International Journal of Pure and Applied Mathematics

Volume 109 No. 2 2016, 245-256

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i2.7

STUDY ON i-v FUZZY TRANSLATION AND MULTIPLICATION OF i-v FUZZY $\beta-$ SUBALGEBRA

P. Hemavathi¹, P. Muralikrishna² §, K. Palanivel³

¹Department of Mathematics Sri Venkateswara College of Engineering & Technology Thirupachur, 631203, INDIA

²PG and Research Department of Mathematics Muthurangam Government Arts College (Autonomus) Vellore, 632002, INDIA

> ³Department of Mathematics School of Advanced Sciences VIT University, Vellore, 632014, INDIA

 $\label{eq:Abstract:} \textbf{Abstract:} \quad \text{In this paper, we discuss the notion of an Interval valued fuzzy translation of i-v fuzzy } \beta-\text{subalgebra} \ \text{and investigate some of their basic properties.}$

AMS Subject Classification: 08A72, 03E72

Key Words: β -algebra, β -subalgebra, fuzzy β -subalgebra, i-v fuzzy β -subalgebra

1. Introduction

After the notion of fuzzy sets, Zadeh in [9,10] made an extension of a fuzzy set by an interval valued fuzzy set (ie. a fuzzy set with an interval valued membership function). This interval valued fuzzy set is referred as an i-v fuzzy set and applied in various algebraic structures.

Iseki et al. [6] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. During 2002, Neggers et al. [7] discussed β -algebras. In 2013 Chandramouleeswaran et al. [3] dealt Fuzzy Translation and Fuzzy Mul-

Received: June 4, 2016

© 2016 Academic Publications, Ltd.

Published: September 8, 2016

url: www.acadpubl.eu

§Correspondence author

tiplication in BF/BG-algebras. In 2014 [1] Aub Ayub Ansari et al. applied the Fuzzy Translation on Fuzzy β -ideals of β -algebra. Motivated by these in [4,5], we introduced an interval valued fuzzy β - sub-algebras of β -algebra and product on i-v fuzzy β -subalgebra. In [2], Barbhuiya focused the Fuzzy Translations and fuzzy multiplications of interval valued fuzzy BG-algebra. Recently Sujatha et al. [8] introduced the notion of intuitionistic fuzzy α -translation on β -algebras. With all these ideas, in this paper, we discuss the notion on i-v fuzzy translation of i-v fuzzy β -subalgebras.

2. Preliminares

In this section we recall some basic definitions needed for our work.

Definition 2.1. [7] A β -algebra is a non-empty set X with a constant 0 and two binary operations + and - satisfying the following axioms:

1.
$$x - 0 = x$$

2.
$$(0-x)+x=0$$

3.
$$(x-y) - z = x - (z-y) \ \forall \ x, y, z \in X$$
.

Example 2.2. Let $X = \{0, a, b, c\}$ be a set with constant 0 and binary operation + and -are defined on X by the following Cayley's table

+	0	a	b	c
0	0	a	b	c
a	a	b	c	0
b	b	c	0	a
c	c	0	a	b

_	0	a	b	c
0	0	c	b	a
a	a	0	c	b
b	b	a	0	c
c	c	b	a	0

Then (X, +, -, 0) is a β -algebra.

Definition 2.3. A non empty subset A of a β -algebra (X, +, -, 0) is called a β -subalgebra of X, if $\forall x, y \in X$

1.
$$x + y \in A$$

$$2. x-y \in A$$

Example 2.4. In the above example of the β -algebra X, the subset $\{0,b\},\{0,a\},\{0,c\}$ are β -subalgebra of X. But the subset $A=\{0,a,b\}$ is not a β -subalgebra of X, since $(a+b=c\notin A)$

Definition 2.5. [1] Let μ be a fuzzy set in a β -algebra X. Then μ is called a fuzzy β -subalgebra of X, if $\forall x, y \in X$

- 1. $\mu(x+y) \ge \min\{\mu(x), \mu(y)\}\$
- 2. $\mu(x y) \ge \min\{\mu(x), \mu(y)\}\$

Definition 2.6. [10] An interval valued fuzzy set (briefly i-v fuzzy set) A defined on X is given by

$$A = \{(x, [\mu_A^L(x), \mu_A^U(x)])\} \ \forall \ x \in X$$

(briefly denoted by $A = [\mu_A^L, \mu_A^U]$), where μ_A^L and μ_A^U are two fuzzy sets in X such that $\mu_A^L(x) \leq \mu_A^U(x) \ \forall \ x \in X$.

Let $\overline{\mu}_A(x) = [\mu_A^L(x), \mu_A^U(x)] \quad \forall \ x \in X \text{ and let } D[0,1] \text{ denotes the family of all closed subintervals of } [0,1]. If <math>\mu_A^L(x) = \mu_A^U(x) = c$, say, where $0 \le c \le 1$, then we have $\overline{\mu}_A(x) = [c,c]$ which we also assume, for the sake of convenience, to belong to D[0,1]. Thus $\overline{\mu}_A(x) \in D[0,1] \quad \forall \ x \in X$, and therefore the i-v fuzzy set A is given by

$$A = \{(x, \overline{\mu}_A(x))\} \ \forall \ x \in X,$$

where $\overline{\mu}_A: X \to D[0,1]$.

Now let us define what is known as $refined\ mimimum(briefly\ rmim)$ of two elements in D[0,1]. We also define the symbols " \geq ", " \leq ", and "=" in case of two elements in D[0,1].

Consider two elements $D_1 := [a_1, b_1]$ and $D_2 := [a_2, b_2] \in D[0, 1]$.

Then we have:

$$rmin(D_1, D_2) = [min\{a_1, a_2\}, min\{b_1, b_2\}];$$

 $D_1 \ge D_2$ if and only if $a_1 \ge a_2$, $b_1 \ge b_2$.

Similarly we may have $D_1 \leq D_2$ and $D_1 = D_2$.

Remark 2.7. Let $D_1 := [a_1, b_1]$ and $D_2 := [a_2, b_2] \in D[0, 1]$. Then

- 1. $D_1 \leq D_2 \Leftrightarrow a_1 \leq a_2 \& b_1 \leq b_2$
- 2. $D_1 = D_2 \Leftrightarrow a_1 = a_2 \& b_1 = b_2$
- 3. $D_1 + D_2 = [a_1 + a_2, b_1 + b_2]$ whenever $a_1 + a_2 \le 1$ and $b_1 + b_2 \le 1$
- 4. $D_1 D_2 = [a_1 a_2, b_1 b_2]$ whenever $a_1 a_2 \le 1$ and $b_1 b_2 \le 1$

Definition 2.8. [4] Let $\overline{\mu}_A$ be an i-v fuzzy subset in X. Then $\overline{\mu}_A$ is said to be interval valued fuzzy(i-v-fuzzy) β -subalgebra of X, if $\forall x, y \in X$

- 1. $\overline{\mu}_A(x+y) \ge rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$
- 2. $\overline{\mu}_A(x-y) \geq rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$

Example 2.9. Consider the β -algebra $X = \{0, a, b, c\}$ in example 2.2. Define an i-v fuzzy subset $\overline{\mu}$ of X defined by

$$\overline{\mu}(x) = \begin{cases} [0.3, 0.7] : & x = 0\\ [0.1, 0.5] : & x = a, c\\ [0.2, 0.6] : & x = b \end{cases}$$

Then $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Definition 2.10. [1] Let μ be a fuzzy set of a β -algebra X and $\alpha \in [0,T]$ where $T = 1 - \sup\{\mu(x)/x \in X\}$. Then the fuzzy set $\mu_{\alpha}^T : X \to D[0,1]$ is called a fuzzy α -translation of μ if $\mu_{\alpha}^T(x) = \mu(x) + \alpha, \forall x \in X$.

3. Interval Valued Fuzzy Translations of β -Subalgebra

This section, deals with the notion of Interval valued fuzzy translation of β -subalgebra. In what follows, X denotes a β -algebra and for any i-v fuzzy set $\overline{\mu}$ of X, we denote $\overline{T} = [1,1] - rsup\{\overline{\mu}(x)/x \in X\}$ unless otherwise specified.we start with,

Definition 3.1. Let $\overline{\mu}$ be an i-v fuzzy set of X and $\overline{\alpha} \in [\overline{0}, \overline{T}]$, where $\overline{\alpha} = [\alpha^L, \alpha^U]$ with $\alpha^L \in [0, T^L]$ & $\alpha^U \in [0, T^U]$ and $\overline{0} = [0, 0]$. A mapping $\overline{\mu}^{\overline{T}}_{\overline{\alpha}}: X \to D[0, 1]$ is said to be an i-v fuzzy $\overline{\alpha}$ -translation of $\overline{\mu}$ if it satisfies $\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(x) = \overline{\mu}(x) + \overline{\alpha}, \forall x \in X$.

Example 3.2. Consider the β -algebra $X = \{0, a, b, c\}$ in example 2.2. Define an interval valued fuzzy subset $\overline{\mu}$ of X by

$$\overline{\mu}(x) = \begin{cases} [0.3, 0.7] : & x = 0\\ [0.1, 0.5] : & x = a, c\\ [0.2, 0.6] : & x = b \end{cases}$$

Then $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X. Here $\overline{T}=[1,1]-rsup\{\overline{\mu}(x)/x\in X\}=[1,1]-[0.3,0.7]=[0.7,0.3]$. choose $\overline{\alpha}=[0.04,0.08]\in[\overline{0},\overline{T}]$. Then the i-v fuzzy set $\overline{\mu}^{\overline{T}}_{\overline{\alpha}}:X\to D[0,1]$ is given by $\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(0)=[0.34,0.78],\quad \overline{\mu}^{\overline{T}}_{\overline{\alpha}}(a)=\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(c)=[0.14,0.58]$ and $\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(b)=[0.24,0.68]$ is a i-v fuzzy $\overline{\alpha}$ - Translation of $\overline{\mu}$.

Theorem 3.3. For any i-v fuzzy β -subalgebra $\overline{\mu}$ of X and $\overline{\alpha} \in [\overline{0}, \overline{T}]$, the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x)$ of $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Proof. Let $x, y \in X$ and $\overline{\alpha} \in [\overline{0}, \overline{T}]$, Then:

$$\overline{\mu}(x+y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}$$

and

$$\overline{\mu}(x-y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$$

Now

$$\begin{split} \overline{\mu}^{\overline{T}}_{\overline{\alpha}}(x+y) &= \overline{\mu}(x+y) + \overline{\alpha} \\ &\geq rmin\{\overline{\mu}(x),\overline{\mu}(y)\} + \overline{\alpha} \\ &= rmin\{\overline{\mu}(x) + \overline{\alpha},\overline{\mu}(y) + \overline{\alpha}\} \\ &= rmin\{\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(x),\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(y)\} \end{split}$$

Similarly, $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x-y) \geq rmin\{\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x), \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(y)\}$ Hence $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}$ of $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

The following is the converse of the above theorem.

Theorem 3.4. For any i-v fuzzy subset $\overline{\mu}$ of X and $\overline{\alpha} \in [0, \overline{T}]$. If the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_{\alpha}^{T}$ of $\overline{\mu}$ is also an i-v fuzzy β -subalgebra of X, then so is $\overline{\mu}$.

Proof. Let $\underline{x}, y \in X$ Assume that $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x)$ of $\overline{\mu}$ is a i-v fuzzy β -subalgebra of X for some $\overline{\alpha} \in [\overline{0}, \overline{T}]$. Then:

$$\begin{split} \overline{\mu}(x+y) + \overline{\alpha} &= \overline{\mu}^{\overline{T}}_{\overline{\alpha}}(x+y) \\ &\geq rmin\{\overline{\mu}^{\overline{T}}_{\overline{\alpha}}(x), \overline{\mu}^{\overline{T}}_{\overline{\alpha}}(y)\} \\ &= rmin\{\overline{\mu}(x) + \overline{\alpha}, \overline{\mu}(y) + \overline{\alpha}\} \\ &= rmin\{\overline{\mu}(x), \overline{\mu}(y)\} + \overline{\alpha} \end{split}$$

 $\Rightarrow \overline{\mu}(x+y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$

Similarly, $\overline{\mu}(x-y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$

Hence $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Remark 3.5. In general for any i-v fuzzy set $\overline{\mu}$ of X, the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(\overline{\alpha} \in [\overline{0}, \overline{T}])$ of $\overline{\mu}$ need not be an i-v fuzzy β -subalgebra of X, as shown by the following example.

Let X be the β -algebra given in Example 3.2. Consider the i-v fuzzy set $\overline{\mu}$

$$\overline{\mu}(x) = \begin{cases} [0.4, 0.6] : & x = 0 \\ [0.3, 0.5] : & x = a \\ [0.2, 0.4] : & x = b \\ [0.1, 0.3] : & x = c \end{cases}$$

Let $\overline{\alpha} = [0.02, 0.03]$. Then the corresponding $\overline{\alpha}$ -translation is

$$\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(0) = [0.42, 0.63], \quad \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(a) = [0.32, 0.53],$$

$$\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(b) = [0.22, 0.43] \text{ and } \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(c) = [0.12, 0.33].$$

Now $\overline{\mu}(a+b) = \overline{\mu}(c) = [0.1, 0.3] \not\geqslant [0.2, 0.4] = rmin\{\overline{\mu}(a), \overline{\mu}(b)\}$ and $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(a+b) = \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(c) = [0.12, 0.33] \not\geqslant [0.22, 0.43] = rmin\{\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(a), \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(b)\}.$

Hence $\overline{\mu}$ and $\overline{\mu}_{\alpha}^{\overline{T}}$ are not i-v fuzzy β -subalgebra of X.

Corollary 3.6. Let $\overline{\mu}$ be an i-v fuzzy set of X. If $\overline{\alpha} = \overline{0}$ then the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}^{\overline{T}}_{\alpha}$ of $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Theorem 3.7. Let $\overline{\mu}$ be given an i-v fuzzy β -subalgebra of X. Then for $\overline{\alpha}, \overline{\alpha'} \in [\overline{0}, \overline{T}], (\overline{\mu}^{\overline{T}}_{\overline{\alpha}} \cap \overline{\mu}^{\overline{T}}_{\overline{\alpha'}})$ and $(\overline{\mu}^{\overline{T}}_{\overline{\alpha}} \cup \overline{\mu}^{\overline{T}}_{\overline{\alpha'}})$ are also an i-v fuzzy β -subalgebra of X.

Proof. Let $\overline{\mu}_{\alpha}^{\overline{T}}$ and $\overline{\mu}_{\alpha'}^{\overline{T}}$ be two i-v fuzzy translation of an i-v fuzzy β -subalgebra $\overline{\mu}$ of X, where $\overline{\alpha}, \overline{\alpha'} \in [\overline{0}, \overline{T}]$

Assume that $\overline{\alpha} \leq \overline{\alpha'}$ by theorem 3.3 $\overline{\mu}_{\overline{\alpha}}^{\overline{T}}$ and $\overline{\mu}_{\overline{\alpha'}}^{\overline{T}}$ be two i-v fuzzy translation of β -subalgebra of X. Now

$$\begin{split} (\overline{\mu}_{\overline{\alpha}}^{\overline{T}} \cap \overline{\mu}_{\overline{\alpha'}}^{\overline{T}})(x) &= rmin\{\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x), \overline{\mu}_{\overline{\alpha'}}^{\overline{T}}(x)\} \\ &= rmin\{\overline{\mu}(x) + \overline{\alpha}, \overline{\mu}(x) + \overline{\alpha'}\} \\ &= \overline{\mu}(x) + \overline{\alpha} \\ &= \overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x). \end{split}$$

Also

$$(\overline{\mu}_{\overline{\alpha}}^{\overline{T}} \cup \overline{\mu}_{\alpha'}^{\overline{T}})(x) = rmax\{\overline{\mu}_{\overline{\alpha}}^{\overline{T}}(x), \overline{\mu}_{\alpha'}^{\overline{T}}(x)\}$$

$$= rmax\{\overline{\mu}(x) + \overline{\alpha}, \overline{\mu}(x) + \overline{\alpha'}\}$$

$$= \overline{\mu}(x) + \overline{\alpha'}$$

$$= \overline{\mu}_{\alpha'}^{\overline{T}}(x)$$

 $(\overline{\mu}_{\overline{\alpha}}^{\overline{T}} \cap \overline{\mu}_{\overline{\alpha'}}^{\overline{T}})$ and $(\overline{\mu}_{\overline{\alpha}}^{\overline{T}} \cup \overline{\mu}_{\overline{\alpha'}}^{\overline{T}})$ is an i-v fuzzy β -subalgebra of X.

Theorem 3.8. Let $\overline{\mu}_1$ and $\overline{\mu}_2$ be two i-v fuzzy β -subalgebras of X. Let $\overline{T} = rmin\{\overline{T}_{\overline{\mu}_1}, \overline{T}_{\overline{\mu}_2}\}$ where $\overline{T}_{\overline{\mu}_1} = [1,1] - rsup\{\overline{\mu}_1(x) : x \in X\}$ and $\overline{T}_{\overline{\mu}_2} = [1,1] - rsup\{\overline{\mu}_2(x) : x \in X\}$. Then the intersection of $\overline{\alpha}$ -translation of $\overline{\mu}_1$ and $\overline{\alpha'}$ -translation of $\overline{\mu}_2$ for some $\overline{\alpha}, \overline{\alpha'} \in [\overline{0}, \overline{T}]$ is an i-v fuzzy β -subalgebra of X.

Proof. Let $\overline{\mu}_1$ and $\overline{\mu}_2$ be two i-v fuzzy β -subalgebra of X. Then by theorem 3.3 $\overline{\mu}_1 \frac{\overline{T}}{\alpha}$ and $\overline{\mu}_2 \frac{\overline{T}}{\alpha'}$ are i-v fuzzy β -subalgebra of X. For $x, y \in X$,

$$\begin{split} (\overline{\mu}_{1}\overline{\overline{\alpha}} \cap \overline{\mu}_{2}\overline{\overline{\alpha}'})(x+y) &= rmin\{\overline{\mu}_{1}\overline{\overline{\alpha}}(x+y), \overline{\mu}_{2}\overline{\overline{\alpha}'}(x+y)\} \\ &\geq rmin\{rmin\{\overline{\mu}_{1}\overline{\overline{\alpha}}(x), \overline{\mu}_{1}\overline{\overline{\alpha}}(y)\}, rmin\{\overline{\mu}_{2}\overline{\overline{\alpha}'}(x), \overline{\mu}_{2}\overline{\overline{\alpha}'}(y)\}\} \\ &= rmin\{rmin\{\overline{\mu}_{1}\overline{\overline{\alpha}}(x), \overline{\mu}_{2}\overline{\overline{\alpha}'}(x)\}, rmin\{\overline{\mu}_{1}\overline{\overline{\alpha}}(y), \overline{\mu}_{2}\overline{\overline{\alpha}'}(y)\}\} \\ &= rmin\{(\overline{\mu}_{1}\overline{\overline{\alpha}} \cap \overline{\mu}_{2}\overline{\overline{\alpha}'})(x), (\overline{\mu}_{1}\overline{\overline{\alpha}} \cap \overline{\mu}_{2}\overline{\overline{\alpha}'})(y)\}. \end{split}$$

Similarly

$$(\overline{\mu}_1 \overline{\overline{\alpha}} \cap \overline{\mu}_2 \overline{\overline{\alpha}}')(x-y) \ge rmin\{(\overline{\mu}_1 \overline{\overline{\alpha}} \cap \overline{\mu}_2 \overline{\overline{\alpha}}')(x), (\overline{\mu}_1 \overline{\overline{\alpha}} \cap \overline{\mu}_2 \overline{\overline{\alpha}}')(y)\}.$$

Therefore

$$(\overline{\mu}_1 \overline{\overline{\alpha}} \cap \overline{\mu}_2 \overline{\overline{\alpha}'})$$

is an i-v fuzzy β -subalgebra of X.

Definition 3.9. Let $f: X \to Y$ be a function. Let $\overline{\mu}_X$ and $\overline{\mu}_Y$ be an i-v fuzzy $\overline{\alpha}$ -translation on X and Y respectively. Then inverse image of $\overline{\mu}_Y$ under f is defined by $f^{-1}(\overline{\mu}_Y) = \{f^{-1}(\overline{\mu}_Y) \overline{\overline{\alpha}}(x) : x \in X\}$ such that $f^{-1}(\overline{\mu}_Y) \overline{\overline{\alpha}}(x) = \overline{\mu}_Y(f(x) + \overline{\alpha})$

Theorem 3.10. Let X and Y be two β -algebras and $f: X \to Y$ be a homomorphism. If the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_Y$ of Y is an i-v fuzzy β -subalgebra of Y, then $f^{-1}(\overline{\mu}_Y)$ is an i-v fuzzy β -subalgebra of X.

Proof. Let the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_Y$ of Y be an i-v fuzzy β -subalgebra of Y.

Take $x, y \in Y$. Then

$$f^{-1}(\overline{\mu}_{Y}\overline{\overline{\alpha}})(x+y) = f^{-1}(\overline{\mu}_{Y})(x+y) + \overline{\alpha}$$

$$= \overline{\mu}_{Y}(f(x+y) + \overline{\alpha})$$

$$= \overline{\mu}_{Y}(f(x) + f(y)) + \overline{\alpha}$$

$$\geq rmin\{\overline{\mu}_{Y}(f(x) + \overline{\alpha}), \overline{\mu}_{Y}(f(y) + \overline{\alpha})\}$$

$$= rmin\{f^{-1}(\overline{\mu}_{Y}\overline{\overline{\alpha}})(x), f^{-1}(\overline{\mu}_{Y}\overline{\overline{\alpha}})(y)\}$$

Similarly, $f^{-1}(\overline{\mu}_Y \overline{\overline{\alpha}})(x-y) \ge rmin\{f^{-1}(\overline{\mu}_Y \overline{\overline{\alpha}})(x), f^{-1}(\overline{\mu}_Y \overline{\overline{\alpha}})(y)\}.$ Hence $f^{-1}(\overline{\mu}_Y)$ is an i-v fuzzy β -subalgebra of X.

Theorem 3.11. Let X and Y be two β -algebras and $f: X \to Y$ be a epimorphism. If the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_X$ of X is an i-v fuzzy β -subalgebra of X, then $f(\overline{\mu}_X)$ is an i-v fuzzy β -subalgebra of Y.

Proof. Let the i-v fuzzy $\overline{\alpha}$ -translation $\overline{\mu}_X$ of X is an i-v fuzzy β -subalgebra of X.

Take $x, y \in Y$. Then

$$\begin{split} f(\overline{\mu}_X \overline{\overline{\alpha}})(x+y) &= f(\overline{\mu}_X)(x+y) + \overline{\alpha} \\ &= \overline{\mu}_X (f(x+y) + \overline{\alpha}) \\ &= \overline{\mu}_X (f(x) + f(y)) + \overline{\alpha} \\ &\geq rmin\{\overline{\mu}_X (f(x) + \overline{\alpha}), \overline{\mu}_X (f(y) + \overline{\alpha})\} \\ &= rmin\{f(\overline{\mu}_X \overline{\overline{\alpha}})(x), f(\overline{\mu}_X \overline{\overline{\alpha}})(y)\} \end{split}$$

similarly, $f(\overline{\mu}_{X}\overline{\overline{\alpha}})(x-y) \geq rmin\{f(\overline{\mu}_{\overline{\alpha}}\overline{\overline{\alpha}}(x)), f(\overline{\mu}_{\overline{\alpha}}\overline{\overline{\alpha}}(y))\}.$ Hence $f(\overline{\mu}_{X}\overline{\overline{\alpha}})$ is an i-v fuzzy β -subalgebra of Y.

Theorem 3.12. Let $\overline{\mu}_1$ and $\overline{\mu}_2$ be two i-v fuzzy β -subalgebras of X. Let $\overline{T} = rmin\{\overline{T}_{\overline{\mu}_1}, \overline{T}_{\overline{\mu}_2}\}$ where $\overline{T}_{\overline{\mu}_1} = [1,1] - rsup\{\overline{\mu}_1(x) : x \in X\}$ and $\overline{T}_{\overline{\mu}_2} = [1,1] - rsup\{\overline{\mu}_2(x) : x \in X\}$. Let $\overline{\alpha} \in [\overline{0},\overline{T}]$. Then the $\overline{\alpha}$ -translation of cartesian product $\overline{\mu}_1 \times \overline{\mu}_2$ of $\overline{\mu}_1$ and $\overline{\mu}_2$ is an i-v fuzzy β -subalgebra of $X \times X$.

Proof. Let $\overline{\mu}_1$ and $\overline{\mu}_2$ be an i-v fuzzy β -subalgebra of a β -algebra X and $\overline{\alpha} \in [\overline{0}, \overline{T}]$.

Now by theorem 3.3 $\overline{\mu}_{1}\frac{\overline{T}}{\alpha}$ and $\overline{\mu}_{2}\frac{\overline{T}}{\alpha}$ are i-v fuzzy β -subalgebra of X.

Clearly $\overline{\mu}_{1}\frac{\overline{T}}{\alpha} \times \overline{\mu}_{2}\frac{\overline{T}}{\alpha}$ is an i-v fuzzy β -subalgebra of $X \times X$. Also

$$\begin{split} (\overline{\mu}_1 \times \overline{\mu}_2) \overline{\overline{\alpha}}(a,b) &= (\overline{\mu}_1 \times \overline{\mu}_2)(a,b) + \overline{\alpha} \\ &= rmin\{\overline{\mu}_1(a), \overline{\mu}_2(b)\} + \overline{\alpha} \\ &= rmin\{\overline{\mu}_1(a) + \overline{\alpha}, \overline{\mu}_2(b) + \overline{\alpha}\} \\ &= rmin\{\overline{\mu}_1 \overline{\overline{\alpha}}(a), \overline{\mu}_2 \overline{\overline{\alpha}}(b)\} \\ &= (\overline{\mu}_1 \overline{\overline{\alpha}} \times \overline{\mu}_2 \overline{\overline{\alpha}})(a,b). \end{split}$$

Hence $(\overline{\mu}_1 \times \overline{\mu}_2)^{\overline{T}}_{\overline{\alpha}}$ is an i-v fuzzy β -subalgebra of $X \times X$

4. Interval Valued Fuzzy Multiplication of β -Subalgebra

In this section, we introduce the notion of interval valued fuzzy $\overline{\phi}$ —multiplication. To illustrate the concept, we discuss some examples. Also we prove some simple results.

Definition 4.1. Let $\overline{\mu}$ be an i-v fuzzy subset of X and $\overline{\phi} \in D[0,1]$. A mapping $\overline{\mu}_{\overline{\phi}}^M: X \to D[0,1]$ is said to be an i-v fuzzy $\overline{\phi}$ -multiplication of $\overline{\mu}$ if it satisfies $\overline{\mu}_{\overline{\phi}}^M(x) = \overline{\phi}.\overline{\mu}(x) \ \forall \ x \in X$

Example 4.2. Consider the above example 3.2. Let $\overline{\phi} = [0.2, 0.3]$. Then the $\overline{\phi}$ -multiplication of i-v fuzzy set $\overline{\mu}$ is given by

$$\overline{\mu}_{\overline{\phi}}^{M}(0) = [0.06, 0.21], \quad \overline{\mu}_{\overline{\phi}}^{M}(a) = \overline{\mu}_{\overline{\phi}}^{M}(c) = [0.02, 0.15] \ \ and \ \ \overline{\mu}_{\overline{\phi}}^{M}(b) = [0.04, 0.18].$$

Theorem 4.3. For any i-v fuzzy β -subalgebra $\overline{\mu}$ of X and $\overline{\phi} \in D[0,1]$, the i-v fuzzy $\overline{\phi}$ -multiplication $\overline{\mu}_{\overline{\phi}}^M(x)$ of $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Proof. Let $x, y \in X$ and $\overline{\phi} \in D[0, 1]$, Then

$$\overline{\mu}(x+y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}$$

and

$$\overline{\mu}(x-y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$$

Now

$$\overline{\mu}_{\overline{\phi}}^{M}(x+y) = \overline{\phi}.\overline{\mu}(x+y)$$

$$> \overline{\phi}.rmin\{\overline{\mu}(x),\overline{\mu}(y)\}$$

$$= rmin\{\overline{\phi}.\overline{\mu}(x), \overline{\phi}.\overline{\mu}(y)\}$$
$$= rmin\{\overline{\mu}_{\overline{\phi}}^{M}(x), \overline{\mu}_{\overline{\phi}}^{M}(y)\}$$

Similarly, $\overline{\mu}_{\overline{\phi}}^{M}(x-y) \geq rmin\{\overline{\mu}_{\overline{\phi}}^{M}(x), \overline{\mu}_{\overline{\phi}}^{M}(y)\}.$ Hence $\overline{\mu}_{\overline{\phi}}^{M}$ of $\overline{\mu}$ is a i-v fuzzy β -subalgebra of X.

The following is the converse of the above theorem.

Theorem 4.4. For any i-v fuzzy subset $\overline{\mu}$ of X and $\overline{\phi} \in D[0,1]$. If the i-v fuzzy $\overline{\phi}$ —multiplication $\overline{\mu}_{\overline{\phi}}^{\underline{M}}$ of $\overline{\mu}$ is also an i-v fuzzy β —subalgebra of X, then so is $\overline{\mu}$.

Proof. Let $x,y\in X.$ Assume that $\overline{\mu}_{\overline{\phi}}^{M}(x)$ of $\overline{\mu}$ is a i-v fuzzy $\beta-$ subalgebra of X for some $\overline{\phi} \in D[0,1]$.

Then

$$\begin{split} \overline{\phi}.\overline{\mu}(x+y) &= \overline{\mu}_{\overline{\phi}}^{M}(x+y) \\ &\geq rmin\{\overline{\mu}_{\overline{\phi}}^{M}(x),\overline{\mu}_{\overline{\phi}}^{M}(y)\} \\ &= rmin\{\overline{\phi}.\overline{\mu}(x),\overline{\phi}.\overline{\mu}(y)\} \\ &= \overline{\phi}.rmin\{\overline{\mu}(x),\overline{\mu}(y)\} \end{split}$$

 $\Rightarrow \overline{\mu}(x+y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$

Similarly, $\overline{\mu}(x-y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$

Hence $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Let $\overline{\mu}$ be an i-v fuzzy subset of $X, \overline{\phi} \in D[0,1]$ and $\overline{\alpha} \in [\overline{0}, \overline{T}]$. A mapping $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}: X \to D[0,1]$ is said to be an i-v fuzzy magnified $-\overline{\phi}\overline{\alpha} - \text{translation of } \overline{\mu} \text{ if it satisfies } \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x) = \overline{\phi}.\overline{\mu}(x) + \overline{\alpha} \ \, \forall \, \, x \in X.$

Example 4.6. Consider the β -algebra $X = \{0, a, b, c\}$ in example 2.2. Define an interval valued fuzzy subset $\overline{\mu}$ of X by

$$\overline{\mu}(x) = \begin{cases} [0.3, 0.7] : & x = 0\\ [0.1, 0.5] : & x = a, c\\ [0.2, 0.6] : & x = b \end{cases}$$

Then $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X. Here $\overline{T} = [1,1] - rsup\{\overline{\mu}(x)/x \in$ X = [1,1] - [0.3,0.7] = [0.7,0.3]. choose $\overline{\alpha}$ = [0.04,0.08] \in [[0,0], [0.7,0.3] and $\overline{\phi}$. = $[0.1, 0.3] \in D[0, 1]$.

Then the i-v fuzzy set $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}:X\to D[0,1]$ is given by

$$\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{\overline{MT}}(0) = [0.07, 0..29], \quad \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{\overline{MT}}(a) = \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{\overline{MT}}(c) = [0.05, 0.23]$$

and

$$\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(b) = [0.06, 0.26].$$

Theorem 4.7. Let $\overline{\mu}$ be an i-v fuzzy subset of $X, \overline{\phi} \in D[0,1]$ and $\overline{\alpha} \in [\overline{0}, \overline{T}]$. A mapping $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}: X \to D[0,1]$ is an i-v fuzzy magnified- $\overline{\phi}\overline{\alpha}$ -translation of $\overline{\mu}$. Then $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X if and only if $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}$ is an i-v fuzzy β -subalgebra of X.

Proof. Let $\overline{\mu}$ be an i-v fuzzy subset of X, $\overline{\phi} \in D[0,1]$ and $\overline{\alpha} \in [\overline{0},\overline{T}]$. A mapping $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}: X \to D[0,1]$ is said to be an i-v fuzzy magnified- $\overline{\phi}\overline{\alpha}$ -translation of $\overline{\mu}$.

Assume that $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Then $\overline{\mu}(x+y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}$ and $\overline{\mu}(x-y) \ge rmin\{\overline{\mu}(x), \overline{\mu}(y)\}$. Now

$$\begin{split} \overline{\mu}^{M\overline{T}}_{\overline{\phi}\overline{\alpha}}(x+y) &= \overline{\phi}.\overline{\mu}(x+y) + \overline{\alpha} \\ &\geq \overline{\phi}.rmin\{\overline{\mu}(x),\overline{\mu}(y)\} + \overline{\alpha} \\ &= rmin\{\overline{\phi}.\overline{\mu}(x) + \overline{\alpha},\overline{\phi}.\overline{\mu}(y) + \overline{\alpha}\} \\ &= rmin\{\overline{\mu}^{M\overline{T}}_{\overline{\delta}\overline{\alpha}}(x),\overline{\mu}^{M\overline{T}}_{\overline{\delta}\overline{\alpha}}(y)\} \end{split}$$

Similarly, $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x-y) \ge rmin\{\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x), \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(y)\}.$

Hence $\overline{\mu}_{\overline{\phi}\overline{\Omega}}^{\overline{MT}}$ of $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

Assume that $\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x)$ of $\overline{\mu}$ is an i-v fuzzy $\beta-$ subalgebra of X Then:

$$\begin{split} \overline{\phi}.\overline{\mu}(x+y) + \overline{\alpha} &= \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x+y) \\ &\geq rmin\{\overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(x), \overline{\mu}_{\overline{\phi}\overline{\alpha}}^{M\overline{T}}(y)\} \\ &= rmin\{\overline{\phi}.\overline{\mu}(x) + \overline{\alpha}, \overline{\phi}.\overline{\mu}(y) + \overline{\alpha}\} \\ &= \overline{\phi}.rmin\{\overline{\mu}(x), \overline{\mu}(y)\} + \overline{\alpha} \end{split}$$

 $\Rightarrow \overline{\mu}(x+y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$ Similarly, $\overline{\mu}(x-y) \geq rmin\{\overline{\mu}(x), \overline{\mu}(y)\}.$ Hence $\overline{\mu}$ is an i-v fuzzy β -subalgebra of X.

References

- M. Aub Ayub Anasri, M. Chandramouleeswaran, Fuzzy translations of fuzzy β-subalgebra of β-algebras, International Journal of Pure and Applied Mathematics, 92, No. 5 (2014), 657-667.
- [2] S.R. Barbhuiya, Fuzzy translation and fuzzy multiplications of interval valued fuzzy BGalgebras, International Journal of Mathematical Archive, 7, No. 6 (2015), 25-32.
- [3] M. Chandramouleeswaran, P. Muralikrishna, S. Srinivasan, Fuzzy translation and fuzzy multiplication in BF/BG-algebras, *Indian Journal of Science and Technology*, 6, No. 9 (2013), 5216-5219, doi: 10.17485/ijst/2013/v6i9/37135.
- [4] P. Hemavathi, P. Muralikrishna, K. Palanivel, A note on interval valued fuzzy β-subalgebras, Global Journal of Pure and Applied Mathematics, 11, No. 4 (2015), 2553-2560.
- [5] P. Hemavathi, P. Muralikrishna, K. Palanivel, Product on i-v fuzzy β-subalgebra, Accepted for publication.
- [6] K. Iseki, S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon., 23 (1973), 1-26.
- [7] J. Neggers, Kim Hee Sik, On β-algebras, Math. Slovaca., **52**, No. 5 (2002), 517-530.
- [8] K. Sujatha, P. Muralikrishna, Intuitionistic fuzzy α-Translation on β-algebras, International Journal of Pure and Applied Mathematics, 98, No. 5 (2015), 39-44, doi: 10.12732/ijpam.v98i5.7.
- [9] L.A. Zadeh, Fuzzy sets, Inform. Control, 8, No. 3 (1965), 338-353, doi: 10.1016/S0019-9958(65)90241-X.
- [10] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, I, *Information Sci.*, 8 (1975), 199-249, doi: 10.1016/0020-0255(75)90036-5.