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Abstract—The study objective is to develop a big spatial data
model to predict the epidemiological impact of influenza in
Vellore, India. Large repositories of geospatial and health data
provide vital statistics on surveillance and epidemiological
metrics, and valuable insight into the spatiotemporal
determinants of disease and health. The integration of these big
data sources and analytics to assess risk factors and geospatial
vulnerability can assist to develop effective prevention and
control strategies for influenza epidemics and optimize allocation
of limited public health resources. We used the spatial
epidemiology data of the HIN1 epidemic collected at the National
Informatics Center during 2009-2010 in Vellore. We developed
an ecological niche model based on geographically weighted
regression for predicting influenza epidemics in Vellore, India
during 2013-2014. Data on rainfall, temperature, wind speed,
humidity and population are included in the geographically
weighted regression analysis. We inferred positive correlations
for HIN1 influenza prevalence with rainfall and wind speed, and
negative correlations for HIN1 influenza prevalence with
temperature and humidity. We evaluated the results of the
geographically weighted regression model in predicting the
spatial distribution of the influenza epidemic during 2013-2014.

Keywords—disease forecasting; ecological niche model;
epidemiology; geographically weighted regression; HINI influenza

I. INTRODUCTION

The continuing challenge in global public health
surveillance is to determine the risk posed by the infectious
disease outbreaks with improved understanding of their
natural geographic range. The size of the spatial epidemiology
data grows large and utilization of useful intelligence in these
data has become a priority. They share similar big data
characteristics of volume, velocity, variety, value and veracity
[1]. The spatial epidemiology data constitutes a keystone of
big data and health analytics challenges in digital
epidemiology [2]. This study analyzes the spatial big data
challenges in infectious disease surveillance, with a focus on
influenza epidemics.

A. Mathematical Models of Infectious Disease Epidemics

Mathematical models play a major role in understanding
and predicting the spatiotemporal dynamics of infectious
disease epidemics, and assisting in improving prevention and
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control policies and practices [3-6]. Bayesian networks
technique is applied to model the spatio-temporal patterns of a
non-contagious disease (respiratory anthrax infection) in a
sample population [7-9]. Kulldroff used a spatial cluster
method to group the disease cases based on location [10].
Spatial movement of individuals between locations and their
contacts are monitored, grouped and visualized to control the
disease spread [11].

B. Spatial Analytics of Infectious Disease Epidemics

Chi et al. summarize the application of statistical models
for spatial data analysis and spatial regression modeling in
population dynamics [12]. Buscema et al. applied topological
weighted centroid method to predict the outbreak of
Escherichia coli [13]. While the predicted results depend on
the specific properties of the dataset, the parameters used to
determine the utility of the predictor function are sample size,
sample configuration, sample variation, distribution shape,
spatial heterogeneity and spatial autocorrelation.

C. Influenza Epidemiology in Vellore, India

The influenza HIN1 epidemic initiated at Mexico in March
2009, and spread globally. The influenza surveillance program
in India monitored for patients with influenza symptoms.
Symptoms include fever, nasal discharges, cough, headache,
sore throat and respiratory problems. 10,193 cases were
confirmed, with a large proportion of patients in South India,
especially in Vellore. Vellore district had a high incidence of
HINI cases, with dynamic population moving in and around
Vellore. There were 433 cases reported officially; due to
under-reporting, there is likely to be more than 100,000 cases
that were not reported.

D. Public Health Significance

In this study, we have developed an ecological niche model
based on geographically weighted regression for predicting
influenza epidemiological impact in Vellore during 2013-
2014, using the spatial epidemiology and ecological data of
the 2009-2010 HIN1 epidemic collected at the National
Informatics Center in Vellore.



II. METHODS

A. Spatial Autocorrelation

Tobler's first law of geography (TFL) states “Everything
is related to everything else, but near things are more related
than distant things” [14-15]. Spatial autocorrelation factor is
used to estimate the trueness of the Tobler’s law by
determining the correlation of a variable with itself over space
[14, 16]. Moran’s I is a statistical measure of spatial
autocorrelation [17-18]. The variations of Moran’s I include
Global Moran’s I and Local Moran’s 1. Global Moran’s I is
used to measure the spatial autocorrelation of the entire global
region and Local Moran’s I is used to measure the spatial
autocorrelation for each local region. Spatial autocorrelation at
the local region has been used in infectious disease
surveillance of dengue, HIV/AIDS and influenza to identify
the hot spot locations of high disease incidence and prevalence
[19-21].

B. Clustering by Hot Spot - Cold Spot Analysis

Spatial distribution of HIN1 cases are statistically
calculated and clustered by Getis-Ord G statistics. It groups
the spatial distribution of disease prevalence in terms of high
values and low values. Clustering of high disease prevalence
is referred as hotspots and clustering of low disease prevalence
is referred as cold spots [22]. The hot spots and cold spots of
HIN1 cases are clustered based on G score values. The
computations of Getis-Ord G statistics, including the expected
value are shown below.

G = T Wi (d)y;

?:1 Vi
G = G Statistic value
Wi = Weight matrix
d = Euclidean distance
Yj = Number of infected in each location
E@G)) = W/n
Wi = Y Wy(d)

C. Prediction by Geographically Weighted Regression Model

Traditional regression models are focused on global
parameters, but the Geographically Weighted Regression
(GWR) model is used to estimate the local parameters. Non-
stationarity models like the geographically weighted
regression model account for modeling the different
observations in different locations of the study area. The
geographically weighted regression model generates
regression coefficients that vary over space, by estimating a
separate regression coefficient for each location. Parameter y;
denotes the prevalence of HIN1 cases in each location. It is
calculated by summing up the past observations with
dissimilar weights [23-24]. The model is represented as
follows.
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B:(A;, B;) is a function of latitude and longitude coordinates
of location i, and is calculated using weighted least square
procedure. Specific coefficient can be calculated for each
location i by,

Bi Coefficient for each location i

A; = Latitude

B; = Longitude

L) XWX 1X'W (@) i=1,2,...n

Spatial observations are weighted based on the Euclidean
distance between the locations i and j. Weights W;; are
calculated using the distance function d;; between the
particular location i and other locations, as shown below.

d;;*
Wij = exp | = ”/bz

Wi; Weight of the data point j at location i
d;j = Distance between the locations i and j
b = Bandwidth
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Fig. 1. Geographically Weighted Regression Model of HIN1 Influenza
Epidemic. The geographically weighted regression model is calibrated using
the HIN1 influenza prevalence and ecological data during 2009-2010, and
used to predict the epidemiological impact of HIN1 influenza during 2013-
2014.

Fig. 1 illustrates the geographically weighted regression
model to predict the HIN1 influenza epidemic for 2013-2014
given the HIN1 prevalence and climatic data of August 2009
to July 2010. The geographically weighted regression model
finds the local regression model for each region i, and uses the
local regression coefficient to estimate the influenza
prevalence for 2013-2014. Diagnostics block are used to
validate our model based on the Akaike information criteria
and R? value. Coefficient and prediction blocks are used to
generate the predicted values. The results of the
geographically weighted regression model are evaluated in
terms of residuals and regression coefficient. The model and
simulation is implemented in ArcGIS 10.0 [25].



III. RESULTS

A. Study Area

The study area is Vellore district of Tamil Nadu state,
which is located in southern India. The latitude and longitude
for the Vellore district is 12.9202° N, 79.133° E. Fig. 2 depicts
the prevalence of HINI influenza in each administrative
division of Vellore district during August 2009 to July 2010.

B. Climate Conditions

Climate condition attributes of temperature, humidity,
wind speed and rainfall are collected division wise from the
Vellore Agriculture Department for August 2009 to July 2010,
as shown in Table I; population and HIN1 prevalence are also
included in the table.

H1N1 Infected in Aug 2009 -July 2010
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Fig. 2. HIN1 influenza prevalence during August 2009-July 2010.
Prevalence of HINI influenza in each administrative division of Vellore
district during August 2009-July 2010. Results show an outbreak in Katpadi,
Arcot and Gudiyatham.

TABLE 1L Climate conditions in Vellore. Climate data are derived
from the Vellore Agriculture Department to include the environmental
parameters that may impact the HIN1 influenza epidemic.

C. Correlation Analysis using Scatter plots

Scatter plots are used to analyze the degree of correlation
between temperature, humidity, wind speed, rainfall and
population with HIN1 influenza prevalence, as shown in Fig.

FID [ NAME_3 | Infected |T Humidity | Windspeed | Rainfall |
0/K 6/ 2456  64.21 6 63 23453
1/ Thambaram | 22| 20.76 54.23| 9 85/ 174787
2|Koyambedu | 1] 3556  64.98] 4 56 12323
3|Vandalur | 1] 3524|  63.45] 4 59| 13311
4/Krishnagiri 8| 2502  66.34 7 71 1879809
5/Chengalpattu | 1] 24.12]  65.96] 8 75] 571254
6|Kanchipuram | 2| 3523  63.23] 5 62 3998252
7|Sriperumbudur | 7| 3523  57.04] 6 65 486063
_8|Arani_ 4] 2843  63.12] 9| 79 83671
9[TV Malai 15| 2945  63.34 9 81 144278
10| Arakkonam | 12| 3265  64.85 9 76 101626
11/Arcot | 38| 243 60.4 11 105 95955
12| Gudiyattam | 9 33.56 55.34 8 74| 91558
13| Tiruppattur 24 262 6234 9 89 500455
14|Ambur 16| 27.3| 5276 10 83 114608
15| Katpadi 43] 223| 5857 12 112 387922
16| Walajapet | 32| 25.4|  61.34] 1] 95/ 32397
17 Vaniyambadi 19| 2023  65.87 9 84 95061
18|Bagayam | 12| 2212]  53.32] 8 75 23145
19| Vellore | 58| 203 6501 13 124 177230
20 Vallalar | 7] 35.1 64.98 7 68/ 25092
21/ Hosur 8| 35.023) 6534 7 72 1879809
22|Bargur 5] 35.22 63.3 5 63 1879809
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3. We observed positive correlations between HINTI influenza
prevalence and rainfall, and between HINI1 influenza
prevalence and wind speed. We observed negative correlations
between HINI influenza prevalence and temperature, and
between HIN1 influenza prevalence and humidity.

D. Clustering by Hot Spot — Cold Spot Analysis

Fig. 4 depicts the hot spot and cold spot locations for the
HIN1 epidemic during the winter season. The hot spot is
observed in Arani and the cold spot in Sriperumbudur.
E. Parameter Values

The values of the parameters used for prediction are
shown in Table II.
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Fig. 3. Correlation analysis using scatter plots. Analysis of the scatter
plots infer that rainfall and windspeed have a positive correlation, whereas
temperature and humidity have a negative correlation on HINI influenza
prevalence.
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Fig. 4. HINI1 hotspot — cold spot analysis. Arani is identified as the hot spot
and Sriperumbuthur is identified to be a cold spot for HINI influenza.



TABLE II. Parameters’ Estimation Using Ordinary Least Squares.
Linear regression analysis of correlation between HIN1 influenza prevalence
and rainfall, wind speed, humidity and temperature using ordinary least
squares estimation method.

TABLE IV. Coefficient prediction for August 2009-July2010. The
coefficients are predicted using the data from the 2009-2010 HIN1 influenza
season.

Variable Comefficient P value FID | LocalR2 | Predicted | Intercept | C2_Rainfall | C3_Wind | C1_Hum | C1_Temp
0| 0941536 | 4272267 | 6596521 020101 | 1560884 | 101122 | -12123
Rainfall 0.2013 0.0012 10041347 | 757038 | 658725 030017 | 1.57507 | -1.01176 | -1.20799
Wind speed 1.0232 0.0032 7 | 0.041604 | 7218828 | 65.07145 0201840 | 1387915 | -1.0117 | -1.21268
Humidity -1.0197 0.0234 3 [ 0.0414%4 | 4.006468 | 65.80720 0200351 | 1.474089 | -1.01174 | -1.20028
OLS Temperature -1.3423 0.0487 4| 0076701 | 7.304024 | 72.60103 | 0309078 | 1513415 | -1.01205 | -1.33314
RZ 0924875 3 0.94231 1550616 | 66.18829 0205244 1.390119 -1.01159 1.22327
R 2 6 [ 0.944341 5.702962 672873 0227909 1.461877 -1.01125 1.27439
AdJUSted R 0914620 T | 0942483 | 4272507 | 66.45469 0.211483 1.55629 -1.01147 1.23504
AIC 1245678 8 [ 0.962413 1389707 725177 0.339014 1.513841 -1.01297 1.53259
| 0.068666 | 4.273444 | 73.07605 | 0.372021 | 1570063 | -1.01258 | -1.56524
F. Residuals 10 | 0.045602 | 12.46867 | 67.06307 |  0.242234 | 1570767 | -L.0I116 | -1.30580
The residuals measure the difference between the 11 [ 0.854576 | 36.2268 | 70.6383 0287585 | 0.62000 | -1.01188 | -1.43766
predicted and actual values using ordinary least squares. Fig. 5 12| 0871071 | 8.898451 [ 73.36430 [ 0.383530 | 1431956 | -1.01276 | -1.57034
shows the spatial distribution of the residuals. In order to 13| 0575043 | 0083651 [ 72.81047 [ 039311 | 1383877 | -1.01264 | -1.55772
validate the parametric values within the neighborhood, 14 | 0.973581 | 5.062024 | 73.01804 0.380487 | 1497208 | -1.01253 1.56550
geographically weighted regression and spatial autocorrelation 15| 0-967572 [ 6102714 [ 73.34657 [ 0309609 | 1451583 | -LOI3L | -1.57601
is applied. GWR spatial autocorrelation significance is shown 1o ] 095332 1 15.50215 [ 70.38698 [ 0.292211 [ 1.526968 | -1.OLL77 [ -1.42401
in Table III and proves to have a correlation with the derived 170574829 | 7.566075 [ 72.62495 | 0393613 | 1426165 | -1.01264 | -1.36218
GWR model. 18 [ 0072607 | 2273573 | 7307320 | 0386307 | 1340101 | 10125 | -156748
16 [ 0070720 | 457655 | 7324372 | 0381163 | 126015 | -101263 | -157387
20 [ 0.972231 7394772 | 7314261 0.383677 1.518713 -1.01253 1.57031
31| 007651 | 5.877111 | 72.65238 | 0.307816 | 1404516 | -1.01280 | -1.55138
33 [ 0077283 | 2.671446 | 72.63378 040186 | 1410004 | -1.01307 | -1.55001

TABLE V. Predicted values of HIN1 influenza prevalence during
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Fig. 5. Ordinary least squares residuals. The spatial distribution of the
residuals is mapped.

TABLE III. Spatial autocorrelation for residuals in geographically
weighted regression model. The p-value is statistically significant and the z-
score is positive, thereby inferring spatial autocorrelation between the spatial
locations and the feature values.

Moran’s Index 0.249226

R
GW Expected Index 0.050000
Variance Z score 0.009890
Z score 1.003338
P value 0.045141

G. Regression Coefficient Prediction

After identifying the correlations using data from 2009-
2010, regression coefficients are used to predict the HINI
prevalence in each location during 2013-2014. Regression
coefficients are calculated and shown in Table IV and Table
V.
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2013-2014. The epidemiological impact of HIN1 influenza during 2013-2014
is predicted by the geographic weighted regression model.

FID | LocalR2 | Predicted | Imtercept | C2_Rainfall | C3_Wind | C1_Hum | C1_Temp
0| 0941536 | 2.796861 [ 63.96321 020191 | 1560884 | -1.01122 -1.2123
1[ 0041347 [ 11.67607 63.8723 0.20017 157597 | -1.01176
2| 0841604 | 092388 | 8587145 0201348 [ 1.387815 -1.0117
3| 059414584 | 1967236 | 6389722 0.200351 [ 1.474089 | -1.01174
4 0976791 | 4567098 | 72.60193 0399978 [ 1.513415 | -1.01203
] 094231 | 1917416 | 66.18829 0205244 [ 1390119 | -1.01159
6| 0044341 [ 1.003838 673873 0227005 [ 1.461877 [ -1.01123
T 0522455 | 5544097 | 6643469 0211483 135625 [ -1.01147 -123504
8| 0962413 | 13.78208 125177 0.335014 [ 1.513841 | -1.0129%7 -1.33259
o | 0968666 | 16.70306 [ 73.07603 0372021 [ 1.570263 | -1.01238 -1.56524

10 | 0945602 | 13.87228 | 67.96307 0242234 [ 1570797 | -1.0111%9 -1.30589
11 | 0934576 391911 706383 0297383 062900 [ -1 01189 -1.43786
121 0971071 | 3.338784 | 73.36439 0.383339 [ 1431956 | -1.01276 -1.57934
13 | 0975043 | 1549282 | 72.81947 039311 | 1.583877 | -1.01264 -1.35772
14| 0973581 | 21435832 | 73.01804 0.380487 [ 1.497208 | -1.01233 -1.56339
15 [ 0967572 231736 | 7334637 0369609 [ 1451383 -1.0131 -1.57601
16 | 083332 | 18.11901 | 70.38698 0292211 [ 1.526968 | -1.01177 -1.42401
17| 0974829 | 2143777 | 72.92495 0393613 [ 1426165 | -1.01264 -1.56218
18 | 0972607 | 7.05357%6 | 73.0732% 0.386307 | 1.540191 -1.0125 -1.56748
1010970720 | 26335306 | 7324372 0381163 126015 [ -101263 -157387
20 [ 0972231 [ 1392465 | 7314281 0383677 [ 1318713 | -101233 -1.57031
21 097631 | 4135098 | 72.635238 0397816 [ 1494516 | -1.01289 -1.55128
22 [ 0977285 | 1.119638 | 72.6337% 040186 | 1419084 | -1.01307 -1.55091




The spatial distribution of the coefficient values for
rainfall, temperature, wind speed and humidity are shown in
Fig. 6, Fig. 7, Fig. 8 and Fig. 9 respectively.

Rainfall Coefficent

I o.2s2002 - 0.252038
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I 0252225 - 0.253377
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Fig. 6. Rainfall coefficient. Rainfall is positively correlated with the
prevalence of HINI influenza. Areas around Chengalpatu has high rainfall
coefficients compared to other locations, and the neighbourhood locations of
Krishnagiri has lower rainfall coefficients.

Temperature Coefficent
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Fig. 7. Temperature coefficient. Temperature is negatively correlated with
the prevalence of HIN1 influenza. TV Malai, Krishnagiri, Thirupattur has low
temperature coefficients while Arakonam and Thambaram have high
temperature coefficients.

Winds peed Coefficient
B 1517152 - 1517182
I 1517184 - 1.517262
[ 1517283 - 1.517380
[ 1517281 - 1.517821
[ 1517522 - 1.517858
I 1517657 - 1.517752

05 Decimsl Degrass B 1 =772 - 1517904

Fig. 8. Windspeed coefficient. Windspeed is positively correlated with the
prevalence of HINI influenza. Areas around Krishnagiri have high
windspeed and areas near Thambaram have low windspeed.
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Humidity Coefficient
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Fig. 9. Humidity coefficient. Humidity is negatively correlated with the
prevalence of HIN1 influenza. Areas near Krishnagiri and Tirupattur have
high humidity and Chengalpattu has low humidity.

The spatial distribution of HIN1 influenza prevalence is
predicted for each location, and is shown in Fig. 10. The
predictions for 2013-2014 are based on the regression
coefficients estimated using the data from 2009-2010.

H1N1 Prediction for Aug 2013-July 2014
[10.885797 - 4.138209
[14.138210-7.743183
[[17.743184 - 12.268540
N 12.268541 - 17.579697
N 17.579698 - 28.970857

L] 015 02 0% Decimal Degrees

Fig. 10. Prediction of HIN1 influenza. The spatial distribution of HIN1
infuenza prevalence for 2013-2014 is predicted.

IV. DISCUSSION

We developed an ecological niche model based on
geographically weighted regression method to predict the
epidemiological impact of HINI influenza during 2013-2014
season. We integrated the spatial epidemiology data of HIN1
influenza prevalence and environmental data from 2009-2010
season. We inferred that HIN1 influenza prevalence has
positive correlations with rainfall and wind speed, and
negative correlations with temperature and humidity.

A. Limitations

The ecological niche model based on geographically
weighted regression is used to predict the spatial distribution
of HINI influenza prevalence. While the environmental
variables of rainfall, wind speed, temperature and humidity
correlate to the risk of influenza incidence and prevalence in
different regions, biological and socio-behavioral attributes of



HINT influenza transmission dynamics are not incorporated in
the model.

B. Public Health Implications

The ecological niche model based on geographically
weighted regression is used to predict the epidemiological
impact of HIN1 influenza in different regions. Thereby, high
risk areas for HINI1 influenza can be prioritized for
implementation of prevention interventions.

C. Conclusion

Epidemiological models of infectious diseases are useful to
predict the epidemiological morbidity and mortality, identify
vulnerable populations, assess the beneficial impact of
available interventions, compare different implementation
options, and improve public understanding of infectious
disease dynamics [26]. We presented the ecological niche
model based on geographically weighted regression to predict
the incidence and prevalence of HINI1 influenza in different
regions of Vellore, India, thereby assisting in prioritizing high
risk areas for implementation of optimal prevention
interventions.

The integration of health, climate and environmental data,
supported by geographical information systems and satellite
imagery, and combined with computational tools facilitate the
design and development of early warning systems for
influenza epidemics, and can be adapted to control and
prevent epidemics of other infectious diseases.
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