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Abstract—The study objective is to develop a big spatial data 

model to predict the epidemiological impact of influenza in 

Vellore, India. Large repositories of geospatial and health data 

provide vital statistics on surveillance and epidemiological 

metrics, and valuable insight into the spatiotemporal 

determinants of disease and health. The integration of these big 

data sources and analytics to assess risk factors and geospatial 

vulnerability can assist to develop effective prevention and 

control strategies for influenza epidemics and optimize allocation 

of limited public health resources. We used the spatial 

epidemiology data of the HIN1 epidemic collected at the National 

Informatics Center during 2009-2010 in Vellore. We developed 

an ecological niche model based on geographically weighted 

regression for predicting influenza epidemics in Vellore, India 

during 2013-2014. Data on rainfall, temperature, wind speed, 

humidity and population are included in the geographically 

weighted regression analysis. We inferred positive correlations 

for H1N1 influenza prevalence with rainfall and wind speed, and 

negative correlations for H1N1 influenza prevalence with 

temperature and humidity. We evaluated the results of the 

geographically weighted regression model in predicting the 

spatial distribution of the influenza epidemic during 2013-2014. 
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I. INTRODUCTION 

The continuing challenge in global public health 

surveillance is to determine the risk posed by the infectious 

disease outbreaks with improved understanding of their 

natural geographic range. The size of the spatial epidemiology 

data grows large and utilization of useful intelligence in these 

data has become a priority. They share similar big data 

characteristics of volume, velocity, variety, value and veracity 

[1]. The spatial epidemiology data constitutes a keystone of 

big data and health analytics challenges in digital 

epidemiology [2]. This study analyzes the spatial big data 

challenges in infectious disease surveillance, with a focus on 

influenza epidemics.  

A. Mathematical Models of Infectious Disease Epidemics 

Mathematical models play a major role in understanding 

and predicting the spatiotemporal dynamics of infectious 

disease epidemics, and assisting in improving prevention and 

control policies and practices [3-6]. Bayesian networks 

technique is applied to model the spatio-temporal patterns of a 

non-contagious disease (respiratory anthrax infection) in a 

sample population [7-9]. Kulldroff used a spatial cluster 

method to group the disease cases based on location [10].  

Spatial movement of individuals between locations and their 

contacts are monitored, grouped and visualized to control the 

disease spread [11].  

B. Spatial Analytics of Infectious Disease Epidemics 

Chi et al. summarize the application of statistical models 

for spatial data analysis and spatial regression modeling in 

population dynamics [12]. Buscema et al. applied topological 

weighted centroid method to predict the outbreak of 

Escherichia coli [13]. While the predicted results depend on 

the specific properties of the dataset, the parameters used to 

determine the utility of the predictor function are sample size, 

sample configuration, sample variation, distribution shape, 

spatial heterogeneity and spatial autocorrelation.  

C. Influenza Epidemiology in Vellore, India 

The influenza H1N1 epidemic initiated at Mexico in March 

2009, and spread globally. The influenza surveillance program 

in India monitored for patients with influenza symptoms. 

Symptoms include fever, nasal discharges, cough, headache, 

sore throat and respiratory problems. 10,193 cases were 

confirmed, with a large proportion of patients in South India, 

especially in Vellore. Vellore district had a high incidence of 

H1N1 cases, with dynamic population moving in and around 

Vellore. There were 433 cases reported officially; due to 

under-reporting, there is likely to be more than 100,000 cases 

that were not reported.  

D. Public Health Significance 

In this study, we have developed an ecological niche model 

based on geographically weighted regression for predicting 

influenza epidemiological impact in Vellore during 2013-

2014, using the spatial epidemiology and ecological data of 

the 2009-2010 HIN1 epidemic collected at the National 

Informatics Center in Vellore. 
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II. METHODS 

A. Spatial Autocorrelation 

Tobler's first law of geography (TFL) states “Everything 

is related to everything else, but near things are more related 

than distant things” [14-15]. Spatial autocorrelation factor is 

used to estimate the trueness of the Tobler’s law by 

determining the correlation of a variable with itself over space 

[14, 16]. Moran’s I is a statistical measure of spatial 

autocorrelation [17-18]. The variations of Moran’s I include 

Global Moran’s I and Local Moran’s I. Global Moran’s I is 

used to measure the spatial autocorrelation of the entire global 

region and Local Moran’s I is used to measure the spatial 

autocorrelation for each local region. Spatial autocorrelation at 

the local region has been used in infectious disease 

surveillance of dengue, HIV/AIDS and influenza to identify 

the hot spot locations of high disease incidence and prevalence 

[19-21]. 

B. Clustering by Hot Spot - Cold Spot Analysis 

Spatial distribution of H1N1 cases are statistically 

calculated and clustered by Getis-Ord G statistics. It groups 

the spatial distribution of disease prevalence in terms of high 

values and low values.  Clustering of high disease prevalence 

is referred as hotspots and clustering of low disease prevalence 

is referred as cold spots [22]. The hot spots and cold spots of 

HIN1 cases are clustered based on G score values. The 

computations of Getis-Ord G statistics, including the expected 

value are shown below.  
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C. Prediction by Geographically Weighted Regression Model 

        Traditional regression models are focused on global 

parameters, but the Geographically Weighted Regression 

(GWR) model is used to estimate the local parameters. Non-

stationarity models like the geographically weighted 

regression model account for modeling the different 

observations in different locations of the study area. The 

geographically weighted regression model generates 

regression coefficients that vary over space, by estimating a 

separate regression coefficient for each location. Parameter    

denotes the prevalence of H1N1 cases in each location. It is 

calculated by summing up the past observations with 

dissimilar weights [23-24]. The model is represented as 

follows. 
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location   by, 
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Spatial observations are weighted based on the Euclidean 

distance between the locations   and  . Weights     are 

calculated using the distance function     between the 

particular location   and other locations, as shown below.  
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Fig. 1. Geographically Weighted Regression Model of H1N1 Influenza 

Epidemic. The geographically weighted regression model is calibrated using 

the H1N1 influenza prevalence and ecological data during 2009-2010, and 

used to predict the epidemiological impact of H1N1 influenza during 2013-
2014.  

Fig. 1 illustrates the geographically weighted regression 

model to predict the H1N1 influenza epidemic for 2013-2014 

given the H1N1 prevalence and climatic data of August 2009 

to July 2010. The geographically weighted regression model 

finds the local regression model for each region  , and uses the 

local regression coefficient to estimate the influenza 

prevalence for 2013-2014. Diagnostics block are used to 

validate our model based on the Akaike information criteria 

and           Coefficient and prediction blocks are used to 

generate the predicted values. The results of the 

geographically weighted regression model are evaluated in 

terms of residuals and regression coefficient. The model and 

simulation is implemented in ArcGIS 10.0 [25].  
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III. RESULTS 

A. Study Area 

The study area is Vellore district of Tamil Nadu state, 

which is located in southern India. The latitude and longitude 

for the Vellore district is 12.9202° N, 79.133° E. Fig. 2 depicts 

the prevalence of H1N1 influenza in each administrative 

division of Vellore district during August 2009 to July 2010. 

B. Climate Conditions 

Climate condition attributes of temperature, humidity, 

wind speed and rainfall are collected division wise from the 

Vellore Agriculture Department for August 2009 to July 2010, 

as shown in Table I; population and H1N1 prevalence are also 

included in the table.  

 
Fig. 2. H1N1 influenza prevalence during August 2009-July 2010. 

Prevalence of H1N1 influenza in each administrative division of Vellore 

district during August 2009-July 2010. Results show an outbreak in Katpadi, 
Arcot and Gudiyatham. 

TABLE I.  Climate conditions in Vellore. Climate data are derived 
from the Vellore Agriculture Department to include the environmental 
parameters that may impact the H1N1 influenza epidemic.  

 

C. Correlation Analysis using Scatter plots 

Scatter plots are used to analyze the degree of correlation 

between temperature, humidity, wind speed, rainfall and 

population with H1N1 influenza prevalence, as shown in Fig. 

3. We observed positive correlations between H1N1 influenza 

prevalence and rainfall, and between H1N1 influenza 

prevalence and wind speed. We observed negative correlations 

between H1N1 influenza prevalence and temperature, and 

between H1N1 influenza prevalence and humidity. 

D. Clustering by Hot Spot – Cold Spot Analysis 

Fig. 4 depicts the hot spot and cold spot locations for the 

H1N1 epidemic during the winter season. The hot spot is 

observed in Arani and the cold spot in Sriperumbudur. 

E. Parameter Values 

The values of the parameters used for prediction are 

shown in Table II. 

 

 
Fig. 3. Correlation analysis using scatter plots. Analysis of the scatter 

plots infer that rainfall and windspeed have a positive correlation, whereas 

temperature and humidity have a negative correlation on H1N1 influenza 
prevalence. 

 
Fig. 4. H1N1 hotspot – cold spot analysis. Arani is identified as the hot spot 

and Sriperumbuthur is identified to be a cold spot for H1N1 influenza.  
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TABLE II.  Parameters’ Estimation Using Ordinary Least Squares. 
Linear regression analysis of correlation between H1N1 influenza prevalence 
and rainfall, wind speed, humidity and temperature using ordinary least 
squares estimation method. 

OLS 

Variable Co-efficient P value 

Rainfall 0.2013 0.0012 

Wind speed 1.0232 0.0032 

Humidity -1.0197 0.0234 

Temperature -1.3423 0.0487 

   0.924875 

Adjusted    0.914620 

AIC 124.5678 

 

F. Residuals 

The residuals measure the difference between the 

predicted and actual values using ordinary least squares. Fig. 5 

shows the spatial distribution of the residuals. In order to 

validate the parametric values within the neighborhood, 

geographically weighted regression and spatial autocorrelation 

is applied. GWR spatial autocorrelation significance is shown 

in Table III and proves to have a correlation with the derived 

GWR model.  

 
Fig. 5. Ordinary least squares residuals. The spatial distribution of the 

residuals is mapped. 

TABLE III.  Spatial autocorrelation for residuals in geographically 
weighted regression model. The p-value is statistically significant and the z-
score is positive, thereby inferring spatial autocorrelation between the spatial 
locations and the feature values. 

 

GWR 

Moran’s  Index 0.249226 

Expected Index 0.050000 

Variance Z score 0.009890 

Z score 1.003338 

P value 0.045141 

G. Regression Coefficient Prediction 

After identifying the correlations using data from 2009-

2010, regression coefficients are used to predict the H1N1 

prevalence in each location during 2013-2014. Regression 

coefficients are calculated and shown in Table IV and Table 

V. 

 

TABLE IV.  Coefficient prediction for August 2009-July2010. The 
coefficients are predicted using the data from the 2009-2010 H1N1 influenza 
season.  

 

TABLE V.  Predicted values of H1N1 influenza prevalence during 
2013-2014. The epidemiological impact of H1N1 influenza during 2013-2014 
is predicted by the geographic weighted regression model.  
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The spatial distribution of the coefficient values for 

rainfall, temperature, wind speed and humidity are shown in 

Fig. 6, Fig. 7, Fig. 8 and Fig. 9 respectively.  

 
Fig. 6. Rainfall coefficient. Rainfall is positively correlated with the 

prevalence of H1N1 influenza. Areas  around Chengalpatu has high rainfall 
coefficients compared to other locations, and the neighbourhood locations of  

Krishnagiri has lower rainfall coefficients. 

 
Fig. 7. Temperature coefficient. Temperature is negatively correlated with 

the prevalence of H1N1 influenza.TV Malai, Krishnagiri, Thirupattur has low 

temperature coefficients while Arakonam and Thambaram have high 

temperature coefficients. 

 

Fig. 8. Windspeed coefficient. Windspeed is positively correlated with the 

prevalence of H1N1 influenza.  Areas around Krishnagiri have high 
windspeed and areas near Thambaram have low windspeed. 

 

Fig. 9. Humidity coefficient. Humidity is negatively correlated with the 

prevalence of H1N1 influenza. Areas near Krishnagiri and Tirupattur have 
high humidity and Chengalpattu has low humidity. 

The spatial distribution of H1N1 influenza prevalence is 

predicted for each location, and is shown in Fig. 10. The 

predictions for 2013-2014 are based on the regression 

coefficients estimated using the data from 2009-2010. 

 
Fig. 10.  Prediction of H1N1 influenza. The spatial distribution of H1N1 

infuenza prevalence for 2013-2014 is predicted. 

IV. DISCUSSION 

We developed an ecological niche model based on 

geographically weighted regression method to predict the 

epidemiological impact of H1N1 influenza during 2013-2014 

season. We integrated the spatial epidemiology data of H1N1 

influenza prevalence and environmental data from 2009-2010 

season. We inferred that H1N1 influenza prevalence has 

positive correlations with rainfall and wind speed, and 

negative correlations with temperature and humidity.  

A. Limitations 

The ecological niche model based on geographically 

weighted regression is used to predict the spatial distribution 

of H1N1 influenza prevalence. While the environmental 

variables of rainfall, wind speed, temperature and humidity 

correlate to the risk of influenza incidence and prevalence in 

different regions, biological and socio-behavioral attributes of 
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H1N1 influenza transmission dynamics are not incorporated in 

the model.  

B. Public Health Implications 

The ecological niche model based on geographically 

weighted regression is used to predict the epidemiological 

impact of H1N1 influenza in different regions. Thereby, high 

risk areas for H1N1 influenza can be prioritized for 

implementation of prevention interventions.  

C. Conclusion 

Epidemiological models of infectious diseases are useful to 

predict the epidemiological morbidity and mortality, identify 

vulnerable populations, assess the beneficial impact of 

available interventions, compare different implementation 

options, and improve public understanding of infectious 

disease dynamics [26]. We presented the ecological niche 

model based on geographically weighted regression to predict 

the incidence and prevalence of H1N1 influenza in different 

regions of Vellore, India, thereby assisting in prioritizing high 

risk areas for implementation of optimal prevention 

interventions.  

The integration of health, climate and environmental data, 

supported by geographical information systems and satellite 

imagery, and combined with computational tools facilitate the 

design and development of early warning systems for 

influenza epidemics, and can be adapted to control and 

prevent epidemics of other infectious diseases. 
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