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Steady-state and Transient  Responses 
of a Flexible Eccentric Spinning Shaft 
 

The steady-state and transient dynamics of a flexible spinning shaft with 

eccentricity driven by a DC motor (i.e., non-ideal energy-source) with 

external and internal damping is studied in this paper. It is well established 

that the structural response of a vibratory system to which a non-ideal drive is 

connected may act as an energy sink under certain conditions such that a part 

of the energy supplied by the source is spent to vibrate the structure rather 

than to increase the drive speed. This phenomenon is formally known as the 

Sommerfeld effect. The Sommerfeld effect characterized by jump phenomena is 

studied through the steady state amplitude obtained by instantaneous power 

balance method and further verified through numerical simulation. Transient 

responses of non-dimensional amplitude and shaft speed wth time 

evolution through first mode resonance are also given. 

 

Keywords: Sommerfeld Effect, non-ideal source, internal damping, 

instantaneous power balance, transient response, spinning shaft, . 

 

 
1. INTRODUCTION 

 

An ideal energy source is not influenced by the response 

of the system. When the excitation is influenced by the 

response of the system, the corresponding source is said 

to be non-ideal. A source for which the power supply is 

limited is said to be non-ideal. On the contrary, an ideal 

source can draw unlimited amount of power. Arnold 

Sommerfeld [1] discovered a phenomenon, better 

known as the Sommerfeld effect, which is characterized 

by the jumps in the system response at critical values of 

power input to the source. Several literatures are 

available on non-ideal systems [1–15]. It is well estab–

lished that the structural response of the system to 

which a non-ideal drive is connected may act like 

energy sink under certain conditions so that a part of the 

energy supplied by the source is spent to vibrate the 

structure rather than to increase the drive speed.  

The motivation of this research is the first step and 

fundamental study for response identification of complex 

rotor systems driven by DC motor. In this paper, a flexible 

spinning shaft with a constant eccentricity driven by a 

constant speed DC motor through a dissipative coupling in 

the presence of internal (material) damping is  considered. 

Multiple jump phenomena occur in such infinite 

dimensional non-ideal system. Studying the influence of 

internal damping and external damping parameters on the 

extent of the Sommerfeld effect zone may aid in designing 

the controllable damping parameters, so that the high speed 

rotor-motor system can be operated safely. 

 
2. MATHEMATICAL MODELING OF THE SHAFT-

ROTOR SYSTEM 

 

The schematic diagram of a slender flexible spinning 

shaft with distributed aerial and material damping along 

with certain constant eccentricity, driven through a DC 

motor is shown in the Fig. 1. The coupling between the 

shaft and the motor is assumed to be transversely 

flexible and light weight. Torsional vibration is not 

considered in this study, i.e., the whirl speed is not 

varying along the axis (i.e., z -axis) of the spinning shaft 

and the bearings are assumed to be ideal.  

  

Figure.1. Schematic of DC motor driven flexible shaft 

 
2.1 Equations of motion of the system 

 

The equations of motion of the rotor–motor system can 

be derived by using extended Hamilton’s principle [16-

18] as follows: 
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p r m LI R T T .θ θ+ = −
   

(3)
 

where ρ is the density of the shaft material, e is the 

constant eccentricity, φ is an arbitrary initial orientation 

of the mass centerline centerline, a is the cross-sectional 

area of the shaft, Ra is the external (direct) damping per 

unit length distributed continuously over the shaft, μa = 

Ra/(EI) is an external (aerial) damping parameter having 
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unit s/m4, Ir is the polar moment of inertia of the shaft 

about the spinning axis per unit length, Ip = IrL + Ic, Ic, is 

the polar moment of inertia of the part of the coupling 

and the motor connected to the shaft, L is the length of 

the shaft, Rr is the viscous damping offered to the 

rotations (due to bearings and the medium), Tm is the 

torque applied on the shaft, TL is the load torque due to 

dissipative forces acting on the flexural vibrations, i.e., 

the terms involving the rotor spinning speed in the first 

two equations of motion and each superscript ‘.’ denotes 

once total derivative with respect to time. In the left hand 

side of these equations the first term is due to the elastic 

forces (strain dependent), the second term is due to the 

material damping (strain rate dependent) as seen from the 

fixed frame, and the third term represents moments due to 

the circulatory forces. The fourth and fifth term represent 

the inertia force and external damping force respectively. 

The sixth term introduces the gyroscopic coupling 

between the orthogonal transverse vibrations. Because the 

torsional vibrations are neglected, θ  does not change 

along the z-axis. Note the sign change in the third terms 

of the two moment equations that introduce non-potential 

(and non-conservative) circulatory forces [19]. 

 
2.2 Boundary conditions 

 

The shaft is supported by ideal bearings, which means 

that the bending moments and the deflections at the 

supports are zero. Then the boundary conditions corres–

ponding to the assumed pin-pin supports [16] are speci–

fied at z = 0 and z = L as follows: 
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2.3 DC motor model 

 

The torque applied on the shaft  (Tm) is transmitted from 

the DC motor. The brushed DC motor model is, as 

usual, taken as: 
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where Us is the constant electric potential applied across 

the DC motor’s terminals, μm is the motor characteristic, 

Im is the current drawn by the motor, 
b mU μ θ=  is the 

back electromotive force developed in the motor’s coils, 

Rm is the electrical resistance of the coils and Tm is the 

torque developed by the motor.  

 
2.4 The Steady-state response of the system 

 

The steady-state response of flexural vibrations of the 

rotor system due to unbalance can be found in many 

standard books on rotor dynamics [20]. During pure 

synchronous whirl, let us assume a general steady state 

solution of Eqs. (1) and  (2) as: 
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 where pi(t) and qi(t) are generalised coordinates,  i = 

1,2,3... is the mode number and mode shape is assumed 

to be ( )i i

i z
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 so that the boundary condi–

tions are satisfied. Here Bi is the amplitude of the ith 

mode. Substituting Eq.(11) in the first equation of 

motion Eq. (1) gives 
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where each prime indicates once partial derivative with 

respect to z.  
Let steady state speed of the rotor be ωr 

i.e.
r .θ ω= Multiplying Eq. (11) by Xi, integrating from 0 

to L with respect to z and noting the orthogonality pro–

perties, i.e., 
0
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L
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yields the 

steady state unbalance response of the shaft is given as 
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and modal frequency of i-th mode is given by 
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The above two equations yield the deflection of 

shaft due to the unbalanced harmonic force caused by 

the constant eccentricity (e) of the shaft in x and y 

directions, respectively.  
 

2.5 Instantaneous power balance method 
 

The mechanical power drawn from the motor during 

steady-state synchronous whirl is given by 
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and the mechanical power dissipated from the system 

through the dissipative forces in transverse vibration as 

well as the dissipation due to shaft rotations is given as 
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 In steady state whirl, the supplied mechanical power 

is equal to the dissipated power, i.e.,
 
Wm = Wd [21, 22].

 
Considering only the first three or four modes of 

vibration (i.e., first mode and third mode, because the 

odd mode amplitudes are zero) and equating the sup–

plied mechanical power to the dissipated power (i.e., Wm 

= Wd) leads to a ninth order polynomial in ωr 
as follows 
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If only the first mode vibration is considered and all 

higher modes are neglected, then one obtains a fifth 

order polynomial in  ωr from Eq. (15) as follows: 
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 When the rotor speed is sufficiently larger than the 

first critical speed and nearer to the third critical speed, 

then the amplitude of first mode vibrations may be 

neglected in comparison with the third mode vibration 

amplitudes. In this case, most of the energy supplied by 

the motor goes towards sustaining the third mode fle–

xural vibrations. If only the third mode vibration is 

considered and all other modes are neglected then one 

again obtains a fifth order polynomial in ωr from Eq. 

(16) as follows 
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2.6 Stability criteria of the Steady State Forced 

Response 

 

Positive real roots of Eq. (16), i.e., admissible solutions, 

yield the equilibrium states of the system under consi–

deration. Some of these equilibriums are stable, whereas 

the others are unstable (saddles). Based on the approach 

followed in [12,16,19], one may conclude that a stable 

constant energy state exists under the following condition: 

( ) 0  

r r

m d

r

d
W W ,

d
ω ϖ

ω
=

− <

  

(18) 

where rω is an admissible (real positive) solution obta–

ined from Eq.(15). Use of Eqs. (13) and (14) in inequ–

ality (18) yields 
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where all real positive roots of Eq. (15) are allowable 

solutions 
r r

ω ϖ= and y
 
and x are given by Eq. (9) and 

Eq. (10), respectively, with  
r r

.ω ϖ=  

 
3. RESULT AND DISCUSSION 

 

The following representative values are considered for 

numerical studies: 
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For the chosen parameters, the model frequencies are 

calculated from: 
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The steady state characteristic is defined by the non-

dimensional quantities: the non dimensional rotor speed 

1

*

r r / pω ω=  and the non-dimensional whirl amplitude 

( )2 2

1Bp / gβ π= ,
 

where g
 

is the acceleration due to 

gravity, 
1

m

i

i

B B
=

=∑ is the maximum flexural amplitude 

that can be reached during steady state and m is the 

number of modes considered in the analysis.  

The Sommerfeld effect occurs around the third natu–

ral frequency ( )9*

rω = , which is 901.316 rad/sec. 

The non-dimensional rotor spin speed 
1

*

r r / pω ω=  

(positive real roots of Eq. (16)) and amplitude are plot–

ted against the supply voltage in Figs. 2 and 3, respec–

tively, for the zone, where the first mode Sommerfeld 

effect is observed. In the coast-up operation (i.e., while 

voltage is gradually increased), the rotor spin speed is 

entrained at values near the natural frequency *

rω  = 

1r / pω for a small range of voltage (points ‘a’ to ‘b’) 

and maximum flexural vibration amplitude is observed.  

As the supply voltage is gradually increased further, 

the rotor spin speed suddenly jumps to a much higher 

value (point ‘b’ to a point ‘d’ not shown in Fig. 3) and the 

flexural vibration amplitude drops to a much lower value.  
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Figure 2. Steady-state shaft speed for supply voltage 
values in the range of first mode Sommerfeld effect 

obtained from three mode approximation 

 

Figure 3. Maximum possible steady-state amplitude  for 

supply voltage values in therange of first mode 
Sommerfeld effect obtained from three mode 

approximation. 

 

Figure 4. Steady-state shaft speed for supply voltage 
values in the range of third mode Sommerfeld effect 

obtained from three mode approximation 

 
3.1 Transient Response during Passage Through 

Resonance 
 

The normalized variables used to plot the transient 

responses are chosen to be compatible with the steady-

state results. These normalized variables are  rotor spin 

speed ( ) 1/ pϖ θ=  and the normalized whirl amplitude 

( ) 1

2 2 2 2  x y p / gγ π= + , where
 
θ  transient shaft speed 

and x and y are the contemporary position of the shaft 

centerline at a given node, where 17 nodes model of the 

sahft is considered. The steady-state results do not depend 

upon the rotary inertia ( )cI  of the coupling and the rotor 

of the motor. However, transient response is dependent 

on that parameter. In the simulations, a value cI  =0.02 

2kg-m  has been chosen. If the value of cI  is high, then it 

takes a lot of time for the shaft to accelerate towards its 

steady-state speed, and consequently the simulation time 

requirement becomes too large. On the other hand, if the 

value of cI  is low, then the shaft accelerates too fast and 

can pass through the resonance quite easily; thus hiding 

the Sommerfeld effect zone.  

The transient responses for rotor spin speed and 

flexural vibration amplitudes, shown in Figs. 5 and 6 

respectively, show the convergence of the responses (� 

and 
9
γ ) to the respective steady-state values. 

 

Figure 5. Transient response showing time evolution of 

normalized shaft speed for Us = 45.1 Volt. 

 

Figure 6. Transient response showing time evolution of 

normalized maximum amplitudes at 5th and 9th nodes of a 
17 node model for Us=45.1 Volt. 

 
4. CONCLUSION AND FUTURE WORK 

 

Dynamics of an internally and externally damped 

eccentric flexible spinning shaft driven through a non-

ideal source (a DC motor) is studied in this paper. The 

motivation of this research is the first step to study the 

dynamic response of a complex rotor system driven by 

DC motor. DC motor is one of the non-ideal energy 

sources, whch causes generation of the Sommerfeld 

effect in the rotor system characterized by the jump 

phenomena [9,12,19,22]. This helps to determine  the 

stability criteria of the high speed rotor shaft, when the 

system passes through the various resonance frequ–

encies. The steady-state results predicted by the power 

balance method are further validated through numerical 

simulations. The transient responses of the normalized 

amplitude and speed are also shown. Numerical results 

are in good agreement with the work reported in [9].  

Based on this work, one may work on a discrete 

multi-disk rotor system that would show the Sommer–

feld effect, when the motor speed passes through the 

various resonance frequencies of the rotor system. Drive 
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structure interaction for other kinds of non-ideal sources 

such as electrical induction motor, synchronous motors 

and hydraulic motors may be studied. 
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СТАЦИОНАРАН И ТРАНЗИЈЕНТАН ОДЗИВ 

ФЛЕКСИБИЛНОГ ЕКСЦЕНТРИЧНОГ 

РОТАЦИОНОГ ВРАТИЛА 

 

С.С. Дасгупта, Ј.А. Рајан 

 

Истражена је стационарна и транзијентна динамика 
флексибилног ротационог вратила са ексцен–

тричношћу кога покреће мотор једносмерне струје 
(тј. неидеални извор енергије) са унутрашњим и 

спољашњим пригушењем. Утврђено је да структурни 

одзив вибрационог система за који је везан неиделни 

извор може да се понаша као енергетски понор у 

одређеним условима, тако да се део енергије добијен 

од извора утроши на вибрирање структуре, а не на 
повећање брзине погона. Феномен је познат као 

Зомерфилдов ефекат. Зомерфилдов ефекат који се 
одликује феноменом скока проучен је помоћу 

стационарне амплитуде добијене методом тренутног 
уравнотежења снаге и потврђен је нумеричком 

симулацијом. Такође су приказани транзијентни 

одзиви бездимензионе амплитуде и брзине вратила 
повећаване у времену кроз резонанцију првог мода. 

 

 

 

 


