by (1.6) is the g-analogue of h(z) = z + V1 + z3 which maps the unit disc onto
a leaf-like shaped region which is analytic and univalent. For details of functions mapping unit disc

onto a leaf-like domain, refer to [20].
For functions f € A given by (1.1) and & € A of the form

h@) =z+ ) T, (1.7)
=2
the Hadamard product (or convolution) is defined by
H() = (f @) =2+ ) alid. (1.8)

We now introduce the following class of functions.

Definition 1.1. For -2 < ¢ <7,0<4< 1,120,y € C\ {0} and H = f * h defined as in (1.8), let
B (v; ) be the class of functions defined by

1 1-t D H
1+ itan g — - Pa HE — —itané— 1| <, y@ -1, (1.9)
4 [(1-DH(2) + Az]
where ¢ €  and has a series expansion of the form
U@ = 1+Aiz+ A + A +--- (A #0;z€D). (1.10)

Remark 1.1. Several well-known classes can be seen as special case of B/, (y; ¥) (see [7,15,17,22]).
Here we highlight only the recent works which are associated with a conic region.

1. If weletA=¢t=0and h(z) = Eh(z) = —erh( Vo) =z2+ X, (2k 1)(k 1),z in the Definition 1.1,
where the function erh( /z) is defined by

erh(z) = % [)Z exp(_ﬂ) dt, (1.11)

then the class 8',(y; ) reduces to class g:?jy(gl/) introduced by Ramachandran et al. [16].

AIMS Mathematics Volume 6, Issue 7, 7111-7124.
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2. It can be easily seen that, with the choice of 4 = y as in (1.5) we have

[lim B(1; ¢)] =ML, (),
g1 a=0,y=2+ V12

where ML, (t; ) is the class recently introduced and studied by Murugusundaramoorthy and
Bulboaci [12].

3.Ifh(z) = 2+ X, 0@ =1, a=t=0,1=7y =1 andy is of the form (1.6), then B\ (y; ¥)

reduces to
3
R(l//)—{feS: D,f(2) < (I“L—Q)Z+ {/1+(M) }

2+(1-9g)z 2+(1-9g)z

where S is the class of all univalent functions in A. The class R(¥) was recently introduced by
Khan et al. [8]. Further, we note that lim,_, - R(y) = R(h), where h(z) = z + V1 + 22, the class of
functions recently studied by Priya and Sharma [13].

4. 1Fh() = 2+ ¥, gﬂ"gblz’z $(z)=1,a=A=1=0,y=1+0i,q— 1~ and for a choice of ¥, we
4/ k-1
2
")) A+1 -(A-1 2
@f @) A+ Dr@-@A-1) (D) = 1+—log[ \/Zl ’
/'@ (B+ Dk(z) —(B-1) n 1- 2z
where —1 < B < A < 1. The class UP[A, B] of all functions satisfying the above subordination
condition was introduced and studied by Malik et al. [10].

have

2. Prelimnaries

In this section, we state the results that would be used to establish our main results which can be
found in the standard text on univalent function theory.

Lemma 2.1. [4] If the function f € A given by (1.1) and g(w) given by

gw) = w+ ) bwt @.1)
k=2
are inverse functions, then for k > 2

ka, 1 0 e 0

(1)t 2kas (k+ Day 2 e 0
b= 3"_"4 (2k + Das (k +’2)dz o 0 : (2.2)

: : : (k-2)
(k— Dka, [k(k—=2)+1]ai.; [k(k=3)+2]larr --- (2k-2)a,

Remark 2.1. The elements of the determinant in (2.2) are given by

o _ [G—j+Dk+j—1]aijm, ifi+1>]
Yo, ifi+1<j.
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Lemma 2.2. [14]If p(z) = | + X2, piz’ € P, then |pi| < 2 for all k > 1, and the inequality is sharp

Iz

for p(z) = p1(2) = =.

Lemma 2.3. [11] Let p € P and also let v be a complex number. Then
|p2 — vp?| <2 max (1, 2v - 1]}. (2.3)

The result is sharp for functions given by

+ 72 1+z

@) = p2(2) = ——. p@) =pid) = —.
l-z -z
3. Coeflicients estimates for functions in 8(y; )

Hereafter, unless otherwise mentioned we assume that

—g<g<g, 0<A<1, t>0 and g€ (0, 1)

Also let g = f~! defined by f~'(f(2)) = z = f(f~'(z)) be inverse of f and
gw)=f'w) =w+ ; bw* (Wl < ro; ro > %)- (3.1)

The class of all functions in $(y; ) is not univalent, so the inverse is not guaranteed. However, there
exist an inverse function in some small disk with center at w = 0 depending on the parameters involved.

Let ¢(z) = dy + diz + drz> + ---(dy # 0) and |dy| < 1. Further, in general, I';’s are the respective
coefficients of z* in the power series expansion of 4 given by (1.7).

Theorem 3.1. If the function f(z) given by (1.1) and g(w) given by (2.1) are inverse functions and if
feB\(y; p) withy(z) = 1+Aiz+ A2 + A3 +- -+, (A) # 0; z € U), then the estimates of the inverse
coefficients of f are

Al
b2l < i sece i + @) + A0 = 1) G:2)

and

Al 1 o
|b3| < secf[q(l T+ -Dx /l] T d_o + max {1; |2v 1|}] 3.3)
with
)= l(l B é +A1’ydo(1 — /'l)(t— D[t +2qg+ A2 —1)] N 2A1d07[?(1 +qg)+t(1-2)+ /l]l—‘3). (3.4)
A 21+ iand)li + g + A1 - DI T2(1 + itan )t + q + AL — P

Proof. Let f € B'(y; ¢). Then by the definition of quasi-subordination, there is a function w(z) such

that
1 21D, (H(2)

o R T P e L
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Define the function p by

1+ w(2) - I+z
1-w(z) 1-z2
We can note that p(0) = 1 and p € P (see Lemma 2.2). Using (3.5), it is easy to see that

p@)=1+piz+p+--- (z € U). (3.5)

2 3

@-1 1 P p
W(Z):—§(2)+1 =5 |pet|p =T ) PP ]

So we have

1 D, (H
4 itan gyt P HE — _itané - 1]
Y [(1 - DH(2) + Az]
1 1 p1\ 1 d\Aip (3:0)
141P1
=1+ EAldOPIZ + d() (EAl (pz — ?1) + ZAQP%) + > ]Zz +
The left hand side of (3.6) will be
1t
2 7'[Dy (H(2))]
1+[+q) + Al =] Thaz + l1+g)+t(1-A)+ A|T3a
(1 — DH@ + 1] [t + @) + A0 = D] Taaxz + {[q(1 + @) + 1(1 = ) + A 303
I-D-1
[;2()(’/‘ +2q + A2 - )I5a3 }f
+ {| + (1 + @) + 11 = ) + | Ty
+ (A=D-1D[glg+2)+ A0t +2) + t] 3003
t— 1)t -2)[(t+3qg) + A3 - H](1 — 1)
where I[';’s are the corresponding coeflicients from the power series expansion of 4, which may be real
or complex.
By using (3.6) and (3.7), we have
Ay d,
ay = : YA1doP1 ’ (3.8)
20,(1 +itané) [(t + q) + A(1 —1)]
Ald()’)/ 1 A2
as = - pr—=|1—--—
20 +itané) [g(1 + @) + (1 — ) + A T3 2 A (3.9)

Alydo(l — ) — Dt +2g+ A2 - t)])pz N d1p1:|

2(1 +itan&)[t + g + A1 — )]? ody |
From (2.2), we see that b, = —a,. Hence, applying Lemma 2.3 in (3.8), we have (3.2).
Also from (2.2), we have

D] 3a, 1 ) YAy
523 6y 4 |22 T BT 4 2
! 3 4ar 221 + itan €2 [(t + g) + A(1 — 1)]
Aidyy

21 +itanéd) [g(l +q) + 1(1 = A) + A| T
[ 1( Ay ya’o(l—/l)(t—1)[t+2q+/1(2—l)]) 2 dlpl]

-=(l-—+A +
P T A, T v immd+ g+ a0 - )P T g
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—Aldo’}/ [ 1 ( AZ
= . P2— 5|1
2(1 +itané) [q(1 + g) + t(1 — ) + A T3 2
ydo(l = )t - DIt + 29+ A2 -] 2A1doy [q(1 + @) + 1(1 = D) + 4] Fs) 2, dlpl]
2(1 +itané)[t + g + A(1 — £)]? D21 +itané)[t + g + A1 — )] Per =

This completes the proof of the Theorem 3.1. O

1

Theorem 3.2. If the function f given by (1.1) and g given by (2.1) are inverse functions and if f € A
satisfies the inequality

2 DS * M)(2))]
[(1 =D * W) + 2]

n<%(1+% (1+itan&) —itané -1

)<19, O<n<1<9),

(3.10)
then the estimates of the inverse coefficients of f satisfying the inequality (3.10) are

219 — ) sin (Z5=2)

b2l < nllslsec&[(t+ q) + A(1 —1)]

and

219 — ) sin (%52 - - -
" A — ) sin (%=2) Mwmw{raﬁynw%m1nuh+ﬂ 7.
3

<
T asecélql+q)+ (1 -2+ A oon ¥ —n p—
an a(l =)\ (ydo(1 = D)@ - D[t +2g+ A2 -] 2dyy[g(1 +¢q)+1t(1—2)+A]T3
9-n 2(1 +itané)[t + g + A(1 — H]? C2(1+itand)t+qg+ A1 -0 )|}
Proof. From the equivalent subordination condition proved by Kuroki and Owa in [9], we may rewrite
the conditions (3.10) in the form

1 1-¢ D % N
L+ 20 s itang— & DTN )
Y [(1 - D{(f =)} + /IZ] (3.11)
9-n 1 — e2xi-n)/@-m) , )
1+ ilog( ) .
n 1-z2
Further, we note that
9 — 1 — e2ri(1=n)/@=n))
W) =1+ ”ilog( ¢ Z) (3.12)
T 1-z
maps U onto a convex domain conformally and is of the form
W@ =1+ ) A
n=1
where
A, = d-n, (1- ezm(u—m/(ﬂ—m))_
nm
Substituting the values of Ay, A,, dy = 1 and d; = 0 in Theorem 3.1, we have the assertion of the
theorem. o

AIMS Mathematics Volume 6, Issue 7, 7111-7124.
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If welet h(z) = z+ X,0,7",t =2 =0and g — 1~ in Theorem 3.2, we get the following result
obtained by Sim and Kwon [21].

Corollary 3.3. [21] If the function f(z) given by (1.1) and g(w) given by (2.1) are inverse functions
and if f € 8*(n, ), then

|b2] <

20 -n) in n(l—mn)
n d—-n

and

|bs] < 20 =m sin(ﬂ(1 — n))max{l;
n d—-n

1 ﬂ"]. 1 ’ﬂ—]]‘ izt
__3 — 3— 7”0717
> - l+(2+ - l)e

}.

Theorem 3.4. Let the function

vz N (=D k
= — h =
F@) = ~erh(V2) » f@) = 2+ ; TR TG
satisfy
1 D, (F
4 itang T Q@) — —itané— 1| <, u@ -1,
Y [(1 - DF (2) + 1z]
then
| 3lyllAl
27 secé[(t+ @)+ A1 = 1)]
and
10]A Iyl di
< — 1; 120 = 1]}{,
ol S e g+ @ + 1T =D+ 4] ) T 20 I}]
where
1 Ay ydo(1 = )t — D[t +2g + A2 —1)]
o=5|1-—+4 -
2 A 2(1 +itan [t + g + A1 — 1)]?
Proof. Fixing I'y = #ﬁ:l), in (3.8) and (3.9), we can prove the assertion of the theorem by applying
Lemma 2.3. =

If welett = 0 and A4 = 0 in Theorem 3.4, we have the following result obtained by Ramachandran
etal. [16].

Corollary 3.5. [16] If the function f of the form (1.1) belongs to ggj,y(x/l), then

3lyllA4l
secf(l - [2]q)

la,| <

and
YA

(I +itan&)(1 - [2],)

10ly|
secf([3]q - 1)

az| <

A + max {Al;

e

AIMS Mathematics Volume 6, Issue 7, 7111-7124.
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Remark 3.1. Some subordination results for the well-known Janowski class with the function « defined
by

1+ 4z
-2

2
2
k(z)=1+ = (log ) (ze ) (3.13)
was recently studied by Malik et al. [10].
Theorem 3.6. Suppose that f € B'(y; ¥) with Y(2) of the form

A+ Dk@+A-1)
B+ k() +(B-1)

Y(z)

where —1 < B < A < 1 and k(2) is defined as in(3.13), then the estimates of the inverse coefficients of
f are
4lyl(A - B)

D] < m2|Ca| sec (1 + q) + A(1 — 1)]

and

|3

4(A - B)ly| { '(4(B +1) 2) (4(A - B))
< max< 1; —=|+[——
n2secé[q(l +q) +t(1 = 2) + 2] T3] 2

2 3
Pt (3.14)

ydo(1 =t = DIt +2 + A2 = 0] 2oy [q(1 + ) + 1(1 = ) + 1] r3)
21 +itané)[t + g + A(1 — ]2 (1 +itand[t + g + A1 - 0)]?

Proof. Following the steps as in Theorem 1 of [8], we get

tﬁ(z):1+4(A;B)Z+ 8(A—2B) [1_6(B+1)
T 3

2
Now replacing A;, A, and Az in Theorem 3.1 with the corresponding coefficients of the series given in
(3.14), we have the assertion of the theorem. O

If we let h(z) = 2+ X0, %zk, ¢(z) =1, A=t =0and g — 17 in Theorem 3.1 we have the

following result.
Corollary 3.7. [10] Suppose that f € UP[A, B] (-1 < B <A < 1), then
2(A-B)

2

bs| <

and
4(A - B)

62

For a choice of the parameter h(z) = z + X1, o) =1,1=1,E=1t=0,y=1+0iand for a
appropriate choice of ¢ in the Theorem 3.1, we get the following result.

|bs| <

Corollary 3.8. [8] Suppose that f € A satisfies the condition

_ U+gz s (+gz_ )
D@ <@ = e \/1 * (m) '

AIMS Mathematics Volume 6, Issue 7, 7111-7124.
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Then .
las| < 3
and |
+4q
<
T ey

Remark 3.2. If we let ¢ — 17 in Corollary 3.8, we get the corresponding result of Priya and
Sharma [13].

4. Fekete-Szego problem for functions in 8'(y; ¢)

The Fekete-Szegd problem which is related to the Bieberbach conjecture represents various
geometric quantities. The motivation to provide a unified approach to the Fekete-Szego problem and
initial coefficients was from the study due to Kanas [6]. Note that Theorem 4.1 is a generalization of
result obtained in [6].

Theorem 4.1. Suppose f(z) =z + axz> + a3z + - -+ € B (y; ¥) (z € U). Then, for any u € C

|A]lyl
sec&[q(l +q) +1(1 = ) + 2] T3]

il

do

|a3 —ua§| <

+ max {1; |2p—1|}], “4.1)

where p is given by

1 [ A, [ydo(l (= DIt +2g+ A2 -] pydy[q(l + ) + (1 = 2) + AT )
A

p==|1-22+A4 ,
2 20 +itand)[t+q+A1-0F 21 +itand) [t +q) + A1 - )]

4.2)
The inequalities are sharp for each p.

Proof. Let f € B (y; ), then in view of the Eqs (3.8) and (3.9), for u € C we have

|a - a2|: Ardoy _1 1_‘2
SR v imne [+ -+ 415 |72 200 T 4
ydo(1 = )(t = D[t +2g + A2 = 1)] ) RN ] Hy*Aldgp
1 N -
20 +iandlt+g+A0 -0 )71 do | AP0+ itan &R [(1 + q) + A1 - DI
Adyy pr 1 (A,
= : P2— 5 5P|
2(1+itané) [q( +¢) + (1 - ) + A| T 2 " 2P\,

Yo = D= Dl +2g+ A2 = 0] _ pyAids [g(1+ ) + (1 =) + 4] rg] , iy
P20+ iand)lt+ g+ A0 -0P (1 +itand)[t+q)+ A1 -0 ) do
Ayl dif 1 (A
= Ysec g+ q) + 11— ) + A |3] 2+2|d0'+2|p1| (A1
A ydo(L =)t = DIt +2g+ A2 -0]  pyAido[q(1 +¢9) +1(1 =) + AT
2(1 +itané)[t + g + A(1 - ) 21 +itané) [( + ) + A1 - D]

1)]

4.3)

AIMS Mathematics Volume 6, Issue 7, 7111-7124.
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Now if

“D(- - Ardo[ (1 1-)+A]T .
2_? A, 200Dl 2geACon] Al o[g(1+g)+1(1-)+A]Ts < 1in (4.3), then

2(1+itan §)[t+q+A(1-)] R2(1+itan [ (+q)+A(1-n]°
Ayl d,
—ua?l < A 1+[—]. 4.4
laz = | < secé[q(1 +q) + 11— ) + ] |0 dy (4.4)

e | A ydo(1-)(t=D[t+2g+12—D]  myAido[q(1+q)+1(1-)+A]T3
Further, if i - A -

> 11in (4.3), then

2(1+itan &)[t+q+A(1-n] L2(1+itan &) (-+q)+A(1-0]
2 |Aqllyl d, Ay
|a3 - ,ua2| < - -
secE[qg(1 +q)+t(1 =)+ A0 \ldo| 1A,

4 o = (= DIt +2g+ A2 = 0] pyAido[g(1 + ) +1(1 = ) + AT
V20 +iandlt+ g+ A0 -0P 231 +itané)[(t +q) + A1 - D]

) 4.5)

An examination of the proof shows equality for (4.4) holds if p; = 0, p, = 2. Equivalently, we have

p(2) = pa(2) = % by Lemma 2.3. Therefore, the extremal function in 8',(y; i) is given by

27D, (H(2))]
(1 - DH(®2) + A7)

-1
%) = ¢(2) [;l/(zz) = 1] (z € U).

Similarly, equality for (4.5) holds if p, = 2. Equivalently, we have p(z) = pi(z) = }—fi by Lemma 2.3.
Therefore, the extremal function in B/ (y; ¥) (z € U) is given by

! (1 +itané)
Y [

—itané — 1]

= ¢(z)¢(

1 27D, (H(2)]
—[(1+itané) —itané—1|=¢@) [v(@) -1] (zeU).
Y [(1 - DH() + 2]
O
Corollary 4.2. [16] Suppose f(z) = 2+ arz> + a3z’ +-+- € Bg(y; ¥) (z € U). Then, for any u € C
10 9 1)-10
|a3 —/Ja§| < # A+ max<{Ay; Kla + ) yA% + Ay ¢ .
secé[q(1 +q)] 10g(1 + itan &)
Proof. 1f we let
VI S G
h = E,«]’l = — ]’l = ,
@) = E-h(@) = —5erh(\2) Z+;(2k—1)(k—l)!z
where erh is the error function (see [16]), and A = ¢ = 0 in Theorem 4.1 we can establish the assertion
of the corollary. o

If we let h(2) :z+2,‘:":2%zk, WD) =2+ I+ 2 @) =16=1=0,y=1+0iandg— 1" in
Theorem 4.1, we get the followiﬁglg.

Corollary 4.3. [12] Let f € ML, (t; ¥) is of the form (1.1), then for any u € C, we have

()] 1 { |(z = 3)1 +t)b(c + 1) +2u2 + )c(b + 1)|}
max 1; .

()2 +1¢ ’ 2(1 + 2lb(c + 1))

The inequalities are sharp for each p.

|a3 —,ua%| <

AIMS Mathematics Volume 6, Issue 7, 7111-7124.



7122

Ifweletl'y =1, £=2A=1t=0,¢(z) =1 g — 1~ and ¥(z) is of the form (3.12) in Theorem 4.1, then
we have the following result.

Corollary 4.4. [21] Let 0 < n < 1 < ¥ and let the function f € A belong to S*(n,9). Then, for any u,

- 1—
|a3 —,Ua%| < 071 7 sin (u)

¥-n
max {1;

Ifwetake A =t=0,13,=1,6 =0,y =1,¢(z) =1 and ¢ — 17 in Theorem 4.1, then we have the

following corollary.

U-n
T

1
—+(1=-2
2+( ) -

1 9 - -
i+(§—(1—mu "0&“%

Corollary 4.5. [33] Suppose f(z) = 7+ axz> + a3z’ + - € S*(Y) (z € U). Then

A A
|a3 —,ua%| < jlmax{l; Al + A_j - 2,uA1'} (u € C).

The inequality is sharp for the function given by
AL+ 22— 2uA,
Ay

Al + 1:—? —2/,(A1

> 1

fl) =

<1

zexp [ [w(t) - 1]1dr, if
zexp [ |w(?) — 1] 1dr, if

Conclusion 4.1. By defining Bazilevi¢ functions of complex order using quasi-subordination and
Hadamard product, we were able to unify and extend various classes of analytic function. New
extensions were discussed in detail. Further, by replacing the ordinary differentiation with quantum
differentiation we have attempted at the discretization of some of the well-known results.
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