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Recently, a number of fixed point theorems for contraction type mappings in partial metric spaces have been obtained by various
authors. Most of these theorems can be obtained from the corresponding results in metric spaces. The purpose of this paper is to
present certain fixed point results for single and multivalued mappings in partial metric spaces which cannot be obtained from the
corresponding results in metric spaces. Besides discussing some useful examples, an application to Volterra type system of integral
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1. Introduction and Preliminaries

Throughout this paper N, R, and R
+ denote the set of all

natural numbers, the set of all real numbers, and the set of
all nonnegative real numbers, respectively.

The well-known Banach contraction theorem (BCT) has
been generalized and extended by many authors in various

ways. In 1974, Ćirić [1] introduced the notion of quasi-
contraction and obtained a forceful generalization of Banach
contraction theorem.

Definition 1. A self-mapping 𝑇 of a metric space𝑋 is a quasi-
contraction if there exists a number 𝑟 ∈ [0, 1) such that, for
all 𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑚 (𝑥, 𝑦) , (C)
where𝑚(𝑥, 𝑦) = max{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦),
𝑑(𝑦, 𝑇𝑥)}.
Theorem2 (see [1]). Aquasi-contraction on a completemetric
space has a unique fixed point.

We remark that a quasi-contraction for a self-mapping
on a metric space is considered as the most general among
contractions listed by Rhoades [2].

In 2006, Proinov [3] established an equivalence between
two types of generalizations of the BCT. The first type
involves Meir-Keeler [4] type contraction conditions and
the second type involves Boyd and Wong [5] type con-
traction conditions. Further, generalizing certain results of
Jachymski [6] and Matkowski [7] he obtained the following

general fixed point theorem, which extends Ćirić’s quasi-
contraction.

Theorem 3 (see [3], Th. 4.1). Let 𝑇 be a continuous and
asymptotically regular self-mapping on a complete metric space
(𝑋, 𝑑) satisfying the following conditions:

(P1) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝐷(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋,

(P2) 𝑑(𝑇𝑥, 𝑇𝑦) < 𝐷(𝑥, 𝑦), whenever 𝐷(𝑥, 𝑦) ̸= 0,
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where𝜑 : R+ → R
+, a function satisfying the following: for any

𝜀 > 0 there exists 𝛿 > 𝜀 such that 𝜀 < 𝑡 < 𝛿 implies 𝜑(𝑡) ≤ 𝜀,
𝛾 ≥ 0, and

𝐷(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)] . (1)

Then 𝑇 has a unique fixed point.
Moreover if 𝛾 = 1 and 𝜑 is continuous with 𝜑(𝑡) < 𝑡 for all

𝑡 > 0, then the continuity of 𝑇 can be dropped.

A mapping 𝑇 satisfying the conditions (P1) and (P2) is
called a Proinov contraction. The following example shows
the generality of Proinov contraction over quasi-contraction.

Example 4 (see [8]). Let𝑋 = {1, 2, 3} with the usual metric 𝑑
and 𝑇 : 𝑋 → 𝑋 such that

𝑇1 = 1,
𝑇2 = 3,
𝑇3 = 1.

(2)

The mapping 𝑇 does not satisfy the condition (C). However,
𝑇 satisfies the conditions (P1) and (P2) with 𝜑(𝑡) = 2𝑡/(1+𝛾),
where 𝛾 > 1.

On the other hand, in 1994, Matthews [9] introduced
the notion of partial metric spaces to study the denotational
semantics of dataflow networks. It is widely recognized that
partial metric spaces play an important role in constructing
models in the theory of computation (see [10] and references
thereof). Matthews also obtained the partial metric version
of Banach contraction theorem. Subsequently, many authors
studied partial metric spaces and their topological properties
and obtained a number of fixed point theorems for single and
multivalued mappings (cf. [9–27] and many others).

In [28], Haghi et al. pointed out that some fixed point
generalizations to partial metric spaces can be obtained from
the corresponding results in metric spaces. To demonstrate
facts they considered certain cases. Motivated by Proinov’s
results, in this paper, we present some fixed point theorems
in partial metric spaces which cannot be obtained from the
corresponding results in metric spaces. Indeed, we obtain
some fixed and common fixed point theorems for single
and multivalued mappings in the setting of partial metric
spaces. Our results complement, extend, and generalize a
number of fixed point theorems including some recent results
in [10, 11, 14, 16, 23] and others. Besides discussing some
useful examples, an application to Volterra type system of
integral equations is also given. Finally, we show that fixed
point problems discussed herein are well-posed and have
limit shadowing property.

For the sake of completeness, we recall the following
definitions and results from [9, 10, 14].

Definition 5. A partial metric on a nonempty set 𝑋 is a
function 𝑝 : 𝑋 × 𝑋 → R

+ such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋
(p1) 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) = 𝑝(𝑥, 𝑦) if and only if 𝑥 = 𝑦;
(p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(p4) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) − 𝑝(𝑦, 𝑦).

The pair (𝑋, 𝑝) is called a partial metric space.

A partial metric 𝑝 on 𝑋 generates a 𝑇0-topology 𝜏𝑝 on 𝑋
with a base of the family of open 𝑝-balls {𝐵𝑝(𝑥, 𝑟) : 𝑥 ∈ 𝑋, 𝑟 >
0}, where

𝐵𝑝 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑝 (𝑥, 𝑦) < 𝑝 (𝑥, 𝑥) + 𝑟} . (3)

If 𝑝 is a partial metric on 𝑋, then the function 𝑝𝑠 : 𝑋 × 𝑋 →
R
+ given by

𝑝𝑠 (𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) (4)

for all 𝑥, 𝑦 ∈ 𝑋 is a metric on𝑋.

Example 6 (see [10, 14]). Let 𝑋 = R
+ and 𝑝 : 𝑋 × 𝑋 → R

+

given by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝) is
a partial metric space.

Example 7 (see [9, 14]). Let 𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏}.
Then 𝑝([𝑎, 𝑏], [𝑐, 𝑑]) = max{𝑏, 𝑑} −min{𝑎, 𝑐} defines a partial
metric 𝑝 on𝑋.

Definition 8. Let (𝑋, 𝑝) be a partial metric space. Then one
has the following:

(1) A sequence {𝑥𝑛} in 𝑋 converges to a point 𝑥 ∈ 𝑋 if
and only if lim𝑛→∞𝑝(𝑥, 𝑥𝑛) = 𝑝(𝑥, 𝑥).

(2) A sequence {𝑥𝑛} in𝑋 is Cauchy if lim𝑛,𝑚→∞𝑝(𝑥𝑛, 𝑥𝑚)
exists and is finite.

(3) 𝑋 is complete if every Cauchy sequence {𝑥𝑛} in 𝑋
converges to a point 𝑥 ∈ 𝑋, that is, 𝑝(𝑥, 𝑥) =
lim𝑛,𝑚→∞𝑝(𝑥𝑛, 𝑥𝑚).

Lemma 9 (see [9]). Let (𝑋, 𝑝) be a partial metric space. Then
𝑋 is complete if and only if the metric space (𝑋, 𝑝𝑠) is complete.
Furthermore, lim𝑛→∞𝑝𝑠(𝑥𝑛, 𝑧) = 0 if and only if

𝑝 (𝑧, 𝑧) = lim𝑛→∞𝑝 (𝑥𝑛, 𝑧) = lim𝑛,𝑚→∞𝑝 (𝑥𝑛, 𝑥𝑚) . (5)

In [25], Romaguera introduced the following notions of
0-Cauchy sequence and 0-complete partial metric spaces. He
obtained a characterization of completeness for partialmetric
space using the notion of 0-completeness.

Definition 10. A sequence {𝑥𝑛} in a partial metric space (𝑋, 𝑝)
is 0-Cauchy if lim𝑛,𝑚→∞𝑝(𝑥𝑛, 𝑥𝑚) = 0. The partial metric
space (𝑋, 𝑝) is 0-complete if each 0-Cauchy sequence in 𝑋
converges to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = 0.

Notice that every 0-Cauchy sequence in (𝑋, 𝑝) is Cauchy
in (𝑋, 𝑝𝑠) and every complete partial metric space is 0-
complete. However, a 0-complete partial metric space need
not be complete (cf. [29] and [25]).

A subset 𝐴 of 𝑋 is closed (resp., compact) in (𝑋, 𝑝) if
it is closed (resp., compact) with respect to the topology 𝜏𝑝
induced by 𝑝 on𝑋. The subset𝐴 is bounded in (𝑋, 𝑝) if there
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exist 𝑥0 ∈ 𝑋 and𝑀 > 0 such that 𝑎 ∈ 𝐵𝑝(𝑥0,𝑀) for all 𝑎 ∈ 𝐴;
that is,

𝑝 (𝑥0, 𝑎) < 𝑝 (𝑎, 𝑎) + 𝑀 ∀𝑎 ∈ 𝐴. (6)

Let 𝐶𝐵𝑝(𝑋) be the collection of all nonempty, closed, and
bounded subsets of 𝑋 with respect to the partial metric 𝑝.
For 𝐴 ∈ 𝐶𝐵𝑝(𝑋), one defines

𝑝 (𝑥, 𝐴) = inf
𝑦∈𝐴

𝑝 (𝑥, 𝑦) . (7)

For 𝐴, 𝐵 ∈ 𝐶𝐵𝑝(𝑋),
𝛿𝑝 (𝐴, 𝐵) = sup

𝑎∈𝐴
𝑝 (𝑎, 𝐵) ,

𝛿𝑝 (𝐵, 𝐴) = sup
𝑏∈𝐵

𝑝 (𝑏, 𝐴) ,

𝐻𝑝 (𝐴, 𝐵) = max {𝛿𝑝 (𝐴, 𝐵) , 𝛿𝑝 (𝐵, 𝐴)} .

(8)

Proposition 11 (see [14]). Let (𝑋, 𝑝) be a partial metric space.
For any 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝑝(𝑋), one has

(𝛿1) 𝛿𝑝(𝐴, 𝐴) = sup{𝑝(𝑎, 𝑎) : 𝑎 ∈ 𝐴};
(𝛿2) 𝛿𝑝(𝐴, 𝐴) ≤ 𝛿𝑝(𝐴, 𝐵);
(𝛿3) 𝛿𝑝(𝐴, 𝐵) = 0 implies that 𝐴 ⊆ 𝐵;
(𝛿4) 𝛿𝑝(𝐴, 𝐵) ≤ 𝛿𝑝(𝐴, 𝐶) + 𝛿𝑝(𝐶, 𝐵) − inf 𝑐∈𝐶𝑝(𝑐, 𝑐).

Proposition 12 (see [14]). Let (𝑋, 𝑝) be a partial metric space.
For any 𝐴, 𝐵, 𝐶 ∈ 𝐶𝐵𝑝(𝑋), one has
(H1) 𝐻𝑝(𝐴, 𝐴) ≤ 𝐻𝑝(𝐴, 𝐵);
(H2) 𝐻𝑝(𝐴, 𝐵) = 𝐻𝑝(𝐵, 𝐴);
(H3) 𝐻𝑝(𝐴, 𝐵) ≤ 𝐻𝑝(𝐴, 𝐶) + 𝐻𝑝(𝐶, 𝐵) − inf 𝑐∈𝐶𝑝(𝑐, 𝑐);
(H4) 𝐻𝑝(𝐴, 𝐵) = 0 ⇒ 𝐴 = 𝐵. But the converse is not true.
In view of Propositions 11 and 12,𝐻𝑝 is a partial Hausdorff

metric induced by the partial metric 𝑝.

2. Auxiliary Results

Hitzler and Seda [19] obtained the following result to establish
a relation between a partial metric and the corresponding
metric on a nonempty set 𝑋.

Proposition 13 (see [19, 28]). Let (𝑋, 𝑝) be a partial metric
space. Then the function 𝑑 : 𝑋×𝑋 → R

+ defined by 𝑑(𝑥, 𝑦) =
0 whenever 𝑥 = 𝑦 and 𝑑(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) whenever 𝑥 ̸= 𝑦 is a
metric on 𝑋 such that 𝜏𝑝𝑠 ⊆ 𝜏𝑑. Moreover, (𝑋, 𝑑) is complete if
and only if (𝑋, 𝑝) is 0-complete.

The following lemma is the key result in [28].

Lemma 14 (see [28]). Let (𝑋, 𝑝) be a partial metric space,
𝑇 : 𝑋 → 𝑋 a self-mapping, 𝑑 the metric constructed in
Proposition 13, and 𝑥, 𝑦 ∈ 𝑋. Define

𝑀𝑑 (𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
1
2 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]} ,

𝑀𝑝 (𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦) ,
1
2 [𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)]} .

(9)

Then 𝑀𝑑(𝑥, 𝑦) = 𝑀𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦.
Using Proposition 13 and Lemma 14 above, we obtain the

following result.

Lemma 15. Let (𝑋, 𝑝) be a partial metric space and 𝑇 : 𝑋 →
𝑋 a self-mapping. Suppose 𝑑 : 𝑋 × 𝑋 → R

+ is the constructed
metric in Proposition 13 and 𝑥, 𝑦 ∈ 𝑋. Define

𝜇𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦) ,
𝜇𝑝 (𝑥, 𝑦) = 𝑝 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦) . (10)

Then

(a) 𝜇𝑑(𝑥, 𝑦) ≤ 𝜇𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;

(b) 𝑀𝑝(𝑥, 𝑦) ≤ 𝜇𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Proof. To prove (a), we shall consider three cases and the rest
of the cases will follow in the same manner.

Case 1 (𝑥 = 𝑦). One has
𝜇𝑑 (𝑥, 𝑦) = 0 + 𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)

≤ 𝑝 (𝑥, 𝑥) + 𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦)
= 𝜇𝑝 (𝑥, 𝑦) .

(11)

Case 2 (𝑥 = 𝑇𝑥). One has
𝜇𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 0 + 𝑑 (𝑦, 𝑇𝑦)

≤ 𝑝 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑥) + 𝑝 (𝑦, 𝑇𝑦)
= 𝜇𝑝 (𝑥, 𝑦) .

(12)

Case 3 (𝑦 = 𝑇𝑦). One has
𝜇𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑇𝑥) + 0

≤ 𝑝 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑦)
= 𝜇𝑝 (𝑥, 𝑦) .

(13)

The proof of (b) follows easily form [8, page 3300].
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3. Single Valued Mappings

For the sake of brevity, in this section, we shall use the
following denotations:

(1) Φ the class of functions 𝜙 : R+ → R
+ such that 𝜙 is

continuous nondeceasing function satisfying 𝜙(𝑡) < 𝑡
and the series ∑∞𝑛≥1 𝜙𝑛(𝑡) converges for all 𝑡 > 0;

(2) Ψ the class of functions 𝜓 : R
+ → R

+ such that
𝜓 is upper semicontinuous from the right satisfying
𝜓(𝑡) < 𝑡 for all 𝑡 > 0.

Let 𝐴, 𝐵, 𝑆, 𝑇 : 𝑋 → 𝑋 be mappings.

(3) 𝑀(𝑥, 𝑦) = max{𝑝(𝑆𝑥, 𝑇𝑦), 𝑝(𝐴𝑥, 𝑆𝑥), 𝑝(𝐵𝑦, 𝑇𝑦),
(1/2)[𝑝(𝑆𝑥, 𝐵𝑦) + 𝑝(𝐴𝑥, 𝑇𝑦)]};

(4) 𝛼(𝑥, 𝑦) = 𝑝(𝑆𝑥, 𝑇𝑦) + 𝑝(𝐴𝑥, 𝑆𝑥) + 𝑝(𝐵𝑦, 𝑇𝑦).
Remark 16. It can be easily seen that

(i) 𝑀(𝑥, 𝑦) ≤ 𝛼(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 (see [8]);

(ii) Φ ⊂ Ψ.
Browder and Petryshyn [30] introduced the notion of

asymptotic regularity for a single valued mapping in a metric
space (see also [3], page 547).

Definition 17. A self-mapping 𝑇 of a metric space (𝑋, 𝑑) is
asymptotically regular at a point 𝑥 ∈ 𝑋 if

lim𝑛→∞𝑑 (𝑇𝑛𝑥, 𝑇𝑛+1𝑥) = 0. (14)

If 𝑇 is asymptotically regular at each point of𝑋 then one says
that 𝑇 is asymptotically regular on𝑋.

Sastry et al. [31] and Singh et al. [32] extended the above
definition to three mappings as follows.

Definition 18. Let 𝑆, 𝑇, and 𝑓 be self-mappings of a metric
space (𝑋, 𝑑). The pair (𝑆, 𝑇) is asymptotically regular with
respect to 𝑓 at a point 𝑥0 ∈ 𝑋 if there exists a sequence {𝑥𝑛}
in 𝑋 such that

𝑓𝑥2𝑛+1 = 𝑆𝑥2𝑛,
𝑓𝑥2𝑛+2 = 𝑇𝑥2𝑛+1

(15)

for all 𝑛 ∈ N ∪ {0} and
lim𝑛→∞𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0. (16)

If 𝑆 = 𝑇 then one gets the definition of asymptotic
regularity of 𝑇 with respect to 𝑓 (see, for instance, Rhoades
et al. [33]). Further, if 𝑓 is the identity mapping on 𝑋, then
one gets the usual definition of asymptotic regularity for a
mapping 𝑇.

We extend the above notion to four self-mappings on a
partial metric space as follows.

Definition 19. Let 𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of a partial
metric space (𝑋, 𝑝).Themappings𝐴,𝐵, 𝑆, and𝑇will be called

asymptotically regular at 𝑥0 ∈ 𝑋 if there exist sequences {𝑥𝑛}
and {𝑦𝑛} in 𝑋 such that

𝑦2𝑛 = 𝑇𝑥2𝑛+1 = 𝐴𝑥2𝑛;
𝑦2𝑛+1 = 𝑆𝑥2𝑛+2 = 𝐵𝑥2𝑛+1.

(17)

𝑛 ∈ N ∪ {0} and
lim𝑛→∞𝑝 (𝑦𝑛, 𝑦𝑛+1) = 0. (18)

The following theorem is the main result in [10].

Theorem 20. Suppose 𝐴, 𝐵, 𝑆, and 𝑇 are self-mappings of a
complete partial metric space (𝑋, 𝑝) such that 𝐴𝑋 ⊆ 𝑇𝑋,
𝐵𝑋 ⊆ 𝑆𝑋, and

𝑝 (𝐴𝑥, 𝐵𝑦) ≤ 𝜙 (𝑀 (𝑥, 𝑦)) , (19)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜙 ∈ Φ.
If one of 𝐴𝑋, 𝐵𝑋, 𝑇𝑋, and 𝑆𝑋 is a closed subset of (𝑋, 𝑝),

then

(i) 𝐴 and 𝑆 have a coincidence point;
(ii) 𝐵 and 𝑇 have a coincidence point.

Moreover, if the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,
then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point.

Now we present a more general result thanTheorem 20.

Theorem 21. Let 𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings of a partial
metric space (𝑋, 𝑝) such that

(A) 𝐴𝑋 ⊆ 𝑇𝑋 and 𝐵𝑋 ⊆ 𝑆𝑋;

(B) 𝐴, 𝐵, 𝑆, and 𝑇 are asymptotically regular at 𝑥0 ∈ 𝑋;

𝑝 (𝐴𝑥, 𝐵𝑦) ≤ 𝜓 (𝛼 (𝑥, 𝑦)) , (20)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ.
If one of 𝐴𝑋, 𝐵𝑋, 𝑇𝑋, and 𝑆𝑋 is a 0-complete subspace of

𝑋, then

(a) 𝐴 and 𝑆 have a coincidence point;
(b) 𝐵 and 𝑇 have a coincidence point;

(c) 𝐴 and 𝑆 have a common fixed point provided that the
pair (𝐴, 𝑆) is commuting at one of their coincidence
points;

(d) 𝐵 and 𝑇 have a common fixed point provided that the
pair (𝐵, 𝑇) is commuting at one of their coincidence
points.

Moreover, the mappings 𝐴, 𝐵, 𝑆, and 𝑇 have a common fixed
point provided that (𝑐) and (𝑑) are true.
Proof. Let 𝑥0 ∈ 𝑋 be such that 𝐴, 𝐵, 𝑆, and 𝑇 are asymptoti-
cally regular at 𝑥0. Since 𝐴𝑋 ⊆ 𝑇𝑋, there exists 𝑥1 ∈ 𝑋 such
that 𝑇𝑥1 = 𝐴𝑥0. Also since 𝐵𝑋 ⊆ 𝑆𝑋, there exists 𝑥2 ∈ 𝑋
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such that 𝑆𝑥2 = 𝐵𝑥1. Continuing this process, we construct
sequences {𝑥𝑛} and {𝑦𝑛} in 𝑋 defined by

𝑦2𝑛 = 𝑇𝑥2𝑛+1 = 𝐴𝑥2𝑛;
𝑦2𝑛+1 = 𝑆𝑥2𝑛+2 = 𝐵𝑥2𝑛+1,

(21)

where 𝑛 ∈ N ∪ {0}. Since 𝐴, 𝐵, 𝑆, and 𝑇 are asymptotically
regular at 𝑥0, we have

lim𝑛→∞𝑝 (𝑦𝑛, 𝑦𝑛+1) = 0. (22)

We claim that {𝑦𝑛} is a 0-Cauchy sequence. Suppose {𝑦𝑛}
is not 0-Cauchy. Then there exist 𝛽 > 0 and increasing
sequences {𝑚𝑘} and {𝑛𝑘} of positive integers such that

𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘+1) ≥ 𝛽,
𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘) < 𝛽,

(23)

for all 𝑛 ≤ 2𝑚𝑘 < 2𝑛𝑘 + 1. By the triangle inequality, we have
𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘+1) ≤ 𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘) + 𝑝 (𝑦2𝑛𝑘 , 𝑦2𝑛𝑘+1)

− 𝑝 (𝑦2𝑛𝑘 , 𝑦2𝑛𝑘)
≤ 𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘) + 𝑝 (𝑦2𝑛𝑘 , 𝑦2𝑛𝑘+1) .

(24)

Thus lim𝑘→∞𝑝(𝑦2𝑚𝑘 , 𝑦2𝑛𝑘+1) = 𝛽. Now, by (20), we have
𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑛𝑘+1) = 𝑝 (𝐴𝑥2𝑚𝑘 , 𝐵𝑥2𝑛𝑘+1)

≤ 𝜓 (𝛼 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1)) = 𝜓 (𝑝 (𝑆𝑥2𝑚𝑘 , 𝑇𝑥2𝑛𝑘+1)
+ 𝑝 (𝐴𝑥2𝑚𝑘 , 𝑆𝑥2𝑚𝑘) + 𝑝 (𝐵𝑥2𝑛𝑘+1, 𝑇𝑥2𝑛𝑘+1))
= 𝜓 (𝑝 (𝑦2𝑚𝑘−1, 𝑦2𝑛𝑘) + 𝑝 (𝑦2𝑚𝑘 , 𝑦2𝑚𝑘−1)
+ 𝑝 (𝑦2𝑛𝑘+1, 𝑦2𝑛𝑘)) .

(25)

Since 𝜓 is upper semicontinuous from the right, we deduce
that

𝛽 ≤ lim sup
𝑘→∞

𝜓 (𝛼 (𝑥2𝑚𝑘 , 𝑥2𝑛𝑘+1)) ≤ 𝜓 (𝛽) , (26)

a contradiction. Therefore lim𝑚,𝑛→∞𝑝(𝑦𝑛, 𝑦𝑚) = 0.
Suppose that 𝑆𝑋 is a 0-complete subspace of𝑋. Then the

subsequence {𝑦2𝑛} being contained in 𝑆𝑋 has a limit in 𝑆𝑋.

Call it 𝑧. Let𝑢 ∈ 𝑆−1𝑧.Then 𝑆𝑢 = 𝑧. Note that the subsequence
{𝑦2𝑛+1} also converges to 𝑧. By (20), we have

𝑝 (𝐴𝑢, 𝐵𝑥2𝑛+1) ≤ 𝜓 (𝛼 (𝑢, 𝑥2𝑛+1))
= 𝜓 (𝑝 (𝑆𝑢, 𝑇𝑥2𝑛+1) + 𝑝 (𝐴𝑢, 𝑆𝑢)
+ 𝑝 (𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1)) = 𝜓 (𝑝 (𝑆𝑢, 𝑦2𝑛)
+ 𝑝 (𝐴𝑢, 𝑆𝑢) + 𝑝 (𝑦2𝑛+1, 𝑦2𝑛)) .

(27)

Since 𝜓 is upper semicontinuous from the right, making
𝑘 → ∞ implies 𝑝(𝐴𝑢, 𝑆𝑢) ≤ 𝜓(𝑝(𝐴𝑢, 𝑆𝑢)) < 𝑝(𝐴𝑢, 𝑆𝑢), a

contradiction, unless 𝑝(𝐴𝑢, 𝑆𝑢) = 0. Therefore 𝐴𝑢 = 𝑆𝑢 = 𝑧
and 𝑢 is a coincidence point of 𝐴 and 𝑆.

Since 𝐴𝑋 ⊆ 𝑇𝑋, 𝑧 = 𝐴𝑢 ∈ 𝑇𝑋. Hence there exists V ∈ 𝑋
such that 𝐴𝑢 = 𝑇V. Again, by (20), we have

𝑝 (𝐴𝑢, 𝐵V) ≤ 𝜓 (𝛼 (𝑢, V))
= 𝜓 (𝑝 (𝑆𝑢, 𝑇V) + 𝑝 (𝐴𝑢, 𝑆𝑢) + 𝑝 (𝐵V, 𝑇V))
= 𝜓 (𝑝 (𝐵V, 𝐴𝑢)) .

(28)

Thus 𝑝(𝐴𝑢, 𝐵V) ≤ 𝜓(𝑝(𝐴𝑢, 𝐵V)) < 𝑝(𝐴𝑢, 𝐵V), a contradic-
tion, unless 𝑝(𝐴𝑢, 𝐵V) = 0. Therefore 𝑇V = 𝐴𝑢 = 𝐵V and V is
a coincidence point of 𝐵 and 𝑇.

If the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are commuting at 𝑢 and V,
respectively, then

𝐴𝑆𝑢 = 𝑆𝐴𝑢,
𝐴𝐴𝑢 = 𝐴𝑆𝑢 = 𝑆𝐴𝑢 = 𝑆𝑆𝑢;
𝐵𝑇V = 𝑇𝐵V,
𝑇𝑇V = 𝑇𝐵V = 𝐵𝑇V = 𝐵𝐵V.

(29)

Now, in view of (20), it follows that

𝑝 (𝐴𝐴𝑢,𝐴𝑢) = 𝑝 (𝐴𝐴𝑢, 𝐵V) ≤ 𝜓 (𝛼 (𝐴𝑢, V))
= 𝜓 (𝑝 (𝑆𝐴𝑢, 𝑇V) + 𝑝 (𝐴𝐴𝑢, 𝑆𝐴𝑢) + 𝑝 (𝐵V, 𝑇V))
= 𝜓 (𝑝 (𝐴𝐴𝑢, 𝐴𝑢)) ,

(30)

a contradiction. Therefore 𝐴𝐴𝑢 = 𝐴𝑢 = 𝑆𝐴𝑢 and 𝐴𝑢 is a
common fixed point of 𝐴 and 𝑆. Similarly, 𝐵V is a common
fixed point of 𝐵 and 𝑇. Since 𝐴𝑢 = 𝐵V, we conclude that 𝐴𝑢
is a common fixed point of𝐴, 𝐵, 𝑆, and𝑇.The proof is similar
when 𝑇𝑋 is a complete subspace of 𝑋. The cases in which
𝐴𝑋 or 𝐵𝑋 is a complete subspace of 𝑋 are also similar since
𝐴𝑋 ⊆ 𝑇𝑋 and 𝐵𝑋 ⊆ 𝑆𝑋.

When 𝐴 = 𝐵 and 𝑆 = 𝑇 = id (the identity mapping) in
Theorem 21, we get the following result which extends a result
of Romaguera [23].

Corollary 22. Let𝐴 be an asymptotically regular self-mapping
of a partial metric space (𝑋, 𝑝) such that

𝑝 (𝐴𝑥, 𝐴𝑦) ≤ 𝜓 (𝜇𝑝 (𝑥, 𝑦)) , (31)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜓 ∈ Ψ. Then 𝐴 has a fixed point.

The following example shows the generality of our results.

Example 23. Let 𝑋 = {0, 1, 2} endowed with the partial
metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝)
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is a 0-complete partial metric space. Define the mappings
𝐴, 𝐵, 𝑆, 𝑇 : 𝑋 → 𝑋 by

𝐴 = 𝐵,
𝑆 = 𝑇,

𝐴0 = 𝐴1 = 0,
𝐴2 = 2;
𝑇0 = 0,
𝑇1 = 1,
𝑇2 = 2.

(32)

Define sequences {𝑥𝑛} and {𝑦𝑛} by

𝑥0 = 𝑥𝑛 = 0;
𝑦2𝑛 = 𝑇𝑥2𝑛+1 = 𝐴𝑥2𝑛;

𝑦2𝑛+1 = 𝑆𝑥2𝑛+2 = 𝐵𝑥2𝑛+1,
(33)

where 𝑛 ∈ N ∪ {0}. Then the mappings 𝐴, 𝐵, 𝑆, and 𝑇 are
asymptotically regular at 0.

Further,

𝑝 (𝐴𝑥, 𝐵𝑦) ≤ 𝜓 (𝛼 (𝑥, 𝑦)) , (34)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼(𝑥, 𝑦) = 𝑝(𝑆𝑥, 𝑇𝑦) + 𝑝(𝐴𝑥, 𝑆𝑥) +
𝑝(𝐵𝑦, 𝑆𝑦) and 𝜓(𝑡) = 3𝑡/4. So the assumptions ofTheorem 21
are fulfilled and 𝐴, 𝐵, 𝑆, and 𝑇 have fixed points 0 and 2.

On the other hand, 𝑝(𝐴1, 𝐵2) > 𝜙(𝑀(1, 2)) for any 𝜙.
Therefore the mappings 𝐴, 𝐵, 𝑆, and 𝑇 do not satisfy the
requirements of Theorem 20.

Example 24. Let 𝑋 = [0, 1] be endowed with the partial
metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝)
is a 0-complete partial metric space. Define the mappings
𝐴, 𝐵, 𝑆, 𝑇 : 𝑋 → 𝑋 by

𝐴𝑥 = 1
2𝑥
2,

𝐵𝑥 = 1
8𝑥
2,

𝑆𝑥 = 1
6𝑥
2,

𝑇𝑥 = 𝑥2.

(35)

Then 𝐴𝑋 ⊆ 𝑇𝑋 and 𝐵𝑋 ⊆ 𝑆𝑋. Now define the function 𝜓 :
R
+ → R

+ by 𝜓(𝑡) = (3/4)𝑡. We now show that

𝑝 (𝐴𝑥, 𝐵𝑦) ≤ 𝜓 (𝛼 (𝑥, 𝑦)) , (36)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼(𝑥, 𝑦) = 𝑝(𝑆𝑥, 𝑇𝑦) + 𝑝(𝐴𝑥, 𝑆𝑥) +
𝑝(𝐵𝑦, 𝑆𝑦). For this, let 𝑥, 𝑦 ∈ 𝑋 with 𝑦 ≤ 𝑥. Then

𝑝 (𝐴𝑥, 𝐵𝑦) = 𝑝(1
2𝑥
2, 18𝑦
2) = 1

2𝑥
2,

𝛼 (𝑥, 𝑦) = 𝑝 (𝑆𝑥, 𝑇𝑦) + 𝑝 (𝐴𝑥, 𝑆𝑥) + 𝑝 (𝐵𝑦, 𝑆𝑦)
= 𝑝 (1

6𝑥
2, 𝑦2) + 𝑝(1

2𝑥
2, 16𝑥
2)

+ 𝑝(1
8𝑦
2, 16𝑦
2) ≥ 1

6𝑥
2 + 1

2𝑥
2 = 2

3𝑥
2.

(37)

Then

𝜓 (𝛼 (𝑥, 𝑦)) ≥ 𝜓(2
3𝑥
2) = 1

2𝑥
2 = 𝑝 (𝐴𝑥, 𝐵𝑦) . (38)

Now we show that the mappings 𝐴, 𝐵, 𝑆, and 𝑇 are asymp-
totically regular. For this, by Definition 19, we have for all
𝑛 ∈ N ∪ {0}

𝑦2𝑛 = 𝑇𝑥2𝑛+1 = 𝐴𝑥2𝑛 = (𝑥2𝑛+1)2 = 1
2 (𝑥2𝑛)2 ,

𝑦2𝑛+1 = 𝑆𝑥2𝑛+2 = 𝐵𝑥2𝑛+1 = 1
6 (𝑥2𝑛+2)2 = 1

8 (𝑥2𝑛+1)2 .
(39)

Solving the above two equations we get

𝑥2𝑛+1 = 1
√2𝑥2𝑛,

𝑥2𝑛+2 = √3
8𝑥2𝑛.

(40)

So for given 𝑥0 ∈ 𝑋 we can define a sequence {𝑥𝑛} by using
(40) and then we can easily define sequence {𝑦𝑛} by (39). It
can be easily seen that lim𝑛→∞𝑝(𝑦𝑛, 𝑦𝑛+1) = 0.

On the other hand, for 𝑦 = 0 and 𝑥 > 0, we have
𝑝 (𝐴𝑥, 𝐵0) = 𝑝 (1

2𝑥
2, 0) = 1

2𝑥
2,

𝑀 (𝑥, 𝑦) = max {𝑝 (𝑆𝑥, 𝑇0) , 𝑝 (𝐴𝑥, 𝑆𝑥) , 𝑝 (𝐵0, 𝑇0) ,
1
2 [𝑝 (𝑆𝑥, 𝐵0) + 𝑝 (𝐴𝑥, 𝑇0)]} = max {𝑝(1

6𝑥
2, 0) ,

𝑝 (1
2𝑥
2, 16𝑥
2) , 𝑝 (0, 0) ,

1
2 [𝑝 (1

6𝑥
2, 0) + 𝑝(1

2𝑥
2, 0)]} = 1

2𝑥
2.

(41)

Therefore 𝑝(𝐴𝑥, 𝐵0) = (1/2)𝑥2 = 𝑀(𝑥, 𝑦) > 𝜙(𝑀(𝑥, 𝑦)) for
any 𝜙. Therefore the mappings 𝐴, 𝐵, 𝑆, and 𝑇 do not satisfy
the requirement of Theorem 20.

Now we give an example in which the mapping is not
asymptotically regular at each point of interval but satisfies
condition (4) for one mapping.
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Example 25. Let 𝑋 = [0, 1] be endowed with the partial
metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝) is
a 0-complete partial metric space. Define the mapping by

𝑇𝑥 = {{
{{{

0, if 𝑥 ∈ [0, 12] ,
1, otherwise 𝑥 ∈ (1

2 , 1] . (42)

Now define the function𝜑 : R+ → R
+ by𝜑(𝑡) = (3/4)𝑡. It can

be easily seen that 𝑇 is asymptotically regular at each point of
interval [0, 1/2] and not asymptotically regular at any point
of interval (1/2, 1]. Now we show that

𝑝 (𝐴𝑥, 𝐵𝑦) ≤ 𝜑 (𝛼 (𝑥, 𝑦)) , (43)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼(𝑥, 𝑦) = 𝑝(𝑥, 𝑦)+𝑝(𝑥, 𝑇𝑥)+𝑝(𝑦, 𝑇𝑦).
For this we distinguish the following cases.

Case 1. If 𝑥, 𝑦 ∈ [0, 1/2] with 𝑥 ≤ 𝑦, we have
𝑝 (𝑇𝑥, 𝑇𝑦) = 0 ≤ 𝜑 (𝛼 (𝑥, 𝑦)) . (44)

Case 2. If 𝑥 ∈ [0, 1/2] and 𝑦 ∈ (1/2, 1], we have
𝜑 (𝛼 (𝑥, 𝑦)) = 𝜑 (𝑝 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦))

= 3
4 (𝑦 + 𝑥 + 1) ≥ 3

4 (1
2 + 1) = 9

8 > 1
= 𝑝 (𝑇𝑥, 𝑇𝑦) .

(45)

Case 3. If 𝑥, 𝑦 ∈ (1/2, 1] with 𝑥 ≤ 𝑦, we have
𝜑 (𝛼 (𝑥, 𝑦)) = 𝜑 (𝑝 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑥) + 𝑝 (𝑦, 𝑇𝑦))

= 3
4 (𝑦 + 1 + 1) ≥ 3

2 > 1 = 𝑝 (𝑇𝑥, 𝑇𝑦) . (46)

4. Multivalued Mappings

Rhoades et al. [33] and Singh et al. [32] extended the concept
of asymptotic regularity from single valued to multivalued
mappings in metric spaces. We extend it to partial metric
spaces.

Definition 26. Let (𝑋, 𝑝) be a partial metric space and 𝑆 :
𝑋 → 𝐶𝐵𝑝(𝑋). The mapping 𝑆 is asymptotically regular at
𝑥0 ∈ 𝑋 if, for any sequence {𝑥𝑛} in𝑋 and each sequence {𝑦𝑛}
in 𝑋 such that 𝑦𝑛 ∈ 𝑆𝑥𝑛−1,

lim𝑛→∞𝑝 (𝑦𝑛, 𝑦𝑛+1) = 0 (47)

for 𝑛 ∈ N ∪ {0}.
Aydi et al. [14] obtained the following equivalent to the

well-known multivalued contraction theorem due to Nadler
Jr. [34].

Theorem 27. Let (𝑋, 𝑝) be a complete partial metric space. If
𝑇 : 𝑋 → 𝐶𝐵𝑝(𝑋) is a multivalued mapping such that, for all
𝑥, 𝑦 ∈ 𝑋 and 𝑘 ∈ (0, 1), one has

𝐻𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) , (48)

then 𝑇 has a fixed point.

In [24], Romaguera pointed out that if 𝑋 = R
+ and 𝑝 :

𝑋 ×𝑋 → R
+ defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋,

then 𝐶𝐵𝑝(𝑋) = 0 and the approach used in Theorem 27 and
elsewhere has a disadvantage that the fixed point theorems for
self-mappings may not be derived from it, when 𝐶𝐵𝑝(𝑋) =
0. To overcome this problem he introduced the concept of
mixedmultivaluedmappings and obtained a different version
of Nadler Jr.’s theorem in a partial metric space.

Definition 28. Let (𝑋, 𝑝) be a partial metric space. Amapping
𝑇 : 𝑋 → 𝑋∪𝐶𝐵𝑝(𝑋) is called a mixed multivalued mapping
on 𝑋 if 𝑇 is a multivalued mapping on 𝑋 such that for each
𝑥 ∈ 𝑋 either 𝑇𝑥 ∈ 𝑋 or 𝑇𝑥 ∈ 𝐶𝐵𝑝(𝑋).

A self-mapping 𝑇 : 𝑋 → 𝑋 and a multivalued mapping
𝑇 : 𝑋 → 𝐶𝐵𝑝(𝑋) both are mixed multivalued mappings (see
also [35]).

Motivated by Proinov’s theorem and the above facts, we
obtain the following result, which extendsTheorem 27 above
and Corollary 2.5 in [16].

Theorem 29. Let (𝑋, 𝑝) be a 0-complete partial metric space
and 𝑆 : 𝑋 → 𝑋 ∪ 𝐶𝑝(𝑋) a continuous mixed multivalued
mapping such that

(S1) 𝐻𝑝(𝑆𝑥, 𝑆𝑦) ≤ 𝜑(𝜇(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋;

(S2) 𝐻𝑝(𝑆𝑥, 𝑆𝑦) < 𝜇(𝑥, 𝑦) whenever 𝜇(𝑥, 𝑦) ̸= 0,
where 𝜑 is as in Theorem 3, 𝐶𝑝(𝑋) is a collection of all
nonempty compact subsets of 𝑋, 𝛾 ≥ 0, and

𝜇 (𝑥, 𝑦) = 𝑝 (𝑥, 𝑦) + 𝛾 [𝑝 (𝑥, 𝑆𝑥) + 𝑝 (𝑦, 𝑆𝑦)] . (49)

If 𝑆 is asymptotically regular at 𝑥0 ∈ 𝑋, then 𝑆 has a fixed point.
Moreover, if 𝛾 = 1 and𝜑 is continuous and satisfies𝜑(𝑡) < 𝑡

for all 𝑡 > 0, then the continuity of 𝑆 can be dropped.

Proof. We construct a sequence {𝑥𝑛} in 𝑋 in the following
way. Let 𝑥0 ∈ 𝑋 such that 𝑆 is asymptotically regular at 𝑥0.
Let 𝑥1 be any element of 𝑆𝑥0. If 𝑥0 = 𝑥1 or 𝑥1 ∈ 𝑆𝑥1, then 𝑥1
is a fixed point of 𝑆 and there is nothing to prove. Assume that
𝑥1 ∉ 𝑆𝑥1 and 𝑆𝑥1 is not singleton. Then 𝑆𝑥1 ∈ 𝐶𝑝(𝑋) and by
compactness of 𝑆𝑥1 we can choose 𝑥2 ∈ 𝑆𝑥1 such that

𝑝 (𝑥1, 𝑥2) ≤ 𝐻𝑝 (𝑆𝑥0, 𝑆𝑥1) . (50)

If 𝑆𝑥1 = {𝑥2} is a singleton, then obviously

𝑝 (𝑥1, 𝑥2) ≤ 𝐻𝑝 (𝑆𝑥0, 𝑆𝑥1) . (51)

Therefore, in either case, we have

𝑝 (𝑥1, 𝑥2) ≤ 𝐻𝑝 (𝑆𝑥0, 𝑆𝑥1) . (52)

Again, since 𝑆𝑥2 is compact, we choose a point 𝑥3 ∈ 𝑆𝑥2 such
that

𝑝 (𝑥2, 𝑥3) ≤ 𝐻𝑝 (𝑆𝑥1, 𝑆𝑥2) . (53)

Continuing in the same manner we get

𝑝 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝐻𝑝 (𝑆𝑥𝑛−1, 𝑆𝑥𝑛) . (54)
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Following largely [3, 8], we show that the sequence {𝑥𝑛} is a0-Cauchy. Fix 𝜀 > 0. Since 𝜑 is as in Theorem 3, there exists
𝛿 > 𝜀 such that, for any 𝑡 ∈ (0,∞),

𝜀 < 𝑡 < 𝛿 󳨐⇒
𝜑 (𝑡) ≤ 𝜀. (55)

Without loss of generality we may assume that 𝛿 ≤ 2𝜀. Since
𝑆 is asymptotically regular at 𝑥0,

lim𝑛→∞𝑝 (𝑥𝑛, 𝑥𝑛+1) = 0. (56)

So, there exists an integer𝑁1 ≥ 1 such that

𝑝 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝐻𝑝 (𝑆𝑥𝑛−1, 𝑆𝑥𝑛) < 𝛿 − 𝜀
1 + 2𝛾 , (57)

for all 𝑛 ≥ 𝑁1. By induction we shall show that

𝑝 (𝑥𝑛, 𝑥𝑚) ≤ 𝐻𝑝 (𝑆𝑥𝑛−1, 𝑆𝑥𝑚−1) < 𝛿 + 2𝛾𝜀
1 + 2𝛾 , (58)

for all𝑚, 𝑛 ∈ N with𝑚 ≥ 𝑛 ≥ 𝑁1.
Let 𝑛 ≥ 𝑁1 be fixed. Obviously, (58) holds for 𝑚 = 𝑛 + 1.

Assuming (58) to hold for an integer 𝑚 ≥ 𝑛, we shall prove it
for𝑚 + 1. By the triangle inequality, we get

𝑝 (𝑥𝑛, 𝑥𝑚+1) ≤ 𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝑝 (𝑥𝑛+1, 𝑥𝑚+1)
− 𝑝 (𝑥𝑛+1, 𝑥𝑛+1)

≤ 𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝑝 (𝑥𝑛+1, 𝑥𝑚+1)
≤ 𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝐻𝑝 (𝑆𝑥𝑛, 𝑆𝑥𝑚) .

(59)

We claim that

𝐻𝑝 (𝑆𝑥𝑛, 𝑆𝑥𝑚) ≤ 𝜀. (60)

To prove the above claim, we consider two cases.

Case 1 (𝜇(𝑥𝑛, 𝑥𝑚) ≤ 𝜀). By (S2) it follows that𝐻𝑝(𝑆𝑥𝑛, 𝑆𝑥𝑚) ≤
𝜇(𝑥𝑛, 𝑥𝑚) ≤ 𝜀, and (60) holds.

Case 2 (𝜇(𝑥𝑛, 𝑥𝑚) > 𝜀). By (S1), we have
𝐻𝑝 (𝑆𝑥𝑛, 𝑆𝑥𝑚) ≤ 𝜑 (𝜇 (𝑥𝑛, 𝑥𝑚)) . (61)

By the definition of 𝜇(x, 𝑦), we obtain
𝜇 (𝑥𝑛, 𝑥𝑚) = 𝑝 (𝑥𝑛, 𝑥𝑚)

+ 𝛾 [𝑝 (𝑥𝑛, 𝑆𝑥𝑛) + 𝑝 (𝑥𝑚, 𝑆𝑥𝑚)]
= 𝑝 (𝑥𝑛, 𝑥𝑚)

+ 𝛾 [𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝑝 (𝑥𝑚, 𝑥𝑚+1)] .

(62)

Using (57) and (58) in this inequality, we get

𝜇 (𝑥𝑛, 𝑥𝑚) < 𝛿 + 2𝛾𝜀
1 + 2𝛾 + 𝛾 𝛿 − 𝜀

1 + 2𝛾 + 𝛾 𝛿 − 𝜀
1 + 2𝛾 = 𝛿. (63)

Thus 𝜀 < 𝜇(𝑥𝑛, 𝑥𝑚) < 𝛿. Hence (55) implies that
𝜑(𝜇(𝑥𝑛, 𝑥𝑚)) ≤ 𝜀. Now (61) implies (60). By (60), (59), and
(57), it follows that

𝑝 (𝑥𝑛, 𝑥𝑚+1) ≤ 𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝐻𝑝 (𝑆𝑥𝑛, 𝑆𝑥𝑚)
< 𝛿 − 𝜀

1 + 2𝛾 + 𝜀 = 𝛿 + 2𝛾𝜀
1 + 2𝛾 . (64)

This proves (58). Since 𝛿 ≤ 2𝜀, (58) implies that 𝑝(𝑥𝑛, 𝑥𝑚) <
2𝜀 for all integers𝑚 and 𝑛 with𝑚 ≥ 𝑛 ≥ 𝑁1 and hence {𝑥𝑛} is
a 0-Cauchy sequence. Since𝑋 is 0-complete, {𝑥𝑛} has a limit.
Call it 𝑧. We note that

𝑝 (𝑧, 𝑧) = lim𝑚,𝑛→∞𝑝 (𝑥𝑛, 𝑥𝑚) = 0. (65)

If 𝑆 is continuous, then obviously 𝑧 ∈ 𝑆𝑧 is a fixed point of 𝑆.
Moreover, if 𝛾 = 1 and 𝜑 is continuous and satisfies 𝜑(𝑡) <

𝑡 for all 𝑡 > 0, then it follows from (S2) that

𝑝 (𝑥𝑛+1, 𝑆𝑧) ≤ 𝐻𝑝 (𝑆𝑥𝑛, 𝑆𝑧)
≤ 𝜑 (𝑝 (𝑥𝑛, 𝑧) + 𝑝 (𝑥𝑛, 𝑆𝑥𝑛) + 𝑑 (𝑧, 𝑆𝑧))
≤ 𝜑 (𝑝 (𝑥𝑛, 𝑧) + 𝑝 (𝑥𝑛, 𝑥𝑛+1) + 𝑑 (𝑧, 𝑆𝑧)) .

(66)

Making 𝑛 → ∞,

𝑑 (𝑧, 𝑆𝑧) ≤ 𝜑 (𝑑 (𝑧, 𝑆𝑧)) , (67)

a contradiction, unless 𝑧 ∈ 𝑆𝑧.

Nowwe present a slightlymodified version ofTheorem29
to obtain a new result.

Theorem30. Let (𝑋, 𝑝) be a partial metric space and𝑇 : 𝑋 →
𝑋 and 𝑆 : 𝑋 → 𝐶𝑝(𝑋) such that 𝑆𝑋 ⊆ 𝑇𝑋 and

(i) 𝐻𝑝(𝑆𝑥, 𝑆𝑦) ≤ 𝜑(ℎ(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈ 𝑋,

where ℎ(𝑥, 𝑦) = 𝑝(𝑇𝑥, 𝑇𝑦) + 𝑝(𝑇𝑥, 𝑆𝑥) + 𝑝(𝑇𝑦, 𝑆𝑦),
and 𝜑 is as in Theorem 3 and is continuous;

(ii) 𝐻𝑝(S𝑥, 𝑆𝑦) < ℎ(𝑥, 𝑦) whenever ℎ(𝑥, 𝑦) ̸= 0.
If 𝑆 is asymptotically regular and either 𝑆𝑋 or 𝑇𝑋 is a
complete subspace of 𝑋, then 𝑆 and 𝑇 have a coincidence
point 𝑧.

Further, 𝑆 and 𝑇 have a common fixed point provided that
𝑆𝑆𝑧 = 𝑆𝑧 and 𝑆 and𝑇 are commuting at their coincidence point
𝑧.
Proof. It can be completed using the proofs of Theorem 29
above andTheorem 2.2 in [8].

The following example illustrates our results.
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Example 31 (see [36]). Let𝑋 = {0, 1, 2} and 𝑝 : 𝑋 × 𝑋 → R
+

defined by

𝑝 (0, 0) = 0,
𝑝 (1, 1) = 𝑝 (2, 2) = 1

4 ,

𝑝 (1, 0) = 1
3 ,

𝑝 (2, 0) = 3
5 ,

𝑝 (2, 1) = 2
5 ,

𝑝 (𝑥, 𝑦) = 𝑝 (𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝑋.

(68)

Clearly, (𝑋, 𝑝) is a 0-complete partial metric space. Now,
define the mapping 𝑆 : 𝑋 → 𝐶𝑝(𝑋) such that

𝑆𝑥 = {
{{

{0} if 𝑥 ̸= 2,
{0, 1} if 𝑥 = 2. (69)

It can be easily seen that 𝑆 is asymptotically regular at 0 and
𝐻𝑝 (𝑆𝑥, 𝑆𝑦) ≤ 𝜑 (𝜇 (𝑥, 𝑦)) (70)

with 𝛾 ≥ 1 and 𝜑(𝑡) = 3𝑡/4. Therefore all the assumptions of
Theorem 29 are fulfilled and 0 is a fixed point of 𝑆.

The following example shows the generality of our results.

Example 32. Let 𝑋 = {0, 1, 4} be endowed with the partial
metric 𝑝 : 𝑋 × 𝑋 → R

+ defined by

𝑝 (𝑥, 𝑦) = 1
4
󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 + 1

2max {𝑥, 𝑦} ∀𝑥, 𝑦 ∈ 𝑋. (71)

Clearly, (𝑋, 𝑝) is a 0-complete partial metric space. Now,
define the mapping 𝑆 : 𝑋 → 𝐶𝑝(𝑋) such that

𝑆0 = 𝑆1 = {0} ,
𝑆4 = {0, 4} . (72)

It can be easily seen that 𝑆 is continuous and asymptotically
regular and for all 𝑥, 𝑦 ∈ 𝑋,

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) ≤ 𝜑 (𝜇 (𝑥, 𝑦)) (73)

with 𝛾 ≥ 1 and 𝜑(𝑡) = 4𝑡/5. Therefore the assumptions of
Theorem 29 are fulfilled.

On the other hand,

𝐻𝑝 (𝑆0, 𝑆4) = 𝐻𝑝 ({0} , {0, 4})
= max {𝑝 (0, {0, 4}) ,max {𝑝 (0, 0) , 𝑝 (4, 0)}} = 3
> 3𝑘

(74)

for all 𝑘 ∈ (0, 1);Theorem 27 and Corollary 2.5 in [16] are not
satisfied by the mapping 𝑆.

Example 33. Let 𝑋 = [0, 2] be endowed with the partial
metric 𝑝 : 𝑋 × 𝑋 → R

+ defined by

𝑝 (𝑥, 𝑦) = 1
4
󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 + 1

2max {𝑥, 𝑦} ∀𝑥, 𝑦 ∈ 𝑋. (75)

Now define the mapping 𝑆 : 𝑋 → 𝐶𝑝(𝑋) ∪ 𝑋 such that

𝑆𝑥 = {
{{

[0, 78𝑥] , if 𝑥 ∈ [0, 1] ,
{1} , if 𝑥 ∈ (1, 2] . (76)

It can be easily seen that 𝑝𝑠(𝑥, 𝑦) = |𝑥 − 𝑦| and (𝑋, 𝑝𝑠) is a
completemetric space.Now, by Lemma9, (𝑋, 𝑝) is a complete
partialmetric space and hence 0-complete. Nowwe show that

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) ≤ 𝜑 (𝑝 (𝑥, 𝑦) + 𝛾 [𝑝 (𝑥, 𝑆𝑥) + 𝑝 (𝑦, 𝑆𝑦)]) (77)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝛾 ≥ 5/7 and 𝜑(𝑡) = (7/8)𝑡. For this we
distinguish the following cases.

Case 1. If 𝑥, 𝑦 ∈ [0, 1] with 𝑥 ≤ 𝑦, we have
𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = max {𝛿𝑝 (𝑆𝑥, 𝑆𝑦) , 𝛿𝑝 (𝑆𝑦, 𝑆𝑥)}

= max { 7
16𝑥,

21
32𝑦 − 7

32𝑥}

= 21
32𝑦 − 7

32𝑥.
(78)

Therefore, for all 𝛾 ≥ 0 and 𝜑(𝑡) = (7/8)𝑡, we have
𝜑 (𝜇 (𝑥, 𝑦)) = 𝜑 (𝑝 (𝑥, 𝑦) + 𝛾 [𝑝 (𝑥, 𝑆𝑥) + 𝑝 (𝑦, 𝑆𝑦)])

≥ 𝜑 (𝑝 (𝑥, 𝑦)) = 7
8 (3

4𝑦 − 1
4𝑥)

= 21
32𝑦 − 7

32𝑥 = 𝐻𝑝 (𝑆𝑥, 𝑆𝑦) .
(79)

Similar conclusion can be done for 𝑦 < 𝑥.
Case 2. If 𝑥 ∈ [0, 1] and 𝑦 ∈ (1, 2], then we have

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = max {𝛿𝑝 (𝑆𝑥, 𝑆𝑦) , 𝛿𝑝 (𝑆𝑦, 𝑆𝑥)}
= max {3

4 ,
3
4 − 7

32𝑥} = 3
4 .

(80)

Therefore, for all 𝛾 ≥ 5/7 and 𝜑(𝑡) = (7/8)𝑡, we have
𝜑 (𝜇 (𝑥, 𝑦)) = 𝜑 (𝑝 (𝑥, 𝑦) + 𝛾 [𝑝 (𝑥, 𝑆𝑥) + 𝑝 (𝑦, 𝑆𝑦)])

= 7
8 (3

4𝑦 − 1
4𝑥 + 𝛾 [17

32𝑥 + 3
4y − 1

4])

= 7
32 (2 + 2𝛾) 𝑦 + 7

32 (𝑦 − 𝑥)
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+ 7
8𝛾 [17

32𝑥 + 1
4 (𝑦 − 1)] ≥ 3

4
= 𝐻𝑝 (𝑆𝑥, 𝑆𝑦) .

(81)

Case 3. If 𝑥, 𝑦 ∈ (1, 2] with 𝑥 ≤ 𝑦, then we have

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = 𝐻𝑝 ({1} , {1}) = 1
2 . (82)

Hence, for all 𝛾 ≥ 5/7 and 𝜑(𝑡) = (7/8)𝑡, we have
𝜑 (𝜇 (𝑥, 𝑦)) = 𝜑 (𝑝 (𝑥, 𝑦) + 𝛾 [𝑝 (𝑥, 𝑆𝑥) + 𝑝 (𝑦, 𝑆𝑦)])

= 7
8 (3

4𝑦 − 1
4𝑥 + 𝛾 [3

4𝑥 − 1
4 + 3

4𝑦 − 1
4])

= 7
32 (2 + 3𝛾) 𝑦 + 7

32 (𝑦 − 𝑥) + 7
8𝛾

(3𝑥 − 2)
4 ≥ 1

2
= 𝐻𝑝 (𝑆𝑥, 𝑆𝑦) .

(83)

Similar conclusion can be done for 𝑦 < 𝑥.
On the other hand, at 𝑥 = 1 and 𝑦 = 11/10, we have
𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = 𝐻𝑝 ([0, 78] , {1})

= max {𝛿𝑝 ([0, 78] , {1}) , 𝛿𝑝 ({1} , [0, 78])}

= max {3
4 ,

17
32} = 3

4 .

(84)

Now

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = 𝐻𝑝 ([0, 78] , {1}) = 3
4 > 𝑘 ⋅ 2340

= 𝑘 ⋅ 𝑝 (𝑥, 𝑦)
(85)

for all 𝑘 ∈ [0, 1) and
𝑀(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑆𝑥) , 𝑝 (𝑦, 𝑆𝑦) ,

1
2 [𝑝 (𝑥, 𝑆𝑦) + 𝑝 (𝑦, 𝑆𝑥)]} = max {23

40 ,
17
32 ,

23
40 ,

177
320}

= 23
40 .

(86)

Hence

𝐻𝑝 (𝑆𝑥, 𝑆𝑦) = 3
4 > 𝑘 ⋅ 2340 = 𝑘 ⋅ 𝑀 (𝑥, 𝑦) (87)

for all 𝑘 ∈ [0, 1).
Remark 34. We remark that the mappings satisfying Theo-
rems 2, 27, and 20 are also asymptotically regular. Therefore
the extra assumption of asymptotical regularity in our results
is not strong.

5. Existence of a Common Solution of Volterra
Type Integral Equations

This section is inspired by the work given in paper [37] and
the purpose of this section is to give an existence theorem for
a solution of (88) given below.

Let 𝐼 = [0, 𝐾] ⊂ R be a closed and bounded interval
with 𝐾 > 0. Consider the system of Volterra type integral
equations:

𝑢 (𝑡) = 𝑔 (𝑡) + ∫𝑡
0
𝐾1 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑢 (𝑡) = 𝑔 (𝑡) + ∫𝑡
0
𝐾2 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑢 (𝑡) = 𝑔 (𝑡) + ∫𝑡
0
𝐾3 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑢 (𝑡) = 𝑔 (𝑡) + ∫𝑡
0
𝐾4 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(88)

where 𝑡 ∈ [0, 𝐾] and 𝐾𝑖 : [0; 𝐾] × [0; 𝐾] × R → R (𝑖 ∈
{1, 2, 3, 4}) and 𝑔 : R → R are continuous functions.

Let𝐶(𝐼,R) be the set of real continuous functions defined
on 𝐼 and 𝑇𝑖 : 𝐶(𝐼,R) → 𝐶(𝐼,R) self-mappings defined by

𝑇𝑖𝑢 (𝑡) = 𝑔 (𝑡) + ∫𝑡
0
𝐾𝑖 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠

∀𝑢 ∈ 𝐶 (𝐼,R) , 𝑡 ∈ 𝐼, 𝑖 ∈ {1, 2, 3, 4} .
(89)

Clearly, 𝑢 is a solution of (88) if and only if it is a common
fixed point of 𝑇𝑖 for 𝑖 ∈ {1, 2, 3, 4}.

We shall prove the existence of a common fixed point of
𝑇𝑖 for 𝑖 ∈ {1, 2, 3, 4} under certain conditions.

Theorem 35. Suppose that the following hypotheses hold:

(H1) For any 𝑢 ∈ 𝐶(𝐼,R), there exist 𝑘1, 𝑘2 ∈ 𝐶(𝐼,R) such
that 𝑇1𝑢 = 𝑇3𝑘1, 𝑇2𝑢 = 𝑇4𝑘2.

(H2) For all 𝑡 ∈ 𝐼, 𝑢 ∈ 𝐶(𝐼,R),
𝑇1𝑇4𝑢 (𝑡) = 𝑇4𝑇1𝑢 (𝑡) , whenever 𝑇1𝑢 (𝑡) = 𝑇4𝑢 (𝑡) , (90)

and for all 𝑡 ∈ 𝐼, 𝑢 ∈ 𝐶(𝐼,R),
𝑇2𝑇3𝑢 (𝑡) = 𝑇3𝑇2𝑢 (𝑡) , whenever 𝑇2𝑢 (𝑡) = 𝑇3𝑢 (𝑡) . (91)

(H3) There exists a continuous function ℏ : 𝐼 × 𝐼 → R
+ such

that for all 𝑡, 𝑠 ∈ 𝐼 and 𝑢, V ∈ 𝐶(𝐼,R)
󵄨󵄨󵄨󵄨𝐾1 (𝑡, 𝑠, 𝑢 (𝑠)) − 𝐾2 (𝑡, 𝑠, V (𝑠))󵄨󵄨󵄨󵄨 ≤ ℏ (𝑡, 𝑠)

⋅ [󵄨󵄨󵄨󵄨𝑇4𝑢 (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑇2V (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨] .

(92)
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(H4) For sequences {ℎ𝑛} and {𝑘𝑛} in 𝐶(𝐼,R) such that
𝑘2𝑛 = 𝑇3ℎ2𝑛 = 𝑇1ℎ2𝑛;

𝑘2𝑛+1 = 𝑇4ℎ𝑛 = 𝑇2ℎ2𝑛+1,
(93)

one has

lim𝑛→∞
󵄨󵄨󵄨󵄨𝑘𝑛 (𝑡) − 𝑘𝑛+1 (𝑡)󵄨󵄨󵄨󵄨 = 0 ∀𝑡 ∈ 𝐼, 𝑛 ∈ N ∪ {0} . (94)

(H5) sup𝑡∈𝐼 ∫
𝑡

0
ℏ(𝑡, 𝑠)𝑑𝑠 ≤ 3/4.

Then system (88) of integral equations has a solution 𝑢∗ ∈
𝐶(𝐼,R).
Proof. For 𝑥 ∈ 𝑋 = 𝐶(𝐼,R) define ‖𝑥‖𝜏 =
max𝑡∈[0,𝐾]{|𝑥(𝑡)|𝑒−𝜏𝑡}, where 𝜏 ≥ 1 is taken arbitrary. Notice
that ‖ ⋅ ‖𝜏 is a norm equivalent to the maximum norm and
(𝑋, ‖ ⋅ ‖𝜏) is a Banach space (cf. [38, 39]). The metric induced
by this norm is given by

𝑑𝜏 (𝑥, 𝑦) = max
𝑡∈[0,𝐾]

{󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑒−𝜏𝑡} , (95)

for all 𝑥, 𝑦 ∈ 𝑋.
Now, consider 𝑋 endowed with the partial metric given

by

𝑝𝜏 (𝑥, 𝑦) = {
{{

𝑑𝜏 (𝑥, 𝑦) , if ‖𝑥‖𝜏 , 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝜏 ≤ 1,
𝑑𝜏 (𝑥, 𝑦) + 𝜏, otherwise. (96)

Obviously, (𝑋, 𝑝𝜏) is 0-complete but not complete. In fact, the
associated metric 𝑝𝑠𝜏(𝑥, 𝑦) = 2𝑝𝜏(𝑥, 𝑦) − 𝑝𝜏(𝑥, 𝑥) − 𝑝𝜏(𝑦, 𝑦)
given by

𝑝𝑠𝜏 (𝑥, 𝑦)

= {
{{

2𝑑𝜏 (𝑥, 𝑦) , if (‖𝑥‖𝜏 , 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝜏 ≤ 1) or (‖𝑥‖𝜏 , 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩𝜏 > 1) ,
2𝑑𝜏 (𝑥, 𝑦) + 𝜏, otherwise,

(97)

is not complete [37]. It is evident that 𝑥∗ ∈ 𝑋 is a solution
of (88) if and only if 𝑥∗ is a common fixed point of 𝑇󸀠𝑖 𝑠. By
condition (H1), it is clear that

𝑇1 (𝐶 (𝐼,R)) ⊂ 𝑇3 (𝐶 (𝐼,R)) ,
𝑇2 (𝐶 (𝐼,R)) ⊂ 𝑇4 (𝐶 (𝐼,R)) .

(98)

From condition (H2), the pairs (𝑇1, 𝑇4) and (𝑇2, 𝑇3) are
commuting. Using condition (H3) and maximum norm, the
mappings 𝑇𝑖 (𝑖 = 1, 2, 3, 4) are asymptotically regular on
(𝑋, 𝑝𝜏).

Now, we show that condition (20) holds. Observe that this
condition needs not be checked for 𝑢 = V ∈ 𝑋. Then for

𝑢, V ∈ 𝑋 such that ‖𝑢‖𝜏, ‖V‖𝜏 ≤ 1, by assertions (H3)–(H5),
we have

󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑡) − 𝑇2V (𝑡)󵄨󵄨󵄨󵄨 ≤ ∫𝑡
0

󵄨󵄨󵄨󵄨𝐾1 (𝑡, 𝑠, 𝑢 (𝑡))
− 𝐾2 (𝑡, 𝑠, V (𝑡))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ (∫𝑡
0

3𝜏
4 [󵄨󵄨󵄨󵄨𝑇4𝑢 (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑇2V (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨] 𝑑𝑠)

= (∫𝑡
0

3𝜏
4 [󵄨󵄨󵄨󵄨𝑇4𝑢 (s) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑇2V (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨] 𝑒−𝜏𝑠𝑒𝜏𝑠𝑑𝑠) = 3𝜏
4 (∫𝑡
0
𝑒𝜏𝑠𝑑𝑠)

⋅ [󵄨󵄨󵄨󵄨𝑇4𝑢 (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑇2V (𝑠) − 𝑇3V (𝑠)󵄨󵄨󵄨󵄨] 𝑒−𝜏𝑠 = 3𝜏

4 (𝑒𝜏𝑡
𝜏 − 1

𝜏)
⋅ [󵄩󵄩󵄩󵄩𝑇4𝑢 (𝑠) − 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏 + 󵄩󵄩󵄩󵄩𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄩󵄩󵄩󵄩𝜏
+ 󵄩󵄩󵄩󵄩𝑇2V (𝑠) − 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏] = 3𝜏

4 (𝑒𝜏𝑡
𝜏 ) [󵄩󵄩󵄩󵄩𝑇4𝑢 (𝑠)

− 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏 + 󵄩󵄩󵄩󵄩𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄩󵄩󵄩󵄩𝜏 + 󵄩󵄩󵄩󵄩𝑇2V (𝑠)
− 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏] .

(99)

Since ‖𝑢‖𝜏, ‖V‖𝜏 ≤ 1, it follows that, for all 𝑢, V ∈ 𝑋 at least for
some 𝑡 ∈ [0, 𝐾], we have

󵄨󵄨󵄨󵄨𝑇1𝑥 (𝑡) − 𝑇2𝑦 (𝑡)󵄨󵄨󵄨󵄨 𝑒−𝜏𝑡 ≤ 3
4 × [󵄩󵄩󵄩󵄩𝑇4𝑢 (𝑠) − 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏

+ 󵄩󵄩󵄩󵄩𝑇1𝑢 (𝑠) − 𝑇4𝑢 (𝑠)󵄩󵄩󵄩󵄩𝜏 + 󵄩󵄩󵄩󵄩𝑇2V (𝑠) − 𝑇3V (𝑠)󵄩󵄩󵄩󵄩𝜏] .
(100)

Now, by considering the control functions 𝜓 : [0, +∞) →
[0, +∞) defined by 𝜓(𝑡) = 3𝑡/4, for all 𝑡 > 0, we get

𝑝𝜏 (𝑇1𝑢, 𝑇2V) ≤ 𝜓 (𝑝𝜏 (𝑇4𝑢 (𝑠) , 𝑇3V (𝑠))
+ 𝑝𝜏 (𝑇1𝑢 (𝑠) , 𝑇4𝑢 (𝑠)) + 𝑝𝜏 (𝑇2V (𝑠) , 𝑇3V (𝑠))) .

(101)

Putting 𝐴 = 𝑇1, 𝐵 = 𝑇2, 𝑇 = 𝑇3, and 𝑆 = 𝑇4, then all the
hypotheses ofTheorem 21 are satisfied.Therefore𝐴, 𝐵, 𝑆, and
𝑇 have a common fixed point 𝑢∗ ∈ 𝐶(𝐼,R); that is, 𝑢∗ is a
solution of system (88).

6. Conclusions

The authors are able to present some general fixed point
results for a wider class of mappings in partial metric
spaces with illustrative examples and an application. Results
presented herein cannot be directly obtained from the corre-
sponding metric space versions.
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[1] L. B. Ćirić, “A generalization of Banach’s contraction principle,”
Proceedings of the American Mathematical Society, vol. 45, pp.
267–273, 1974.

[2] B. E. Rhoades, “A comparison of various definitions of con-
tractive mappings,” Transactions of the American Mathematical
Society, vol. 226, pp. 257–290, 1977.

[3] P. D. Proinov, “Fixed point theorems in metric spaces,” Nonlin-
ear Analysis: Theory, Methods & Applications, vol. 64, no. 3, pp.
546–557, 2006.

[4] A. Meir and E. Keeler, “A theorem on contraction mappings,”
Journal of Mathematical Analysis and Applications, vol. 28, pp.
326–329, 1969.

[5] D. W. Boyd and J. S. W. Wong, “On nonlinear contractions,”
Proceedings of the American Mathematical Society, vol. 20, pp.
458–464, 1969.

[6] J. Jachymski, “Equivalent conditions and the Meir-Keeler type
theorems,” Journal of Mathematical Analysis and Applications,
vol. 194, no. 1, pp. 293–303, 1995.

[7] J. Matkowski, “Fixed point theorems for contractive mappings
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