FOLIA 149

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XIII (2014)

Kaliappan Vijaya, Gangadharan Murugusundaramoorthy, Murugesan Kasthuri
 Starlike functions of complex order involving q-hypergeometric functions with fixed point

Abstract

Recently Kanas and Ronning introduced the classes of starlike and convex functions, which are normalized with $f(\xi)=f^{\prime}(\xi)-1=0, \xi$ $(|\xi|=d)$ is a fixed point in the open disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. In this paper we define a new subclass of starlike functions of complex order based on q-hypergeometric functions and continue to obtain coefficient estimates, extreme points, inclusion properties and neighbourhood results for the function class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$. Further, we obtain integral means inequalities for the function $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$.

1. Introduction

Let $\xi(|\xi|=d)$ be a fixed point in the unit disc $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$. Denote by $\mathcal{A}(\xi)$ the class of functions which are regular and normalized by $f(\xi)=$ $f^{\prime}(\xi)-1=0$ consisting of the functions of the form

$$
\begin{equation*}
f(z)=(z-\xi)+\sum_{n=2}^{\infty} a_{n}(z-\xi)^{n}, \quad(z-\xi) \in \mathbb{U} \tag{1}
\end{equation*}
$$

Also denote by $\mathcal{S}_{\xi}=\{f \in \mathcal{A}(\xi): \quad f$ is univalent in $\mathbb{U}\}$, the subclass of $\mathcal{A}(\xi)$. Denote by \mathcal{T}_{ξ} the subclass of \mathcal{S}_{ξ} consisting of the functions of the form

$$
\begin{equation*}
f(z)=(z-\xi)-\sum_{n=2}^{\infty} a_{n}(z-\xi)^{n}, \quad a_{n} \geq 0 \tag{2}
\end{equation*}
$$

Note that $\mathcal{S}_{0}=\mathcal{S}$ and $\mathcal{T}_{0}=\mathcal{T}$ be the subclasses of $\mathcal{A}=\mathcal{A}(0)$ consisting of univalent functions in \mathbb{U}. By $\mathcal{S}_{\xi}^{*}(\beta)$ and $\mathcal{K}_{\xi}(\beta)$ respectively, we mean the classes of analytic

[^0]functions that satisfy the analytic conditions
$$
\Re\left\{\frac{(z-\xi) f^{\prime}(z)}{f(z)}\right\}>\beta, \quad \Re\left\{1+\frac{(z-\xi) f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta \quad \text { and } \quad(z-\xi) \in \mathbb{U}
$$
for $0 \leq \beta<1$ introduced and studied by Kanas and Ronning [9]. The class $\mathcal{S}_{\xi}^{*}(0)$ is defined by geometric property that the image of any circular arc centered at ξ is starlike with respect to $f(\xi)$ and the corresponding class $\mathcal{K}_{\xi}^{*}(0)$ is defined by the property that the image of any circular arc centered at ξ is convex. We observe that the definitions are somewhat similar to the ones introduced by Goodman in [8] for uniformly starlike and convex functions, except that in this case the point ξ is fixed. In particular, $\mathcal{K}=\mathcal{K}_{0}(0)$ and $\mathcal{S}_{0}^{*}=\mathcal{S}^{*}(0)$ respectively, are the well-known standard classes of convex and starlike functions [10, 19].

We recall a generalized q-Taylors formula in fractional q-calculus and certain q-generating functions for q-hypergeometric functions studied more recently by Purohit and Raina [15] and further by Mohammed Aabed and Maslina Darus [1]. For complex parameters a_{1}, \ldots, a_{l} and $b_{1}, \ldots, b_{m}\left(b_{j} \neq 0,-1, \ldots ; j=1,2, \ldots, m\right)$ the q-hypergeometric function ${ }_{l} \Psi_{m}(z)$ is defined by

$$
\begin{align*}
& { }_{l} \Psi_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; q, z\right) \\
& \quad:=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \ldots\left(a_{l} ; q\right)_{n}}{\left(b_{1} ; q\right)_{n} \ldots\left(b_{m} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+m-l} z^{n} \tag{3}
\end{align*}
$$

with $\binom{n}{2}=\frac{n(n-1)}{2}$, where $q \neq 0$ when $l>m+1\left(l, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in \mathbb{U}\right)$.
The q-shifted factorial is defined for $a, q \in \mathbb{C}$ as a product of n factors by

$$
(a ; q)_{n}= \begin{cases}1, & n=0 \\ (1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n \in \mathbb{N}\end{cases}
$$

and in terms of basic analogue of the gamma function

$$
\begin{equation*}
\left(q^{a} ; q\right)_{n}=\frac{\Gamma_{q}(a+n)(1-q)^{n}}{\Gamma_{q}(a)}, \quad n>0 . \tag{4}
\end{equation*}
$$

It is interest to note that $\lim _{q \rightarrow 1^{-}} \frac{\left(q^{a} ; q\right)_{n}}{(1-q)^{n}}=(a)_{n}=a(a+1) \ldots(a+n-1)$ the familiar Pochhammer symbol.

Now for $z \in \mathbb{U}, 0<|q|<1$ and $l=m+1$, the basic q-hypergeometric function defined in (3) takes the form

$$
{ }_{l} \psi_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; q, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1} ; q\right)_{n} \ldots\left(a_{l} ; q\right)_{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n} \ldots\left(b_{m}, q\right)_{n}} z^{n}
$$

which converges absolutely in the open unit disk \mathbb{U}. Let

$$
\mathcal{I}\left(a_{l}, b_{m} ; q ; z\right)=z_{l} \psi_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; q, z\right)=\sum_{n=0}^{\infty} \Upsilon_{n}^{l, m}\left[a_{1}, q\right] z^{n+1}
$$

where for convenience,

$$
\Upsilon_{n}^{l, m}\left[a_{1}, q\right]=\frac{\left(a_{1} ; q\right)_{n} \ldots\left(a_{l} ; q\right)_{n}}{(q ; q)_{n}\left(b_{1} ; q\right)_{n} \ldots\left(b_{m} ; q\right)_{n}} .
$$

The operator $\mathcal{I}\left(a_{l}, b_{m} ; q\right) f(z)$ was studied recently by Aabed and Darus [1].
In this paper we define a new linear operator for $(z-\xi) \in \mathbb{U},|q|<1$ and $l=m+1$ as follows:

$$
\begin{aligned}
\mathcal{I}\left(a_{l}, b_{m} ; q, z-\xi\right) & =(z-\xi)_{l} \psi_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; q, z-\xi\right) \\
& =\sum_{n=0}^{\infty} \Upsilon_{n}^{l, m}\left[a_{1}, q\right](z-\xi)^{n+1} .
\end{aligned}
$$

Using the above, we let

$$
\begin{equation*}
\mathcal{I}\left(a_{l}, b_{m} ; q, z-\xi\right) * f(z)=\mathcal{I}_{m}^{l} f(z)=(z-\xi)+\sum_{n=2}^{\infty} \Upsilon_{n}^{l, m}\left[a_{1}, q\right] a_{n}(z-\xi)^{n} \tag{5}
\end{equation*}
$$

where

$$
\Upsilon_{m}^{l}(n)=\Upsilon_{n}^{l, m}\left[a_{1}, q\right]=\frac{\left(a_{1} ; q\right)_{n-1} \ldots\left(a_{l} ; q\right)_{n-1}}{(q ; q)_{n-1}\left(b_{1} ; q\right)_{n-1} \ldots\left(b_{m} ; q\right)_{n-1}}
$$

unless otherwise stated.
For $a_{i}=q^{\alpha_{i}}, b_{j}=q^{\beta_{j}}, \alpha_{i}, \beta_{j} \in \mathbb{C}$, and $\beta_{j} \neq 0,-1,-2, \ldots,(i=1, \ldots, l, j=$ $1, \ldots, m)$ and $q \rightarrow 1$, we obtain the well-known Dziok-Srivastava linear operator [7] 6] (for $l=m+1$). For $l=1, m=0, a_{1}=q$, and further specializing the parameters, it gives many (well known and new) integral and differential operators introduced and studied in [4, 5, 10, 13, 16.

Making use of the operator \mathcal{I}_{m}^{l} and motivated by the results discussed by Altintas et al. [2], (see [14] and references stated therein) and Aouf et al. [3], in this paper we introduce a new subclass $\mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ of analytic functions of complex order associated with q-hypergeometric functions as given below.

For $-1 \leq \alpha<1, \beta \geq 0$ and $\gamma \in \mathbb{C} \backslash\{0\}$, we let $\mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ be the subclass of $\mathcal{A}(\xi)$ consisting of functions of the form (1) and satisfying the analytic criterion

$$
\Re\left(1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-\alpha\right]\right)>\beta\left|1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-1\right]\right|
$$

for every $z \in \mathbb{U}$, where $\mathcal{I}_{m}^{l} f(z)$ is given by (5). We also let $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)=$ $\mathcal{S}_{\xi}(\alpha, \beta, \gamma) \cap \mathcal{T}_{\xi}$.

Example 1
We note that $\mathcal{S}_{\xi}(1,0, \gamma) \equiv \mathcal{S}_{\xi}^{*}(\gamma)$, the class of starlike functions of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\})$, satisfying the following conditions

$$
\frac{f(z)}{z-\xi} \neq 0 \quad \text { and } \quad \Re\left(1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-1\right]\right)>0
$$

Further,

$$
\mathcal{S}_{\xi}^{*}\left((1-\delta) \cos \lambda e^{-i \lambda}\right)=S_{\xi}^{*}(\delta, \lambda), \quad|\lambda|<\frac{\pi}{2} ; \quad 0 \leq \delta \leq 1
$$

and

$$
\mathcal{S}_{\xi}^{*}\left(\cos \lambda e^{-i \lambda}\right)=\mathcal{S}_{\xi}^{*}(\lambda), \quad|\lambda|<\frac{\pi}{2}
$$

where $S_{\xi}^{*}(\delta, \lambda)$ denotes the subclass of λ-spiral-like function of order δ and $S_{\xi}^{*}(\lambda)$ denotes spiral-like functions with fixed point analogous to the classes introduced and investigated by Libera [11] and Spacek [18](Also see[21), respectively.

The main object of this paper is to study some usual properties such as the coefficient bounds, extreme points, radii of close to convexity, starlikeness and convexity for the class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$. Further, we obtain neighborhood results and integral means inequalities for aforementioned class.

2. Coefficient bounds

In this section we obtain a necessary and sufficient condition for functions $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$.

Theorem 2.1

A necessary and sufficient condition for f of the form 2 to be in the class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ is

$$
\begin{equation*}
\sum_{n=2}^{\infty}[(n+|\gamma|)(1-\beta)-(\alpha-\beta)](r+d)^{n-1} \Upsilon_{m}^{l}(n) a_{n} \leq(1-\alpha)+|\gamma|(1-\beta) \tag{6}
\end{equation*}
$$

where $-1 \leq \alpha<1, \beta \geq 0$ and $\gamma \in \mathbb{C} \backslash\{0\}$.
Proof. Assume that $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$, then

$$
\begin{gathered}
\Re\left(1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-\alpha\right]\right)>\beta\left|1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-1\right]\right| \\
\Re\left(1+\frac{1}{\gamma}\left[\frac{(z-\xi)(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha) \Upsilon_{m}^{l}(n) a_{n}(z-\xi)^{n}}{(z-\xi)-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}(z-\xi)^{n}}\right]\right) \\
\quad>\beta\left|1-\frac{1}{\gamma}\left[\frac{\sum_{n=2}^{\infty}(n-1) \Upsilon_{m}^{l}(n) a_{n}(z-\xi)^{n}}{(z-\xi)-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}(z-\xi)^{n}}\right]\right|
\end{gathered}
$$

On choosing the values of $(z-\xi)$ on the positive real axis, where $0<|z-\xi| \leq$ $r+d<1$, we have

$$
\begin{aligned}
& \left\{1+\frac{1}{|\gamma|}\left(\frac{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha) \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1}}{1-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1}}\right)\right\} \\
& >\beta\left\{1-\frac{1}{|\gamma|}\left(\frac{\sum_{n=2}^{\infty}(n-1) \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1}}{1-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1}}\right)\right\} .
\end{aligned}
$$

The simple computation leads the desired inequality

$$
\sum_{n=2}^{\infty}[(n+|\gamma|)(1-\beta)-(\alpha-\beta)] \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1} \leq(1-\alpha)+|\gamma|(1-\beta) .
$$

Conversely, suppose that (6) is true for $(z-\xi) \in \mathbb{U}$, then

$$
\Re\left(1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-\alpha\right]\right)-\beta\left|1+\frac{1}{\gamma}\left[\frac{(z-\xi)\left(\mathcal{I}_{m}^{l} f(z)\right)^{\prime}}{\mathcal{I}_{m}^{l} f(z)}-1\right]\right|>0 .
$$

If

$$
\begin{aligned}
& 1+\frac{1}{|\gamma|}\left(\frac{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha) \Upsilon_{m}^{l}(n) a_{n}|z-\xi|^{n-1}}{1-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}|z-\xi|^{n-1}}\right) \\
& \quad-\beta\left[1-\frac{1}{|\gamma|}\left(\frac{\sum_{n=2}^{\infty}(n-1) \Upsilon_{m}^{l}(n) a_{n}|z-\xi|^{n-1}}{1-\sum_{n=2}^{\infty} \Upsilon_{m}^{l}(n) a_{n}|z-\xi|^{n-1}}\right)\right] \geq 0 .
\end{aligned}
$$

That is if

$$
\sum_{n=2}^{\infty}[(n+|\gamma|)(1-\beta)-(\alpha-\beta)] \Upsilon_{m}^{l}(n) a_{n}(r+d)^{n-1} \leq(1-\alpha)+|\gamma|(1-\beta),
$$

which completes the proof.

Corollary 2.2

Let the function f defined by ${ }_{2}$) belongs $\mathcal{T S}_{\xi}(\alpha, \beta, \gamma)$. Then

$$
a_{n} \leq \frac{[(1-\alpha)+|\gamma|(1-\beta)]}{[(n+|\gamma|)(1-\beta)-(\alpha-\beta)] \Upsilon_{m}^{l}(n)(r+d)^{n-1}},
$$

$n \geq 2,-1 \leq \alpha<1, \beta \geq 0$ and $\gamma \in \mathbb{C} \backslash\{0\}$, with equality for

$$
f(z)=(z-\xi)-\frac{[(1-\alpha)+|\gamma|(1-\beta)]}{[(n+|\gamma|)(1-\beta)-(\alpha-\beta)] \Upsilon_{m}^{l}(n)}(z-\xi)^{n} .
$$

For the sake of brevity we let

$$
\begin{gather*}
\Theta_{d}(n, \alpha, \beta, \gamma)=[(n+|\gamma|)(1-\beta)-(\alpha-\beta)](r+d)^{n-1}, \\
\Theta_{d}(2, \alpha, \beta, \gamma)=[(2-\alpha-\beta)+|\gamma|(1-\beta)](r+d) \tag{7}
\end{gather*}
$$

throughout our study.
In the next theorem we state extreme points for the functions of the class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$.

Theorem 2.3 (Extreme points)
Let

$$
\begin{align*}
f_{1}(z) & =(z-\xi), \\
f_{n}(x) & =(z-\xi)-\frac{[(1-\alpha)+|\gamma|(1-\beta)]}{[(n+|\gamma|)(1-\beta)-(\alpha-\beta)] \Upsilon_{m}^{l}(n)}(z-\xi)^{n}, n=2,3, \ldots \tag{8}
\end{align*}
$$

Then $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ if and only if f can be expressed in the form $f(z)=$ $\sum_{n=1}^{\infty} \omega_{n} f_{n}(z)$, where $\omega_{n} \geq 0$ and $\sum_{n=1}^{\infty} \omega_{n}=1$.

The proof of the Theorem 2.3 follows on lines similar to the proof of the theorem on extreme points given in Silverman [19].

3. Close-to-convexity, starlikeness and convexity

In this section we obtain the radii of close-to-convexity, starlikeness and convexity for the class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$.

Theorem 3.1

Let $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$. Then f is close-to-convex of order $\delta(0 \leq \delta<1)$ in the disc $|z-\xi|<R_{1}$, that is $\Re\left(f^{\prime}(z)\right)>\delta$, where

$$
R_{1}=\inf _{n \geq 2}\left[\frac{(1-\delta) \Theta_{d}(n, \alpha, \beta, \gamma)}{n[(1-\alpha)+|\gamma|(1-\beta)]} \Upsilon_{m}^{l}(n)\right]^{\frac{1}{n-1}}
$$

Proof. Given $f \in \mathcal{T}_{\xi}$ and f is close-to-convex of order δ, we have

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<1-\delta \tag{9}
\end{equation*}
$$

For the left hand side of (9) we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{n=2}^{\infty} n a_{n} R_{1}^{n-1}
$$

The last expression is less than $1-\delta$ if

$$
\sum_{n=2}^{\infty} \frac{n}{1-\delta} a_{n} R_{1}^{n-1}<1
$$

Using the fact, that $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{(1-\alpha)+|\gamma|(1-\beta)} \Upsilon_{m}^{l}(n) a_{n}<1
$$

We can say (9) is true if

$$
\frac{n}{1-\delta} R_{1}^{n-1} \leq \frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{(1-\alpha)+|\gamma|(1-\beta)} \Upsilon_{m}^{l}(n)
$$

Or equivalently,

$$
R_{1} \leq\left[\frac{(1-\delta) \Theta_{d}(n, \alpha, \beta, \gamma)}{n[(1-\alpha)+|\gamma|(1-\beta)]} \Upsilon_{m}^{l}(n)\right]^{\frac{1}{n-1}}
$$

Which completes the proof.
Theorem 3.2
Let $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$. Then

1. f is starlike of order $\delta(0 \leq \delta<1)$ in the disc $|z-\xi|<R_{2}$; that is, $\Re\left(\frac{(z-\xi) f^{\prime}(z)}{f(z)}\right)>\delta$, where

$$
R_{2}=\inf _{n \geq 2}\left\{\frac{(1-\delta)}{(n-\delta)} \frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{[(1-\alpha)+|\gamma|(1-\beta)]} \Upsilon_{m}^{l}(n)\right\}^{\frac{1}{n-1}}
$$

2. f is convex of order $\delta(0 \leq \delta<1)$ in the unit disc $|z-\xi|<R_{3}$, that is $\Re\left(1+\frac{(z-\xi) f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\delta$, where

$$
R_{3}=\inf _{n \geq 2}\left\{\frac{(1-\delta)}{n(n-\delta)} \frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{[(1-\alpha)+|\gamma|(1-\beta)]} \Upsilon_{m}^{l}(n)\right\}^{\frac{1}{n-1}}
$$

These results are sharp for the extremal function f given by (8).
Proof. For the case 1, notice that for given $f \in \mathcal{T}_{\xi}$ and f is starlike of order δ, we have

$$
\begin{equation*}
\left|\frac{(z-\xi) f^{\prime}(z)}{f(z)}-1\right|<1-\delta \tag{10}
\end{equation*}
$$

For the left hand side of 10 we obtain

$$
\left|\frac{(z-\xi) f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z-\xi|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z-\xi|^{n-1}}
$$

The last expression is less than $1-\delta$ if

$$
\sum_{n=2}^{\infty} \frac{n-\delta}{1-\delta} a_{n}|z-\xi|^{n-1}<1
$$

Using the fact, that $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{(1-\alpha)+|\gamma|(1-\beta)} \Upsilon_{m}^{l}(n) a_{n}<1
$$

We can say 10 is true if

$$
\frac{n-\delta}{1-\delta}|z-\xi|^{n-1}<\frac{\Theta_{d}(n, \alpha, \beta, \gamma)}{(1-\alpha)+|\gamma|(1-\beta)} \Upsilon_{m}^{l}(n)
$$

Or equivalently,

$$
R_{3}^{n-1}<\frac{(1-\delta) \Theta_{d}(n, \alpha, \beta, \gamma)}{(n-\delta)[(1-\alpha)+|\gamma|(1-\beta)]} \Upsilon_{m}^{l}(n)
$$

which yields the starlikeness of the family.
Notice that we can prove case 2 , on lines similar the proof of case 1 , it is sufficient to use the fact that f is convex if and only if $(z-\xi) f^{\prime}$ is starlike.

4. Modified Hadamard products

For functions of the form

$$
f_{j}(z)=(z-\xi)-\sum_{n=2}^{\infty} a_{n, j}(z-\xi)^{n}, \quad j=1,2
$$

we define the modified Hadamard product as

$$
\left(f_{1} * f_{2}\right)(z)=(z-\xi)-\sum_{n=2}^{\infty} a_{n, 1} a_{n, 2}(z-\xi)^{n}
$$

Theorem 4.1
If $f_{j} \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma), j=1,2$, then $\left(f_{1} * f_{2}\right)(z) \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$, where

$$
\xi=\frac{(2-\beta) \Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)-2(1-\beta)[(1-\alpha)+|\gamma|(1-\beta)]}{(2-\beta) \Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)-(1-\beta)[(1-\alpha)+|\gamma|(1-\beta)]},
$$

with $\Upsilon_{m}^{l}(2)$ be defined as in 77 .
Proof. Since $f_{j} \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma), j=1,2$, we have

$$
\sum_{n=2}^{\infty} \Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n) a_{n, j} \leq(1-\alpha)+|\gamma|(1-\beta), \quad j=1,2
$$

The Cauchy-Schwartz inequality leads to

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)}{(1-\alpha)+|\gamma|(1-\beta)} \sqrt{a_{n, 1} a_{n, 2}} \leq 1 \tag{11}
\end{equation*}
$$

Note that we need to find the largest ρ such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \rho, \gamma) \Upsilon_{m}^{l}(n)}{(1-\alpha)+|\gamma|(1-\rho)} a_{n, 1} a_{n, 2} \leq 1 \tag{12}
\end{equation*}
$$

Therefore, in view of $\sqrt{11}$ and $\sqrt{12}$, whenever

$$
\frac{n-\xi}{1-\xi} \sqrt{a_{n, 1} a_{n, 2}} \leq \frac{n-\beta}{1-\beta}, \quad n \geq 2
$$

holds, then $\sqrt{12}$ is satisfied. We have, from (11),

$$
\begin{equation*}
\sqrt{a_{n, 1} a_{n, 2}} \leq \frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)}, \quad n \geq 2 \tag{13}
\end{equation*}
$$

Thus, if

$$
\left(\frac{n-\xi}{1-\xi}\right)\left[\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)}\right] \leq \frac{n-\beta}{1-\beta}, \quad n \geq 2
$$

or, if

$$
\xi=\frac{(n-\beta) \Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)-n(1-\beta)[(1-\alpha)+|\gamma|(1-\beta)]}{(n-\beta) \Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)-(1-\beta)[(1-\alpha)+|\gamma|(1-\beta)]}, \quad n \geq 2,
$$

then 110 is satisfied. Note that the right hand side of the above expression is an increasing function on n. Hence, setting $n=2$ in the above inequality gives the required result. Finally, by taking the function

$$
f(z)=(z-\xi)-\frac{(1-\alpha)+|\gamma|(1-\beta)}{(2-\beta)\left[\Theta_{d}(2, \alpha, \beta, \gamma)\right] \Upsilon_{m}^{l}(n)}(z-\xi)^{2}
$$

we see that the result is sharp.

5. Integral means

In order to find the integral means inequality and to verify the Silverman Conjuncture [20] for $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ we need the following subordination result due to Littlewood 12 .

Lemma 5.1 ([12])
If the functions f and g are analytic in \mathbb{U} with $g \prec f$, then

$$
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta, \quad \eta>0, z=r e^{i \theta} \text { and } 0<r<1
$$

Applying Theorem 2.1 with extremal function given by (8) and Lemma 5.1 we prove the following theorem.

Theorem 5.2
Let $\eta>0$. If $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ and $\{\Phi(\alpha, \beta, \gamma, n)\}_{n=2}^{\infty}$ is non-decreasing sequence, then for $(z-\xi)=r e^{i \theta}$ and $0<r+d<1$ we have

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

where

$$
f_{2}(z)=(z-\xi)-\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}(z-\xi)^{2}
$$

Proof. Let $f(z)$ of the form (2) and

$$
f_{2}(z)=(z-\xi)-\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}(z-\xi)^{2}
$$

then we must show that

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty} a_{n}(z-\xi)^{n-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}(z-\xi)\right|^{\eta} d \theta
$$

By Lemma 5.1 it suffices to show that

$$
1-\sum_{n=2}^{\infty} a_{n}(z-\xi)^{n-1} \prec 1-\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}(z-\xi)
$$

Setting

$$
\begin{equation*}
1-\sum_{n=2}^{\infty} a_{n}(z-\xi)^{n-1}=1-\frac{(1-\alpha)+|\gamma|(1-\beta)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)} w(z) \tag{14}
\end{equation*}
$$

From (14) and (6) we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)}{(1-\alpha)+|\gamma|(1-\beta)} a_{n}(z-\xi)^{n-1}\right| \\
& \leq|z-\xi| \sum_{n=2}^{\infty} \frac{\Theta_{d}(n, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(n)}{(1-\alpha)+|\gamma|(1-\beta)} a_{n} \\
& \leq|z-\xi| \\
& <1
\end{aligned}
$$

This completes the proof of the Theorem 5.2.

6. Inclusion relations involving $\boldsymbol{N}_{\boldsymbol{\delta}}(e)$

In this section following [14, 17], we define the n, δ neighborhood of function $f \in \mathcal{T}_{\xi}$ and discuss the inclusion relations involving $N_{\delta}(e)$.

$$
N_{\delta}(f)=\left\{g \in \mathcal{T}_{\xi}: g(z)=(z-\xi)-\sum_{n=2}^{\infty} b_{n}(z-\xi)^{n} \quad \text { and } \quad \sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta\right\}
$$

In particular, for the identity function $e(z)=z$ we have

$$
N_{\delta}(e)=\left\{g \in \mathcal{T}_{\xi}: g(z)=(z-\xi)-\sum_{n=2}^{\infty} b_{n} z^{n} \quad \text { and } \quad \sum_{n=2}^{\infty} n\left|b_{n}\right| \leq \delta\right\}
$$

Theorem 6.1
Let

$$
\delta=\frac{2[(1-\alpha)+|\gamma|(1-\beta)]}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}
$$

where $-1 \leq \alpha<1, \beta \geq 0$ and $\gamma \in \mathbb{C} \backslash\{0\}$. Then $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma) \subset N_{\delta}(e)$.

Proof. For $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ Theorem 2.1 yields

$$
\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2) \sum_{n=2}^{\infty} a_{n} \leq(1-\alpha)+|\gamma|(1-\beta)
$$

so that

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1-\alpha)+|\gamma|(1-\beta)}{\left[\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)\right.} \tag{15}
\end{equation*}
$$

On the other hand, from (6) and 15 we have

$$
\begin{aligned}
&(1-\beta)(r+d) \Upsilon_{m}^{l}(2) \sum_{n=2}^{\infty} n a_{n} \\
& \leq(1-\alpha)+|\gamma|(1-\beta)+[(\alpha-\beta)-|\gamma|(1-\beta)](r+d) \Upsilon_{m}^{l}(2) \sum_{n=2}^{\infty} a_{n} \\
& \leq(1-\alpha)+|\gamma|(1-\beta)+[(\alpha-\beta)-|\gamma|(1-\beta)](r+d) \Upsilon_{m}^{l}(2) \\
& \quad \times \frac{(1-\alpha)+|\gamma|(1-\beta)}{[(2-\alpha+\beta)+|\gamma|(1-\beta)](r+d) \Upsilon_{m}^{l}(2)} \\
& \leq \frac{[(1-\alpha)+|\gamma|(1-\beta)] 2(1-\beta)}{(2-\alpha+\beta)+|\gamma|(1-\beta)}
\end{aligned}
$$

Hence

$$
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2[(1-\alpha)+|\gamma|(1-\beta)]}{[(2-\alpha+\beta)+|\gamma|(1-\beta)](r+d) \Upsilon_{m}^{l}(2)}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2[(1-\alpha)+|\gamma|(1-\beta)]}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}=\delta \tag{16}
\end{equation*}
$$

Now we determine the neighborhood for each of the function class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ which we define as follows:

A function $f \in \mathcal{T}_{\xi}$ is said to be in the class $\mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma, \eta)$ if there exists a function $g \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<1-\eta, \quad(z-\xi) \in \mathbb{U}, 0 \leq \eta<1 \tag{17}
\end{equation*}
$$

Theorem 6.2
If $g \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\eta=1-\frac{\delta \Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)-2[(1-\alpha)+|\gamma|(1-\beta)]} \tag{18}
\end{equation*}
$$

Then $N_{\delta}(g) \subset \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma, \eta)$.
Proof. Suppose that $f \in N_{\delta}(g)$, then we find from (16) that

$$
\sum_{n=2}^{\infty} n\left|a_{n}-b_{n}\right| \leq \delta,
$$

which implies the coefficient inequality

$$
\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right| \leq \frac{\delta}{2}
$$

Next, since $g \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma)$, we have

$$
\sum_{n=2}^{\infty} b_{n} \leq \frac{2[(1-\alpha)+|\gamma|(1-\beta)]}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}
$$

So that

$$
\begin{aligned}
\left|\frac{f(z)}{g(z)}-1\right| & <\frac{\sum_{n=2}^{\infty}\left|a_{n}-b_{n}\right|}{1-\sum_{n=2}^{\infty} b_{n}} \\
& \leq \frac{\delta}{2} \times \frac{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)}{\Theta_{d}(2, \alpha, \beta, \gamma) \Upsilon_{m}^{l}(2)-2[(1-\alpha)+|\gamma|(1-\beta)]} \\
& \leq 1-\eta
\end{aligned}
$$

provided that η is given precisely by 18$)$. Thus by definition, $f \in \mathcal{T} \mathcal{S}_{\xi}(\alpha, \beta, \gamma, \eta)$ for η given by (18), which completes the proof.

Concluding Remarks: By suitably specializing the various parameters involved in Theorem 6 to Theorem 6.2 we can state the corresponding results for the new subclasses defined in Example 1 and also for many relatively more familiar function classes.

Acknowledgement: The authors thank the referee for his insightful suggestions to improve this paper in the present form.

References

[1] Md. Aabed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), no. 4, 454-465. Cited on 52 and 53
[2] O. Altintaş, Ő. Özkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67. Cited on 53
[3] M.K. Aouf, A. Shamandy, A.O. Mostafa, S. Madian, A subclass of M - W-starlike functions, Univ. Apulensis Math. Inform. No. 21 (2010), 135-142. Cited on 53
[4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446. Cited on 53
[5] B.C. Carlson, S.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. Cited on 53
[6] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13. Cited on 53
[7] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), no. 1, 7-18. Cited on 53
[8] A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. Cited on 52
[9] S. Kanas, F. Rønning, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 95-105. Cited on 52
[10] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965) 755-758. Cited on 52 and 53
[11] R.J. Libera, Univalent α-spiral functions, Canad. J. Math. 19 (1967) 449-456. Cited on 54
[12] J.E. Littlewood, On inequalities in theory of functions, Proc. Lond. Math. Soc. 23 (1925), 481-519. Cited on 59
[13] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966) 352-357. Cited on 53
[14] G. Murugusundaramoorthy, H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24, 8 pp. Cited on 53 and 60
[15] S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), no. 1, 55-70. Cited on 52
[16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. Cited on 53
[17] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. Cited on 60
[18] L. Špaček, Příspẽvek, k teorii funkci prostýčh, Časopis Pěst. Math. 63 (1933), 12-19. Cited on 54
[19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. Cited on 52 and 56
[20] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), no. 1, 169-174. Cited on 59
[21] H.M. Srivastava, S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17-24. Cited on 54

```
School of Advanced Sciences
VIT University
Vellore - 632014
India
E-mail: kvijaya@vit.ac.in gmsmoorthy@yahoo.com
```

Received: February 27, 2014; final version: June 3, 2014; available online: July 3, 2014.

[^0]: AMS (2010) Subject Classification: 30C45

 * Corresponding Author.

