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Abstract To meet the present requirements of the automotive industry, there is continuous search

to improve the performance, exhaust emission, and life of the IC engines. The meet the first two

challenges, researchers are working both on newer engine technologies and fuels. Some of the pub-

lished work indicates that coating on the combustion surface of the engine with ceramic material

results in improved performance and reduced emission levels when fueled with alternate fuel

blended fuels, and this serves as a base for this work. Normal-Butanol has molecular structure that

is adaptable to gasoline, and it is considered as one of the alternative fuels for SI engines. Blending

butanol with gasoline changes the properties of the fuel and alters the engine performance and emis-

sion characteristics. This is because heat which is released at a rate as a result of combustion of the

compressed air–fuel mixture in the combustion chamber gets changed with respect to change fuel

properties, air fuel ratio, and engine speed. An experimental investigation is carried out on a par-

tially insulated single cylinder SI engine to study the performance and emission characteristics when

fueled with two different blends of butanol and gasoline. The cylinder head surface and valves are

coated with a ceramic material consisting of Zirconium dioxide (ZrO2) with 8% by weight of

Yttrium Oxide (Y2O3) to a thickness of 0.3 mm by plasma spray method. Two different fuel blends

containing 10% and 15% by volume of butanol in Gasoline are tested on an engine dynamometer

using the uncoated and ceramic coated engines. The results strongly indicate that combination of

ceramic coated engine and butanol gasoline blended fuel has potential to improve the engine per-

formance.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
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1. Introduction

N-butanol or butyl alcohol can be used as a fuel for IC engine,
which is designed for use with gasoline without modification.

N-butanol can be produced from biomass (biobutanol) as well
as fossil fuels (petrobutanol). Both biobutanol and petrobuta-
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Nomenclature

BDC Bottom Dead Center

BP Brake Power (kW)
BTE brake thermal efficiency
CA crank angle (�)
CO carbon monoxide

CTD coated
EGT exhaust gas temperature (�C)

GNB gasoline & n-butanol

HC hyrdocarbon
SFC specific fuel consumption (kg/kJ h)
TBC thermal barrier coating
TDC Top Dead Center

UCTD uncoated
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nol have the same chemical properties. N-butanol is less corro-
sive than ethanol and has higher energy content than ethanol
and closer to that of gasoline. In comparison with ethanol,

n-butanol is less prone to water contamination. As a result,
it could be distributed using the same infrastructure used to
transport gasoline. It can be used a sole fuel in SI engines,

or it can be mixed with gasoline and used. There were four
types of butyl alcohol, and they all have the same chemical
composition, consisting four carbon atoms, ten hydrogen,
and single oxygen and also have identical chemical pattern

C4H10O. They differ each from others with respect to their
structure. The chemical structure of different butanol is given
below:

� 1-butanol: (n-butanol) CH3–CH2–CH2–CH2OH,
� sec-butanol: CH3CH(OH)CH2CH3,

� tert-butanol: (CH3)3COH,
� iso-butanol: CH3(CH2)3OH.

In addition, each of the fuels has different thermodynamic

properties and combustion characteristics. For the tests de-
scribed in this paper, n-butanol (1-butanol) was used as a fuel.
Characteristics of n-butanol in comparison with gasoline and

other alcohol fuels are given in Table 1.
However, when taking into account the latent heat of

vaporization of these fuels, n-butanol is less attractive than

gasoline. For port fuel injection systems, when the fuel vapor-
izes in the inlet port, it affects a temperature decrease in the in-
take charge [1]. Therefore, fuels of higher latent heat of

vaporization have larger decreases in temperature of intake
charge with complete vaporization in the intake port. This in-
Table 1 Properties of different fuels.

Fuel properties Gasoline Butanol Ethanol

Molecular formula C8H15 C4H9OH C2H5OH

Energy density (MJ/L) 32 19.2 19.6

Vapor pressure (kPa) 60–90 2.3 17

Density at 20 �C (kg/L) 0.715 0.81 0.79

Stoichiometric air/fuel ratio 14.6 11.1 9

Research octane number 91–97 113 129

Carbon (%) 84.9 64.9 52.1

Hydrogen (%) 15.1 13.5 13.1

Oxygen (%) 0 21.6 34.7

Cetane number Below 15 Below 15 Below 15

Boiling point (oC) 30–225 108.1 78.3

Lower heating Value (MJ/kg) 42.9 32.01 26.83

Latent heat of vaporization (kJ/kg) 349 584 838
creases the density of combustible mixture and increases the
charge mass. Furthermore, the cost of n-butanol production
is higher in comparison with ethanol [2]. However, there are

some promising circumstances for n-butanol production from
fermentation process of agricultural feedstock by cellulosic en-
zymes [3] that have the potential to reduce its production cost.

Govindarajan et al. [4] investigated the effects of unleaded iso-
butanol and additives of ethanol to gasoline to study the per-
formance and emission characteristics on a SI engine. Their
work concluded that there was an increase in brake thermal

efficiency (BTE), volumetric efficiency, and reduced fuel con-
sumption when the engine was operated with blends of 5%
iso-butanol, 10% ethanol, and rest gasoline. Significant reduc-

tions in exhaust emissions levels for entire engine torque range
were noted. Apart from performance, exhaust emission plays a
prime factor in any type automobile testing due to concerns

over environmental issues and regulations set by regulatory
bodies.

Alasfour [5] studied the characteristics of n-butanol and
gasoline fuel blends as an alternative fuel to study the effect

of butanol with gasoline on NOx emissions. He varied the inlet
air temperature between 40 �C and 60 �C along with air–fuel
ratio and observed the influences over NOx. A 9% reduction

in NOx levels was noted at low temperature while preheating
the inlet air resulted in knock and misfire due to reduced igni-
tion delay. The study of using n-butanol as an alternative fuel

source with diesel was conducted by Karabektas and Hosoz
[6]. Their studies involved testing of different blends of butanol
diesel blends. By testing the diesel engine at different rpm, a

considerable decrease in emissions was observed, while there
was a strong increase in brake thermal efficiency. Yang et al.
[7] performed tests on a spark ignition (SI) engine with differ-
ent proportions of n-butanol and gasoline fuel blends. Buta-

nol–gasoline blends ranging from 10% up to 35% were
tested under normal operating conditions. Their results indi-
cated variations in engine output when fueled with blended

fuel along with reduction in levels of HC and CO emission.
Authors have also observed increased NOx emissions with
blended fuels.

Several studies by automotive researchers have successfully
demonstrated that thermal barrier coatings (TBC’s) when
deposited to the internal combustion engine, in particular the

combustion chamber, simulate adiabatic condition. The objec-
tives are not only for reduced in-cylinder heat rejection and
thermal fatigue protection of underlying metallic surfaces,
but also for possible reduction in engine emissions [8–10].

The application of TBC reduces the heat loss to the engine
cooling-jacket through the surfaces exposed to the heat trans-
fer such as engine head, liner, piston crown, and piston rings.



Figure 1 (a) Uncoated, (b) Coated cylinder head, inlet, and exhaust valves.

Table 2 Specifications of ceramic coating.

Parameters Values

Particle velocity 500–550 mm/s

Oxide content 1–2%

Porosity 1–8%

Deposition rate 1–5 kg/h

Current 530 A

Voltage 72 V

Spray distance 100 mm

Torch nozzle diameter 6 mm

Table 3 Engine specifications.

Type Briggs and Stratton

Bore (mm) 79.24

Stroke (mm) 61.27

Compression ratio 8.1

Torque (N m, gross) 14.50

Engine displacement (cc) 305

Number of cylinders Single

Engine configuration Horizontal configuration

Lubrication system Splash

Valve arrangement Two vertical over head valves

Max power 7.46 kW @ 4000 rpm

Max torque 18.7 N m @ 2600 rpm
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The insulation of the combustion chamber with ceramic coat-
ing affects the combustion process and hence the performance
and exhaust emissions characteristics of the engines [11–14]. In
addition, thermo-physical properties of the ceramic material,

its surface roughness and porous characteristic, either in terms
of pore size or porosity, have a direct influence on the un-
burned or partially burnt hydrocarbons through the effect of

surface quenching and retention residual in the pores [15,16].
A detailed study on engine performance and emissions charac-
teristics which was performed on a ceramic coated diesel en-

gine (Low Heat Rejection – LHR) by Porai et al. [17] also
leads to a positive conclusion. A detailed literature on Low
Heat Rejection engine also reveals that only minimum number

of studies was carried out on LHR SI engine and specifically
with blended fuels. The primary focus of this experimental
work is to study the effects of using blended fuel on a LHR
type SI engine in comparison with a standard SI engine.

2. Thermal barrier coating

Before the application of the partial thermal insulation, a stan-

dard cylinder head was machined to remove material equal to
the desired coating thickness in order to maintain the compres-
sion ratio of the engine after the assembly of the same on to the

engine. After machining, cylinder head was grid blasted, and
then, both the valves and the cylinder head of the engine were
coated first with a bond coat, and over it, Yttrium stabilized

zirconia was coated using an atmospheric plasma spray gun.
The cylinder head and valves were coated with a 100 lm thick-
ness of NiCrAl bond coat. ZrO2 was deposited over the bond
coat to a thickness of 200 lm. With the spray coating applied,

the original dimensions of the coated parts of the engine were
restored. Fig. 1 shows the photograph of the base and ceramic
coated cylinder head. Table 2 shows the specifications of the

ceramic coating.

3. Experimental setup and test method

A 10 hp single cylinder, air cooled four stroke SI engine of
Briggs and Stratton make, was selected for the study. The spec-
ification of the test engine is listed in Table 3. An eddy current

dynamometer was connected to the engine, and the engine was
operated at different brake loads by varying the torque at con-
stant engine speed. Torque was measured by a strain-gauge

based load cell. In order to measure the in-cylinder pressure,
an uncooled type KISTLER piezoelectric type pressure sensor
was flush mounted on to the cylinder head. The air flow rate

was measured using a hot film type mass air flow sensor by
placing it across the intake air stream. Experiments were con-
ducted on base engine (without any modification) with gaso-

line and butanol–gasoline fuel blends for benchmarking.
After completion of base readings, engine cylinder head which
was coated with ceramic coating was installed on the base en-
gine by replacing the original uncoated cylinder head.



Figure 2 Schematic layout of the system.
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Using Hall Effect sensors, engine speed and TDC were

measured. J type thermocouples were installed on the exhaust
manifold to measure the exhaust temperature. To determine
the quantity of fuel supplied to the engine, a high accuracy tun-

ing fork type digital weighing scale with 0.01 g accuracy was
utilized. All pressure sensors were interfaced to a data acquisi-
tion system of national instruments (NI), and the data were

monitored using data acquisition tool (LabVIEW). Cylinder
pressure data are acquired at 1 CA resolution. To estimate
the concentration levels of hydrocarbon (HC), carbon monox-
ide (CO), and nitrogen oxides (NOx) emissions, automotive

emission analyzer (HORIBA) was used. Fuel blends of differ-
ent proportions by volume such as 90% gasoline, 10% n-buta-
nol (GNB10), 85% gasoline, and 15% n-butanol (GNB15)

were used for testing the uncoated engine head (UCTD) and
ceramic coated engine head (CTD). The tests were conducted
by maintaining engine rpm at 3000, and the responses in per-

formance characteristics due to variation in brake loads were
noted down periodically. The schematic layout of the experi-
mental setup is given in Fig. 2.
4. Results and discussion

In an IC engine, the combustion chamber parts operate under

extreme conditions such as extreme temperatures and thermal
shocks. Flame front does not always spread uniformly when
combustion starts in the combustion chamber and at the end
of combustion duration. Irregular spread of the flame front

in the combustion chamber forms negative effects such as
flame collisions and knocking. Therefore, combustion chamber
parts are exposed to thermal tension and thermal shocks.

These combustion negativities cause the parts constituting
the combustion chamber to tense irregularly and to operate
under higher thermal load which is heavier than the normal le-

vel. Due to the fact that ceramics have exceptional corrosion
resistance high melting points, they are seen as alternative
for the parts which operate under high temperatures. Chang-

ing the surface modifications of the combustion chamber parts
causes these negative effects to be dealt by the coating. There-
fore, main materials (substrates) are not damaged, and the life-
time of these parts increases. The negativities occurred during

the burning duration in the combustion chamber such as
thermal shock, extreme temperature, and irregular thermal

tension are dealt by the applied ceramic coating.
Comparison of engine performance characteristics of 10%

and 15% of n-butanol and gasoline blended fuels in two con-

figurations of engine (uncoated and coated) against the perfor-
mance of unleaded gasoline in base engine is done for different
engine operating loads.

4.1. In-cylinder pressure

Fig. 3(a and b) shows comparison of in-cylinder pressure with

respect to crank angle for both the base and the ceramic coated
engines with all three fuels. The peak cylinder pressure of cera-
mic coated engine is higher than baseline engine (at 5.4 kW)
when fueled with gasoline GNB10 and GNB15. When fueled

with gasoline, GNB10 and GNB15 ceramic coated engine reg-
isters maximum pressure higher by 2 bar, 7 bar, and 8 bar than
that of gasoline in base engine. The difference in peak in-cylin-

der pressure between GNB10 and GNB15 fuels when tested in
ceramic coated engine is less than 5% at all the loads. The
combined effect of reduced heat rejection and advanced peak

heat release raises the peak cylinder pressure in ceramic coated
engine. From kinetic theory of gases, increased in-cylinder gas
temperature due to reduced heat transfer increases the mean
square velocity of gas molecules, which simultaneously in-

creases the gas pressure.

4.2. Heat release

The gross heat release analysis reveals that combustion process
in ceramic coated engine is advanced as the heat gained due to
partial insulation advances the beginning of the heat release.

The peak gross heat angle appears very close to TDC which
is earlier than as it appears in baseline engine. Fig. 4(a and
b) shows the variation in heat release rate in both ceramic

and baseline engine at 5.4 kW when fueled with gasoline
GNB10 and GNB15 fuels. Ceramic coated engine has 10–
20 J/� CA higher heat release rate when fueled with gasoline,
GNB10 and GNB15 fuels, and the peak heat release angle also

advances by around 10� CA in ceramic coated engines. Due to
higher temperature, the rate combustion reaction increases and
gets completed in shorter duration in ceramic coated engine.
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Figure 3 Comparison of in-cylinder pressure with respect to crank angle with (a) blend GNB10 and (b) blend GNB15 to gasoline as

baseline.

0

10

20

30

40

50

60

70

80

Crank Angle (°)

H
ea

t 
R

el
ea

se
 R

at
e 

(J
 / 

C
A

°)

UCTD_Base

CTD_Base
UCTD_GNB10

CTD_GNB10

0

10

20

30

40

50

60

70

80

320 370 420 470 520 320 370 420 470 520

Crank Angle (°)

H
ea

t 
R

el
ea

se
 R

at
e 

(J
 / 

C
A

°)

UCTD_Base

CTD_Base

UCTD_GNB15

CTD_GNB15

(a) (b)

Figure 4 Comparison of heat release rate with respect to crank angle with (a) blend GNB10 and (b) blend GNB15 to gasoline as

baseline.
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4.3. Specific fuel consumption

Comparison of specific fuel consumption (SFC) of both the
base and the ceramic coated engines when fueled with Gaso-
line, GNB10 and GNB15, is shown in Fig. 5(a and b). The en-

ergy content of n-butanol blended fuel is lower than that of
unblended gasoline fuel; therefore, SFC values of n-butanol
and its mixtures are higher than that of base gasoline fuel in
both base and uncoated engine. This implies that more fuel

(butanol blended) is needed to get same performance as that
of gasoline. As the load is gradually increased, fuel consump-
tion reduces gradually. The trends of SFC are similar in both

the engines with all three fuels. At maximum load, fuel con-
sumption increases in both the engines with all three fuels. This
is because the carburetor is designed to choke at maximum

load, and to overcome the load, more fuel is put into the air
stream. When compared to gasoline in base engine, SFC is
higher by 1.48% and 0.94% at lower and maximum loads
when fueled with GNB10 in base engine. Increase in engine
load alters the mass of fuel which affects the air–fuel ratio
characteristics considerably on both uncoated and coated en-
gine head. In contrast to these increments, SFC for all test

fuels decreases in coated condition. The positive effect of in-
creased in-cylinder temperatures, due to heat insulation, the
SFC decreases for all test fuels in coated condition.

4.4. Brake thermal efficiency

Comparison of brake thermal efficiency (BTE) of both the en-

gines with gasoline GBN10 and GBN15 is shown in Fig. 6(a
and b). Increase in break thermal efficiency is observed with
all three fuels in both the base and the coated engines with in-
crease in load. Gasoline in ceramic coated engine showed 3.8%

rise in break thermal efficiency at lower loads and peaks to 6%
at maximum load when compared to gasoline in base engine.
With GNB10 blend fuel at initial load, a marginal rise of

0.7% in thermal efficiency was observed in base engine, while
with ceramic coated engine with same fuel, engine showed



Figure 5 Comparison of SFC with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.

Figure 6 Comparison of BTE with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.

Figure 7 Comparison of EGT with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.
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3.9% increase at lower load. When compared to gasoline in
base engine, GNB10 fuel blend showed a maximum increase
in efficiency by 3.2% in base engine and 7.4% in ceramic
coated engine at 85% of the maximum load. The differential

change in thermal efficiency of the engine when operated with
GBN10 and GBN15 was marginal in both the base and the
ceramic coated engines.
4.5. Exhaust gas temperature

Comparison of exhaust gas temperature (EGT) of both the en-

gines when operated with all three fuels is shown in Fig. 7(a
and b). Results indicate an increase in exhaust temperature
in ceramic coated engine when operated with both GBN10

and GNB15 fuel. The lower heating value of n-butanol which



Figure 8 Comparison of CO with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.

Figure 9 Comparison of HC with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.
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is closer to gasoline and improved volumetric efficiency due
higher latent heat of vaporization of butanol (gasoline –
349 kJ/kg, butanol – 584 kJ/kg) and the adiabatic conditions
created by ceramic coating (the quantity of heat blocked by

coating is transferred to the exhaust gas) has lead to such in-
creased exhaust gas temperature. Ceramic coated engine head
with GNB15 blend registers slightly higher exhaust tempera-

ture than GNB10 blended fuel.

4.6. Carbon monoxide emission

Carbon monoxide is the intermediate product that is formed
during combustion of hydrocarbon fuels. Some of the reasons
for formation of CO are incomplete combustion and poor air–

fuel management. The presence of oxygen plays a major factor
in CO emissions in SI engine. Comparison of carbon monoxide
(CO) emission from engine exhaust with n-butanol and gaso-
line fuel blends for both uncoated & coated engine with respect

to gasoline in base engine is shown in Fig. 8(a and b). N-buta-
nol consists of 21.6% oxygen atoms by weight. Addition of
butanol to gasoline aids in producing a proper combustible

mixture. Coated engine head tested with gasoline high decrease
in CO levels. Better performance is indicated by using GNB10
and GNB15 fuel blends for coated engine head. Further de-

crease in CO level was attained as the engine load was
increased.
The decrease in CO emission in the coated engine head as
compared to the uncoated engine head may be explained by
an increase in combustion temperature as a result of the de-
crease in heat losses going to cooling, and outside, due to cera-

mic coating. Heat transfer affects engine performance,
efficiency, and emissions. The coating attributes reductions
to insulation of the engine head, increases in wall temperature

and thus contributes positively to combustion efficiency. Local
conditions specifying temperature, mixture ratio, and amount
of oxygen, affect combustion and make the combustion con-

tinuous in petrol engines. Thus, the results clearly indicate that
the ceramic coating improves local conditions.

4.7. Hydro carbon emission

The unburned hydrocarbon emission from the engine is mainly
due to completely unburned or only partially burned fuel. The
amount of unburned hydrocarbon depends on the engine oper-

ating conditions and fuel properties. Fig. 9(a and b) has shown
the unburned hydrocarbon emission by uncoated gasoline,
coated gasoline and uncoated and coated n-butanol gasoline

blends for different load conditions. All the experiments have
shown the decreasing trend of unburned hydrocarbon emission
level as the BP increases. This trend is due to increased temper-

ature and pressure at high load conditions leading to better
combustion. It is observed that conventional engine is emitting



Figure 10 Comparison of NOx with (a) blend GNB10 and (b) blend GNB15 to gasoline as baseline.
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unburned hydrocarbon at higher level when compared to LHR
and LHR with n-butanol blends. This is due to lower operat-

ing temperature in conventional engine as compared to coated
engine. Moreover, engine operated with n-butanol–gasoline
blends has shown lower HC emissions as compared to pure

gasoline. Low energy content of n-butanol and presence of
oxygen atom contributes as the prime factors for the decrease
in HC emissions with blends. Butanol can provide more oxy-
gen for the combustion process. Since the HC emissions are re-

sulted due to incomplete combustion, when butanol is added,
HC emissions decreases significantly.

4.8. NOx emission

The NOx forms by oxidation of atmospheric nitrogen at suffi-
cient high temperatures. An increase in after-combustion tem-

perature causes an increase in NOx emission. All factors
facilitating and accelerating the reaction between oxygen and
nitrogen increase NOx formation. Thus, the main factor in

NOx formation is temperature. However, engine load, com-
bustion chamber content, combustion chamber homogeneity,
and mixture density in the combustion chamber are also
factors.

Fig. 10(a and b) indicates that NOx levels were lower in un-
coated engine, while they were higher in low heat rejection en-
gine at different operating conditions with n-butanol gasoline

blends when compared with gasoline operation on uncoated
engine at all loads. The NOx increase for all the test fuels used
in the coated head may be a result of an increase in after-com-

bustion and combustion chamber temperature due to the coat-
ing. Increase in combustion temperatures with the faster
combustion and improved heat release rates in LHR engine

caused higher NOx levels. NOx levels increased in n-butanol
gasoline blends operation when compared to pure gasoline
operation on uncoated engine. This was due to increase in igni-
tion delay with n-butanol blends and increase in gas tempera-

tures in LHR engine.

5. Conclusions

The study of the effect of thermal barrier coatings applied to
cylinder head, inlet and outlet valves on performance and
emission characteristics of a SI engine fueled with n-butanol

and gasoline blend leads to the following conclusions:
Combustion process in the ceramic coated engine is

advanced as compared to the uncoated engine.
The peak cylinder pressure of coated engine is higher than
the baseline engine.

With increase in proportion of n-butanol in the blends for
both the coated and base engine, HC emissions are signifi-
cantly reduced.

The CO decreases for all the test fuels in the coated engine
compared with uncoated head.
NOx emission increased for blends in coated engine com-

pared with uncoated head due to the adiabatic conditions.
The increase in NOx emission for all the test fuels in coated
head engine occurred due to the higher gas temperatures.
The SFC decreases for all the test fuels in coated engine

compared with uncoated base engine. This can be consid-
ered that the rising combustion temperature as a result of
the coating of combustion chamber components provides

a positive effect on SFC
Because of the heat, which would be lost to atmosphere
through cooling system, exhaust gas temperature increased.

In coated cylinder head engine due to the reduction in SFC,
the brake thermal efficiency was increased.
The applied ceramic coating protects the combustion cham-

ber components from negative effects such as irregular ther-
mal tension and thermal shock.
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