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1. Introduction

After the notion of fuzzy sets, Zadeh in [9,10] made an extension of a fuzzy
set by an interval valued fuzzy set (ie. a fuzzy set with an interval valued
membership function). This interval valued fuzzy set is referred as an i-v fuzzy
set and applied in various algebraic structures.

Iseki et al. [6] introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras. During 2002, Neggers et al. [7] discussed β−algebras. In
2013 Chandramouleeswaran et al. [3] dealt Fuzzy Translation and Fuzzy Mul-
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tiplication in BF/BG-algebras. In 2014 [1] Aub Ayub Ansari et al. applied
the Fuzzy Translation on Fuzzy β−ideals of β−algebra. Motivated by these in
[4,5], we introduced an interval valued fuzzy β− sub-algebras of β−algebra and
product on i-v fuzzy β−subalgebra. In [2], Barbhuiya focused the Fuzzy Trans-
lations and fuzzy multiplications of interval valued fuzzy BG-algebra. Recently
Sujatha et al. [8] introduced the notion of intuitionistic fuzzy α−translation on
β−algebras. With all these ideas, in this paper, we discuss the notion on i-v
fuzzy translation of i-v fuzzy β−subalgebras.

2. Preliminares

In this section we recall some basic definitions needed for our work.

Definition 2.1. [7] A β-algebra is a non-empty set X with a constant 0
and two binary operations + and − satisfying the following axioms:

1. x− 0 = x

2. (0− x) + x = 0

3. (x− y)− z = x− (z − y) ∀ x, y, z ∈ X.

Example 2.2. Let X = {0, a, b, c} be a set with constant 0 and binary
operation + and −are defined on X by the following Cayley’s table

+ 0 a b c

0 0 a b c

a a b c 0

b b c 0 a

c c 0 a b

− 0 a b c

0 0 c b a

a a 0 c b

b b a 0 c

c c b a 0

Then (X,+,−, 0) is a β−algebra.

Definition 2.3. A non empty subset A of a β−algebra (X,+,−, 0) is
called a β-subalgebra of X, if ∀ x, y ∈ X

1. x+ y ∈ A

2. x− y ∈ A

Example 2.4. In the above example of the β−algebra X, the subset
{0, b},{0, a},{0, c} are β−subalgebra of X. But the subset A = {0, a, b}is not a
β−subalgebra of X, since (a+ b = c /∈ A)
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Definition 2.5. [1] Let µ be a fuzzy set in a β−algebra X. Then µ is
called a fuzzy β-subalgebra of X, if ∀ x, y ∈ X

1. µ(x+ y) ≥ min{µ(x), µ(y)}

2. µ(x− y) ≥ min{µ(x), µ(y)}

Definition 2.6. [10] An interval valued fuzzy set (briefly i-v fuzzy set) A
defined on X is given by

A = {(x, [µL
A(x), µ

U
A(x)])} ∀ x ∈ X

(briefly denoted by A = [µL
A, µ

U
A]), where µL

A and µU
A are two fuzzy sets in X

such that µL
A(x) ≤ µU

A(x) ∀ x ∈ X.
Let µA(x) = [µL

A(x), µ
U
A(x)] ∀ x ∈ X and let D[0, 1] denotes the family of

all closed subintervals of [0, 1]. If µL
A(x) = µU

A(x) = c, say, where 0 ≤ c ≤ 1,
then we have µA(x) = [c, c] which we also assume, for the sake of convenience,
to belong to D[0, 1]. Thus µA(x) ∈ D[0, 1] ∀ x ∈ X, and therefore the i-v fuzzy
set A is given by

A = {(x, µA(x))} ∀ x ∈ X,

where µA : X → D[0, 1].
Now let us define what is known as refined mimimum(briefly rmim) of

two elements in D[0, 1]. We also define the symbols ” ≥ ” , ” ≤ ”, and ” = ” in
case of two elements in D[0, 1].

Consider two elements D1 := [a1, b1] and D2 := [a2, b2] ∈ D[0, 1].
Then we have:

rmin(D1,D2) = [min{a1, a2},min{b1, b2}];

D1 ≥ D2 if and only if a1 ≥ a2, b1 ≥ b2.
Similarly we may have D1 ≤ D2 and D1 = D2.

Remark 2.7. Let D1 := [a1, b1] and D2 := [a2, b2] ∈ D[0, 1].Then

1. D1 ≤ D2 ⇔ a1 ≤ a2 & b1 ≤ b2

2. D1 = D2 ⇔ a1 = a2 & b1 = b2

3. D1 +D2 = [a1 + a2, b1 + b2] whenever a1 + a2 ≤ 1 and b1 + b2 ≤ 1

4. D1 −D2 = [a1 − a2, b1 − b2] whenever a1 − a2 ≤ 1 and b1 − b2 ≤ 1

Definition 2.8. [4] Let µA be an i-v fuzzy subset in X. Then µA is said
to be interval valued fuzzy(i-v-fuzzy) β−subalgebra of X, if ∀ x, y ∈ X
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1. µA(x+ y) ≥ rmin{µA(x), µA(y)}

2. µA(x− y) ≥ rmin{µA(x), µA(y)}

Example 2.9. Consider the β−algebra X = {0, a, b, c} in example 2.2.
Define an i-v fuzzy subset µ of X defined by

µ(x) =











[0.3, 0.7] : x = 0

[0.1, 0.5] : x = a, c

[0.2, 0.6] : x = b

Then µ is an i-v fuzzy β−subalgebra of X.

Definition 2.10. [1] Let µ be a fuzzy set of a β−algebra X and α ∈ [0, T ]
where T = 1−sup{µ(x)/x ∈ X}. Then the fuzzy set µT

α : X → D[0, 1] is called
a fuzzy α−translation of µ if µT

α(x) = µ(x) + α,∀x ∈ X.

3. Interval Valued Fuzzy Translations of β-Subalgebra

This section, deals with the notion of Interval valued fuzzy translation of
β−subalgebra. In what follows, X denotes a β−algebra and for any i-v fuzzy set
µ of X, we denote T = [1, 1]− rsup{µ(x)/x ∈ X} unless otherwise specified.we
start with,

Definition 3.1. Let µ be an i-v fuzzy set of X and α ∈ [0, T ], where
α = [αL, αU ] with αL ∈ [0, TL] & αU ∈ [0, TU ] and 0 = [0, 0] . A mapping

µT
α : X → D[0, 1] is said to be an i-v fuzzy α−translation of µ if it satisfies

µT
α(x) = µ(x) + α,∀x ∈ X.

Example 3.2. Consider the β−algebra X = {0, a, b, c}in example 2.2.
Define an interval valued fuzzy subset µ of X by

µ(x) =











[0.3, 0.7] : x = 0

[0.1, 0.5] : x = a, c

[0.2, 0.6] : x = b

Then µ is an i-v fuzzy β−subalgebra of X. Here T = [1, 1] − rsup{µ(x)/x ∈
X} = [1, 1]− [0.3, 0.7] = [0.7, 0.3]. choose α = [0.04, 0.08] ∈ [0, T ]. Then the i-v

fuzzy set µT
α : X → D[0, 1] is given by µT

α(0) = [0.34, 0.78], µT
α(a) = µT

α(c) =

[0.14, 0.58] and µT
α(b) = [0.24, 0.68] is a i-v fuzzy α− Translation of µ.
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Theorem 3.3. For any i-v fuzzy β−subalgebra µ of X and α ∈ [0, T ] , the

i-v fuzzy α−translation µT
α(x) of µ is an i-v fuzzy β−subalgebra of X.

Proof. Let x, y ∈ X and α ∈ [0, T ], Then:

µ(x+ y) ≥ rmin{µ(x), µ(y)}

and

µ(x− y) ≥ rmin{µ(x), µ(y)}.

Now

µT
α(x+ y) = µ(x+ y) + α

≥ rmin{µ(x), µ(y)} + α

= rmin{µ(x) + α, µ(y) + α}

= rmin{µT
α(x), µ

T
α (y)}

Similarly, µT
α(x− y) ≥ rmin{µT

α(x), µ
T
α(y)}

Hence µT
α of µ is an i-v fuzzy β−subalgebra of X.

The following is the converse of the above theorem.

Theorem 3.4. For any i-v fuzzy subset µ of X and α ∈ [0, T ]. If the i-v

fuzzy α−translation µT
α of µ is also an i-v fuzzy β−subalgebra of X, then so is

µ.

Proof. Let x, y ∈ X
Assume that µT

α(x) of µ is a i-v fuzzy β−subalgebra of X for some α ∈ [0, T ].

Then:

µ(x+ y) + α = µT
α(x+ y)

≥ rmin{µT
α(x), µ

T
α(y)}

= rmin{µ(x) + α, µ(y) + α}

= rmin{µ(x), µ(y)}+ α

⇒ µ(x+ y) ≥ rmin{µ(x), µ(y)}.

Similarly,µ(x− y) ≥ rmin{µ(x), µ(y)}.

Hence µ is an i-v fuzzy β−subalgebra of X.
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Remark 3.5. In general for any i-v fuzzy set µ of X, the i-v fuzzy
α−translation µT

α(α ∈ [0, T ]) of µ need not be an i-v fuzzy β−subalgebra of X,
as shown by the following example.

Let X be the β−algebra given in Example 3.2. Consider the i-v fuzzy set µ

µ(x) =























[0.4, 0.6] : x = 0

[0.3, 0.5] : x = a

[0.2, 0.4] : x = b

[0.1, 0.3] : x = c

Let α = [0.02, 0.03]. Then the corresponding α−translation is

µT
α(0) = [0.42, 0.63], µT

α(a) = [0.32, 0.53],

µT
α(b) = [0.22, 0.43] and µT

α(c) = [0.12, 0.33].

Now µ(a+b) = µ(c) = [0.1, 0.3] � [0.2, 0.4] = rmin{µ(a), µ(b)} and µT
α(a+b) =

µT
α(c) = [0.12, 0.33] � [0.22, 0.43] = rmin{µT

α(a), µ
T
α(b)}.

Hence µ and µT
α are not i-v fuzzy β−subalgebra of X.

Corollary 3.6. Let µ be an i-v fuzzy set of X. If α = 0 then the i-v fuzzy
α−translation µT

α of µ is an i-v fuzzy β−subalgebra of X.

Theorem 3.7. Let µ be given an i-v fuzzy β−subalgebra of X. Then for
α,α′ ∈ [0, T ], (µT

α ∩ µT

α
′
) and (µT

α ∪ µT

α
′
) are also an i-v fuzzy β−subalgebra of

X.

Proof. Let µT
α and µT

α
′
be two i-v fuzzy translation of an i-v fuzzy β-subal-

gebra µ of X, where α,α′ ∈ [0, T ]

Assume that α ≤ α′ by theorem 3.3 µT
α and µT

α
′
be two i-v fuzzy translation of

β−subalgebra of X. Now

(µT
α ∩ µT

α
′
)(x) = rmin{µT

α(x), µ
T

α
′
(x)}

= rmin{µ(x) + α, µ(x) + α′}

= µ(x) + α

= µT
α(x).

Also

(µT
α ∪ µT

α
′
)(x) = rmax{µT

α(x), µ
T

α
′
(x)}
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= rmax{µ(x) + α, µ(x) + α′}

= µ(x) + α′

= µT

α
′
(x)

(µT
α ∩ µT

α
′
) and (µT

α ∪ µT

α
′ ) is an i-v fuzzy β−subalgebra of X.

Theorem 3.8. Let µ1 and µ2 be two i-v fuzzy β−subalgebras of X. Let
T = rmin{T µ

1
, T µ

2
} where Tµ

1
= [1, 1] − rsup{µ1(x) : x ∈ X} and T µ

2
=

[1, 1]− rsup{µ2(x) : x ∈ X}. Then the intersection of α−translation of µ1 and

α′−translation of µ2 for some α,α′ ∈ [0, T ] is an i-v fuzzy β−subalgebra of X.

Proof. Let µ1 and µ2 be two i-v fuzzy β−subalgebra of X.

Then by theorem 3.3 µ1
T
α and µ2

T

α
′
are i-v fuzzy β−subalgebra of X.

For x, y ∈ X,

(µ1
T
α ∩ µ2

T

α
′
)(x+ y) = rmin{µ1

T
α (x+ y), µ2

T

α
′
(x+ y)}

≥ rmin{rmin{µ1
T
α(x), µ1

T
α (y)}, rmin{µ2

T

α
′
(x), µ2

T

α
′
(y)}}

= rmin{rmin{µ1
T
α(x), µ2

T

α
′
(x)}, rmin{µ1

T
α(y), µ2

T

α
′
(y)}}

= rmin{(µ1
T
α ∩ µ2

T

α
′
)(x), (µ1

T
α ∩ µ2

T

α
′
)(y)}.

Similarly

(µ1
T
α ∩ µ2

T

α
′
)(x− y) ≥ rmin{(µ1

T
α ∩ µ2

T

α
′
)(x), (µ1

T
α ∩ µ2

T

α
′
)(y)}.

Therefore

(µ1
T
α ∩ µ2

T

α
′
)

is an i-v fuzzy β−subalgebra of X.

Definition 3.9. Let f : X → Y be a function. Let µX and µY be an i-v
fuzzy α−translation on X and Y respectively. Then inverse image of µY under

f is defined by f−1(µY ) = {f−1(µY )
T
α (x) : x ∈ X} such that f−1(µY )

T
α(x) =

µY (f(x) + α)

Theorem 3.10. Let X and Y be two β−algebras and f : X → Y
be a homomorphism. If the i-v fuzzy α−translation µY of Y is an i-v fuzzy
β−subalgebra of Y , then f−1(µY ) is an i-v fuzzy β−subalgebra of X.
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Proof. Let the i-v fuzzy α−translation µY of Y be an i-v fuzzy β−subalgebra
of Y .

Take x, y ∈ Y. Then

f−1(µY
T
α)(x+ y) = f−1(µY )(x+ y) + α

= µY (f(x+ y) + α)

= µY (f(x) + f(y)) + α

≥ rmin{µY (f(x) + α), µY (f(y) + α)}

= rmin{f−1(µY
T
α)(x), f

−1(µY
T
α)(y)}

Similarly, f−1(µY
T
α)(x− y) ≥ rmin{f−1(µY

T
α)(x), f

−1(µY
T
α)(y)}.

Hence f−1(µY ) is an i-v fuzzy β−subalgebra of X.

Theorem 3.11. Let X and Y be two β−algebras and f : X → Y be a epi-
morphism. If the i-v fuzzy α−translation µX of X is an i-v fuzzy β−subalgebra
of X, then f(µX) is an i-v fuzzy β−subalgebra of Y .

Proof. Let the i-v fuzzy α−translation µX ofX is an i-v fuzzy β−subalgebra
of X.

Take x, y ∈ Y. Then

f(µX
T
α)(x+ y) = f(µX)(x+ y) + α

= µX(f(x+ y) + α)

= µX(f(x) + f(y)) + α

≥ rmin{µX(f(x) + α), µX(f(y) + α)}

= rmin{f(µX
T
α)(x), f(µX

T
α)(y)}

similarly,f(µX
T
α)(x− y) ≥ rmin{f(µT

α (x)), f(µ
T
α(y))}.

Hence f(µX
T
α) is an i-v fuzzy β−subalgebra of Y .

Theorem 3.12. Let µ1 and µ2 be two i-v fuzzy β−subalgebras of X.
Let T = rmin{T µ

1
, T µ

2
} where T µ

1
= [1, 1] − rsup{µ1(x) : x ∈ X} and T µ

2
=

[1, 1]−rsup{µ2(x) : x ∈ X}. Let α ∈ [0, T ]. Then the α−translation of cartesian
product µ1 × µ2 of µ1 and µ2 is an i-v fuzzy β−subalgebra of X ×X.

Proof. Let µ1 and µ2 be an i-v fuzzy β−subalgebra of a β−algebra X and
α ∈ [0, T ].

Now by theorem 3.3 µ1
T
α and µ2

T
α are i-v fuzzy β−subalgebra of X.



STUDY ON i-v FUZZY TRANSLATION AND... 253

Clearly µ1
T
α × µ2

T
α is an i-v fuzzy β−subalgebra of X ×X. Also

(µ1 × µ2)
T
α (a, b) = (µ1 × µ2)(a, b) + α

= rmin{µ1(a), µ2(b)} + α

= rmin{µ1(a) + α, µ2(b) + α}

= rmin{µ1
T
α(a), µ2

T
α(b)}

= (µ1
T
α × µ2

T
α)(a, b).

Hence (µ1 × µ2)
T
α is an i-v fuzzy β−subalgebra of X ×X

4. Interval Valued Fuzzy Multiplication of β-Subalgebra

In this section, we introduce the notion of interval valued fuzzy φ−multiplication.
To illustrate the concept, we discuss some examples. Also we prove some simple
results.

Definition 4.1. Let µ be an i-v fuzzy subset of X and φ ∈ D[0, 1]. A
mapping µM

φ
: X → D[0, 1] is said to be an i-v fuzzy φ−multiplication of µ if it

satisfies µM
φ
(x) = φ.µ(x) ∀ x ∈ X

Example 4.2. Consider the above example 3.2. Let φ = [0.2, 0.3]. Then
the φ−multiplication of i-v fuzzy set µ is given by

µM
φ
(0) = [0.06, 0.21], µM

φ
(a) = µM

φ
(c) = [0.02, 0.15] and µM

φ
(b) = [0.04, 0.18].

Theorem 4.3. For any i-v fuzzy β−subalgebra µ of X and φ ∈ D[0, 1] ,
the i-v fuzzy φ−multiplication µM

φ
(x) of µ is an i-v fuzzy β−subalgebra of X.

Proof. Let x, y ∈ X and φ ∈ D[0, 1], Then

µ(x+ y) ≥ rmin{µ(x), µ(y)}

and
µ(x− y) ≥ rmin{µ(x), µ(y)}.

Now

µM
φ
(x+ y) = φ.µ(x+ y)

≥ φ.rmin{µ(x), µ(y)}
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= rmin{φ.µ(x), φ.µ(y)}

= rmin{µM
φ
(x), µM

φ
(y)}

Similarly, µM
φ
(x− y) ≥ rmin{µM

φ
(x), µM

φ
(y)}.

Hence µM
φ

of µ is a i-v fuzzy β−subalgebra of X.

The following is the converse of the above theorem.

Theorem 4.4. For any i-v fuzzy subset µ of X and φ ∈ D[0, 1]. If the i-v
fuzzy φ−multiplication µM

φ
of µ is also an i-v fuzzy β−subalgebra of X, then

so is µ.

Proof. Let x, y ∈ X. Assume that µM
φ
(x) of µ is a i-v fuzzy β−subalgebra

of X for some φ ∈ D[0, 1].

Then

φ.µ(x+ y) = µM
φ
(x+ y)

≥ rmin{µM
φ
(x), µM

φ
(y)}

= rmin{φ.µ(x), φ.µ(y)}

= φ.rmin{µ(x), µ(y)}

⇒ µ(x+ y) ≥ rmin{µ(x), µ(y)}.

Similarly,µ(x− y) ≥ rmin{µ(x), µ(y)}.

Hence µ is an i-v fuzzy β−subalgebra of X.

Definition 4.5. Let µ be an i-v fuzzy subset of X, φ ∈ D[0, 1] and

α ∈ [0, T ]. A mapping µMT
φα

: X → D[0, 1] is said to be an i-v fuzzy magnified

−φα−translation of µ if it satisfies µMT
φα

(x) = φ.µ(x) + α ∀ x ∈ X.

Example 4.6. Consider the β−algebra X = {0, a, b, c}in example 2.2.
Define an interval valued fuzzy subset µ of X by

µ(x) =











[0.3, 0.7] : x = 0

[0.1, 0.5] : x = a, c

[0.2, 0.6] : x = b

Then µ is an i-v fuzzy β−subalgebra of X. Here T = [1, 1] − rsup{µ(x)/x ∈
X} = [1, 1] − [0.3, 0.7] = [0.7, 0.3]. choose α = [0.04, 0.08] ∈ [[0, 0], [0.7, 0.3] and
φ. = [0.1, 0.3] ∈ D[0, 1].
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Then the i-v fuzzy set µMT
φα

: X → D[0, 1] is given by

µMT
φα

(0) = [0.07, 0..29], µMT
φα

(a) = µMT
φα

(c) = [0.05, 0.23]

and
µMT
φα

(b) = [0.06, 0.26].

Theorem 4.7. Let µ be an i-v fuzzy subset ofX, φ ∈ D[0, 1] and α ∈ [0, T ].

A mapping µMT
φα

: X → D[0, 1] is an i-v fuzzy magnified-φα-translation of µ.

Then µ is an i-v fuzzy β−subalgebra of X if and only if µMT
φα

is an i-v fuzzy

β−subalgebra of X.

Proof. Let µ be an i-v fuzzy subset of X, φ ∈ D[0, 1] and α ∈ [0, T ]. A

mapping µMT
φα

: X → D[0, 1] is said to be an i-v fuzzy magnified-φα-translation

of µ.
Assume that µ is an i-v fuzzy β−subalgebra of X.
Then µ(x+ y) ≥ rmin{µ(x), µ(y)} and µ(x− y) ≥ rmin{µ(x), µ(y)}.
Now

µMT
φα

(x+ y) = φ.µ(x+ y) + α

≥ φ.rmin{µ(x), µ(y)}+ α

= rmin{φ.µ(x) + α, φ.µ(y) + α}

= rmin{µMT
φα

(x), µMT
φα

(y)}

Similarly, µMT
φα

(x− y) ≥ rmin{µMT
φα

(x), µMT
φα

(y)}.

Hence µMT
φα

of µ is an i-v fuzzy β−subalgebra of X.

Assume that µMT
φα

(x) of µ is an i-v fuzzy β−subalgebra of X

Then:

φ.µ(x+ y) + α = µMT
φα

(x+ y)

≥ rmin{µMT
φα

(x), µMT
φα

(y)}

= rmin{φ.µ(x) + α, φ.µ(y) + α}

= φ.rmin{µ(x), µ(y)} + α

⇒ µ(x+ y) ≥ rmin{µ(x), µ(y)}.
Similarly,µ(x− y) ≥ rmin{µ(x), µ(y)}.
Hence µ is an i-v fuzzy β−subalgebra of X.
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