Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers

H. Özlem Güney

Dicle University, Faculty of Science, Department of Mathematics, Turkey email: ozlemg@dicle.edu.tr

G. Murugusundaramoorthy
 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Deemed to be University, India email: gmsmoorthy@yahoo.com

J. Sokół
University of Rzeszów, Faculty of Mathematics and
Natural Sciences, Poland email: jsokol@ur.edu.pl

Abstract

In this paper, we introduce and investigate new subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Furthermore, we find estimates of first two coefficients of functions in these classes. Also, we determine Fekete-Szegö inequalities for these function classes.

1 Introduction

Let $\mathbb{U}=\{z:|z|<1\}$ denote the unit disc on the complex plane. The class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

2010 Mathematics Subject Classification: 30C45, 30C50
Key words and phrases: analytic functions, bi-univalent, shell-like curve, Fibonacci numbers, starlike functions, convex functions
in the open unit disc \mathbb{U} with normalization $f(0)=f^{\prime}(0)-1=0$ is denoted by \mathcal{A} and the class $\mathcal{S} \subset \mathcal{A}$ is the class which consists of univalent functions in \mathbb{U}.

The Koebe one quarter theorem [3] ensures that the image of \mathbb{U} under every univalent function $\mathrm{f} \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function $\mathrm{f} \in \mathcal{A}$ has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z, \quad(z \in \mathbb{U}) \text { and } f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

A function $\mathrm{f} \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions defined in the unit disk \mathbb{U}. Since $f \in \Sigma$ has the Maclaurian series given by (1), a computation shows that its inverse $g=f^{-1}$ has the expansion

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{2}
\end{equation*}
$$

One can see a short history and examples of functions in the class Σ in [12]. Several authors have introduced and investigated subclasses of bi-univalent functions and obtained bounds for the initial coefficients (see [1, 2, 8, 12, 13, 14]).

An analytic function f is subordinate to an analytic function F in \mathbb{U}, written as $f \prec F(z \in \mathbb{U})$, provided there is an analytic function ω defined on \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ satisfying $f(z)=F(\omega(z))$. It follows from Schwarz Lemma that

$$
\mathrm{f}(z) \prec \mathrm{F}(z) \Longleftrightarrow \mathrm{f}(0)=\mathrm{F}(0) \text { and } \mathrm{f}(\mathbb{U}) \subset \mathrm{F}(\mathbb{U}), z \in \mathbb{U}
$$

(for details see [3], [7]). We recall important subclasses of \mathcal{S} in geometric function theory such that if $\mathrm{f} \in \mathcal{A}$ and

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p(z) \quad \text { and } \quad 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec p(z)
$$

where $p(z)=\frac{1+z}{1-z}$, then we say that f is starlike and convex, respectively. These functions form known classes denoted by \mathcal{S}^{*} and \mathcal{C}, respectively. Recently, in [11], Sokół introduced the class $\mathcal{S L}$ of shell-like functions as the set of functions $\mathrm{f} \in \mathcal{A}$ which is described in the following definition:

Definition 1 The function $\mathrm{f} \in \mathcal{A}$ belongs to the class $\mathcal{S} \mathcal{L}$ if it satisfies the condition that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \tilde{p}(z)
$$

with

$$
\tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}},
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$.
It should be observed $\mathcal{S} \mathcal{L}$ is a subclass of the starlike functions \mathcal{S}^{*}.
Later, Dziok et al. in [4] and [5] defined and introduced the class $\mathcal{K S L}$ and $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha}$ of convex and α-convex functions related to a shell-like curve connected with Fibonacci numbers, respectively. These classes can be given in the following definitions.

Definition 2 The function $\mathrm{f} \in \mathcal{A}$ belongs to the class $\mathcal{K} \mathcal{S} \mathcal{L}$ of convex shell-like functions if it satisfies the condition that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}},
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$.
Definition 3 The function $\mathrm{f} \in \mathcal{A}$ belongs to the class $\mathcal{S L M}_{\alpha},(0 \leq \alpha \leq 1)$ if it satisfies the condition that

$$
\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\alpha) \frac{z f^{\prime}(z)}{f(z)} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}},
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$.
The class $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha}$ is related to the class $\mathcal{K S L}$ only through the function $\tilde{\mathfrak{p}}$ and $\mathcal{S L} \mathcal{M}_{\alpha} \neq \mathcal{K} \mathcal{S} \mathcal{L}$ for all $\alpha \neq 1$. It is easy to see that $\mathcal{K} \mathcal{S}=\mathcal{S} \mathcal{L} \mathcal{M}_{1}$.

Besides, let's define the class $\mathcal{S} \mathcal{L G}_{\gamma}$ of so-called gamma-starlike functions related to a shell-like curve connected with Fibonacci numbers as follows.

Definition 4 The function $\mathrm{f} \in \mathcal{A}$ belongs to the class $\mathcal{S L G}_{\gamma},(\gamma \geq 0)$, if it satisfies the condition that

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\gamma} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$.

The function \tilde{p} is not univalent in \mathbb{U}, but it is univalent in the disc $|z|<$ $(3-\sqrt{5}) / 2 \approx 0.38$. For example, $\tilde{p}(0)=\tilde{p}(-1 / 2 \tau)=1$ and $\tilde{p}\left(e^{\mp i \arccos (1 / 4)}\right)=$ $\sqrt{5} / 5$, and it may also be noticed that

$$
\frac{1}{|\tau|}=\frac{|\tau|}{1-|\tau|}
$$

which shows that the number $|\tau|$ divides $[0,1]$ such that it fulfils the golden section. The image of the unit circle $|z|=1$ under \tilde{p} is a curve described by the equation given by

$$
(10 x-\sqrt{5}) y^{2}=(\sqrt{5}-2 x)(\sqrt{5} x-1)^{2}
$$

which is translated and revolved trisectrix of Maclaurin. The curve $\tilde{\mathrm{p}}\left(\mathrm{r} \mathrm{e}^{\mathrm{it}}\right)$ is a closed curve without any loops for $0<r \leq r_{0}=(3-\sqrt{5}) / 2 \approx 0.38$. For $r_{0}<r<1$, it has a loop, and for $r=1$, it has a vertical asymptote. Since τ satisfies the equation $\tau^{2}=1+\tau$, this expression can be used to obtain higher powers τ^{n} as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of τ and 1 . The resulting recurrence relationships yield Fibonacci numbers u_{n} :

$$
\tau^{n}=u_{n} \tau+u_{n-1}
$$

In [10], taking $\tau z=\mathrm{t}$, Raina and Sokól showed that

$$
\begin{align*}
\tilde{p}(z) & =\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}=\left(t+\frac{1}{t}\right) \frac{t}{1-t-t^{2}} \\
& =\frac{1}{\sqrt{5}}\left(t+\frac{1}{t}\right)\left(\frac{1}{1-(1-\tau) t}-\frac{1}{1-\tau t}\right) \\
& =\left(t+\frac{1}{t}\right) \sum_{n=1}^{\infty} \frac{(1-\tau)^{n}-\tau^{n}}{\sqrt{5}} t^{n} \tag{3}\\
& =\left(t+\frac{1}{t}\right) \sum_{n=1}^{\infty} u_{n} t^{n}=1+\sum_{n=1}^{\infty}\left(u_{n-1}+u_{n+1}\right) \tau^{n} z^{n}
\end{align*}
$$

where

$$
\begin{equation*}
u_{n}=\frac{(1-\tau)^{n}-\tau^{n}}{\sqrt{5}}, \tau=\frac{1-\sqrt{5}}{2}(n=1,2, \ldots) \tag{4}
\end{equation*}
$$

This shows that the relevant connection of \tilde{p} with the sequence of Fibonacci numbers u_{n}, such that $u_{0}=0, u_{1}=1, u_{n+2}=u_{n}+u_{n+1}$ for $n=0,1,2, \cdots$.

And they got

$$
\begin{align*}
\tilde{p}(z)= & 1+\sum_{n=1}^{\infty} \tilde{p}_{n} z^{n}=1+\left(u_{0}+u_{2}\right) \tau z+\left(u_{1}+u_{3}\right) \tau^{2} z^{2} \\
& +\sum_{n=3}^{\infty}\left(u_{n-3}+u_{n-2}+u_{n-1}+u_{n}\right) \tau^{n} z^{n} \tag{5}\\
= & 1+\tau z+3 \tau^{2} z^{2}+4 \tau^{3} z^{3}+7 \tau^{4} z^{4}+11 \tau^{5} z^{5}+\cdots .
\end{align*}
$$

Let $\mathcal{P}(\beta), 0 \leq \beta<1$, denote the class of analytic functions p in \mathbb{U} with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>\beta$. Especially, we will use \mathcal{P} instead of $\mathcal{P}(0)$.

Theorem 1 [5] The function $\tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}$ belongs to the class $\mathcal{P}(\beta)$ with $\beta=\sqrt{5} / 10 \approx 0.2236$.

Now we give the following lemma which will use in proving.
Lemma 1 [9] Let $\mathfrak{p} \in \mathcal{P}$ with $\mathfrak{p}(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, then

$$
\begin{equation*}
\left|c_{n}\right| \leq 2, \quad \text { for } \quad n \geq 1 \tag{6}
\end{equation*}
$$

In this present work, we introduce two subclasses of Σ associated with shelllike functions connected with Fibonacci numbers and obtain the initial Taylor coefficients $\left|\mathrm{a}_{2}\right|$ and $\left|\mathrm{a}_{3}\right|$ for these function classes. Also, we give bounds for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for each subclass.

2 Bi-univalent function class $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{p}(z))$

In this section, we introduce a new subclass of Σ associated with shell-like functions connected with Fibonacci numbers and obtain the initial Taylor coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function class by subordination.

Firstly, let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, and $p \prec \tilde{p}$. Then there exists an analytic function u such that $|\mathfrak{u}(z)|<1$ in \mathbb{U} and $\mathfrak{p}(z)=\tilde{\mathfrak{p}}(u(z))$. Therefore, the function

$$
\begin{equation*}
h(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1} z+c_{2} z^{2}+\ldots \tag{7}
\end{equation*}
$$

is in the class $\mathcal{P}(0)$. It follows that

$$
\begin{equation*}
u(z)=\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\tilde{p}(u(z)) & =1+\tilde{p}_{1}\left\{\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right\} \\
& +\tilde{p}_{2}\left\{\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right\}^{2} \\
& +\tilde{p}_{3}\left\{\frac{c_{1} z}{2}+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \frac{z^{2}}{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \frac{z^{3}}{2}+\cdots\right\}^{3}+\cdots \tag{9}\\
& =1+\frac{\tilde{p}_{1} c_{1} z}{2}+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{1}+\frac{c_{1}^{2}}{4} \tilde{p}_{2}\right\} z^{2} \\
& +\left\{\frac{1}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \tilde{p}_{1}+\frac{1}{2} c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{2}+\frac{c_{1}^{3}}{8} \tilde{p}_{3}\right\} z^{3}+\cdots
\end{align*}
$$

And similarly, there exists an analytic function v such that $|v(w)|<1$ in \mathbb{U} and $p(w)=\tilde{p}(v(w))$. Therefore, the function

$$
\begin{equation*}
k(w)=\frac{1+v(w)}{1-v(w)}=1+d_{1} w+d_{2} w^{2}+\ldots \tag{10}
\end{equation*}
$$

is in the class $\mathcal{P}(0)$. It follows that

$$
\begin{equation*}
v(w)=\frac{d_{1} w}{2}+\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \frac{w^{2}}{2}+\left(d_{3}-d_{1} d_{2}+\frac{d_{1}^{3}}{4}\right) \frac{w^{3}}{2}+\cdots \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
& \tilde{p}(v(w))=1+\frac{\tilde{p}_{1} d_{1} w}{2}+\left\{\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tilde{p}_{1}+\frac{d_{1}^{2}}{4} \tilde{p}_{2}\right\} w^{2} \tag{12}\\
& \quad+\left\{\frac{1}{2}\left(d_{3}-d_{1} d_{2}+\frac{d_{1}^{3}}{4}\right) \tilde{p}_{1}+\frac{1}{2} d_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tilde{p}_{2}+\frac{d_{1}^{3}}{8} \tilde{p}_{3}\right\} w^{3}+\cdots
\end{align*}
$$

Definition 5 For $0 \leq \alpha \leq 1$, a function $\mathrm{f} \in \Sigma$ of the form (1) is said to be in the class $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{\mathrm{p}}(z))$ if the following subordination hold:

$$
\begin{equation*}
\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right) \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)+(1-\alpha)\left(\frac{w g^{\prime}(w)}{g(w)}\right) \prec \tilde{p}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}} \tag{14}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $z, w \in \mathbb{U}$ and g is given by (2).

Specializing the parameter $\alpha=0$ and $\alpha=1$ we have the following, respectively:

Definition 6 A function $\mathrm{f} \in \Sigma$ of the form (1) is said to be in the class $\mathcal{S}_{\mathcal{\Sigma}}(\tilde{\mathfrak{p}}(z))$ if the following subordination hold:

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{\mathrm{f}(z)} \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{g(w)} \prec \tilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}} \tag{16}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $\boldsymbol{z}, \boldsymbol{w} \in \mathbb{U}$ and g is given by (2).
Definition 7 A function $\mathrm{f} \in \Sigma$ of the form (1) is said to be in the class $\mathcal{K} \mathcal{L}_{\Sigma}(\tilde{\mathfrak{p}}(z))$ if the following subordination hold:

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} \prec \tilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}} \tag{18}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $z, w \in \mathbb{U}$ and g is given by (2).
In the following theorem we determine the initial Taylor coefficients $\left|\mathrm{a}_{2}\right|$ and $\left|a_{3}\right|$ for the function class $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{\mathfrak{p}}(z))$. Later we will reduce these bounds to other classes for special cases.

Theorem 2 Let f given by (1) be in the class $\mathcal{S L M}_{\alpha, \Sigma}(\tilde{\mathfrak{p}}(z))$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{(1+\alpha)^{2}-(1+\alpha)(2+3 \alpha) \tau}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|\left[(1+\alpha)^{2}-\left(3 \alpha^{2}+9 \alpha+4\right) \tau\right]}{2(1+2 \alpha)(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]} . \tag{20}
\end{equation*}
$$

Proof. Let $\mathrm{f} \in \mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{\mathfrak{p}}(z))$ and $\boldsymbol{g}=\mathrm{f}^{-1}$. Considering (13) and (14), we have

$$
\begin{equation*}
\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\tilde{p}(u(z)) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)+(1-\alpha)\left(\frac{w g^{\prime}(w)}{g(w)}\right)=\tilde{p}(v(w)) \tag{22}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $z, w \in \mathbb{U}$ and g is given by (2). Since

$$
\begin{aligned}
\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)=1 & +(1+\alpha) a_{2} z+\left(2(1+2 \alpha) a_{3}\right. \\
& \left.-(1+3 \alpha) a_{2}^{2}\right) z^{2}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)+(1-\alpha)\left(\frac{w g^{\prime}(w)}{g(w)}\right)=1 & -(1+\alpha) a_{2} w+\left((3+5 \alpha) a_{2}^{2}\right. \\
& \left.-2(1+2 \alpha) a_{3}\right) w^{2}+\cdots
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& 1+(1+\alpha) a_{2} z+\left(2(1+2 \alpha) a_{3}-(1+3 \alpha) a_{2}^{2}\right) z^{2}+\Delta \Delta \Delta \\
& =1+\frac{\tilde{p}_{1} c_{1} z}{2}+\left[\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{1}+\frac{c_{1}^{2}}{4} \tilde{p}_{2}\right] z^{2} \tag{23}\\
& \quad+\left[\frac{1}{2}\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) \tilde{p}_{1}+\frac{1}{2} c_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tilde{p}_{2}+\frac{c_{1}^{3}}{8} \tilde{p}_{3}\right] z^{3}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
& 1-(1+\alpha) a_{2} w+\left((3+5 \alpha) a_{2}^{2}-2(1+2 \alpha) a_{3}\right) w^{2}+\Delta \Delta \Delta \\
& =1+\frac{\tilde{p}_{1} d_{1} w}{2}+\left[\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tilde{p}_{1}+\frac{d_{1}^{2}}{4} \tilde{p}_{2}\right] w^{2} \tag{24}\\
& +\left[\frac{1}{2}\left(d_{3}-d_{1} d_{2}+\frac{d_{1}^{3}}{4}\right) \tilde{p}_{1}+\frac{1}{2} d_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tilde{p}_{2}+\frac{d_{1}^{3}}{8} \tilde{p}_{3}\right] w^{3}+\cdots
\end{align*}
$$

It follows from (23) and (24) that

$$
\begin{align*}
(1+\alpha) a_{2} & =\frac{c_{1} \tau}{2} \tag{25}\\
2(1+2 \alpha) a_{3}-(1+3 \alpha) a_{2}^{2} & =\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tau+\frac{c_{1}^{2}}{4} 3 \tau^{2} \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
-(1+\alpha) a_{2} & =\frac{d_{1} \tau}{2} \tag{27}\\
(3+5 \alpha) a_{2}^{2}-2(1+2 \alpha) a_{3} & =\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tau+\frac{d_{1}^{2}}{4} 3 \tau^{2} \tag{28}
\end{align*}
$$

From (25) and (27), we have

$$
\begin{equation*}
\mathrm{c}_{1}=-\mathrm{d}_{1}, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}^{2}=\frac{\left(c_{1}^{2}+d_{1}^{2}\right)}{4(1+\alpha)^{2}} \tau^{2} . \tag{30}
\end{equation*}
$$

Now, by summing (26) and (28), we obtain

$$
\begin{equation*}
2(1+\alpha) a_{2}^{2}=\frac{1}{2}\left(c_{2}+d_{2}\right) \tau-\frac{1}{4}\left(c_{1}^{2}+d_{1}^{2}\right) \tau+\frac{3}{4}\left(c_{1}^{2}+d_{1}^{2}\right) \tau^{2} . \tag{31}
\end{equation*}
$$

By putting (30) in (31), we have

$$
\begin{equation*}
2(1+\alpha)[(-2-3 \alpha) \tau+(1+\alpha)] a_{2}^{2}=\frac{1}{2}\left(c_{2}+d_{2}\right) \tau^{2} . \tag{32}
\end{equation*}
$$

Therefore, using Lemma (1) we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{(1+\alpha)^{2}-(1+\alpha)(2+3 \alpha) \tau}} . \tag{33}
\end{equation*}
$$

Now, so as to find the bound on $\left|\mathfrak{a}_{3}\right|$, let's subtract from (26) and (28). So, we find

$$
\begin{equation*}
4(1+2 \alpha) a_{3}-4(1+2 \alpha) a_{2}^{2}=\frac{1}{2}\left(c_{2}-d_{2}\right) \tau . \tag{34}
\end{equation*}
$$

Hence, we get

$$
\begin{equation*}
4(1+2 \alpha)\left|a_{3}\right| \leq 2|\tau|+4(1+2 \alpha)\left|a_{2}\right|^{2} . \tag{35}
\end{equation*}
$$

Then, in view of (33), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|\left[(1+\alpha)^{2}-\left(3 \alpha^{2}+9 \alpha+4\right) \tau\right]}{2(1+2 \alpha)(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]} . \tag{36}
\end{equation*}
$$

If we can take the parameter $\alpha=0$ and $\alpha=1$ in the above theorem, we have the following the initial Taylor coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function classes $\mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathfrak{p}}(z))$ and $\mathcal{K} \mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathfrak{p}}(z))$, respectively.

Corollary 1 Let f given by (1) be in the class $\mathcal{S}_{\mathcal{\Sigma}}(\tilde{\mathfrak{p}}(z))$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{1-2 \tau}} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|(1-4 \tau)}{2(1-2 \tau)} . \tag{38}
\end{equation*}
$$

Corollary 2 Let f given by (1) be in the class $\mathcal{K} \mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathrm{p}}(z))$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{4-10 \tau}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|(1-4 \tau)}{3(2-5 \tau)} \tag{40}
\end{equation*}
$$

3 Bi-univalent function class $\mathcal{S} \mathcal{L} \mathcal{G}_{\gamma, \Sigma}(\tilde{p}(z))$

In this section, we define a new class $\mathcal{S} \mathcal{L} \mathcal{G}_{\gamma, \Sigma}(\tilde{p}(z))$ of γ - bi-starlike functions associated with Shell-like domain.

Definition 8 For $\gamma \geq 0$, we let a function $\mathrm{f} \in \Sigma$ given by (1) is said to be in the class $\mathcal{S L G}_{\gamma, \Sigma}(\tilde{p}(z))$, if the following conditions are satisfied:

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\gamma} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{1-\gamma} \prec \tilde{p}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau z-\tau^{2} w^{2}} \tag{42}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $z, \mathcal{w} \in \mathbb{U}$ and g is given by (2).
Remark 1 Taking $\gamma=1$, we get $\mathcal{S} \mathcal{L G}_{1, \Sigma}(\tilde{\mathrm{p}}(z)) \equiv \mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathrm{p}}(z))$ the class as given in Definition 5 satisfying the conditions given in (15) and (16).

Remark 2 Taking $\gamma=0$, we get $\mathcal{S} \mathcal{L} \mathcal{G}_{0, \Sigma}(\tilde{\mathrm{p}}(z)) \equiv \mathcal{K} \mathcal{L}_{\Sigma}(\tilde{\mathrm{p}}(z))$ the class as given in Definition 6 satisfying the conditions given in (17) and (18).

$$
\left|a_{2}\right| \leq \frac{\sqrt{2}|\tau|}{\sqrt{2(2-\gamma)^{2}-\left(5 \gamma^{2}-21 \gamma+20\right) \tau}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|\left[2(2-\gamma)^{2}-\left(5 \gamma^{2}-29 \gamma+32\right) \tau\right]}{2(3-2 \gamma)\left[2(2-\gamma)^{2}-\left(5 \gamma^{2}-21 \gamma+20\right) \tau\right]}
$$

Proof. Let $\mathrm{f} \in \mathcal{S L \mathcal { L }}_{\gamma, \Sigma}(\tilde{\mathfrak{p}}(z))$ and $\mathrm{g}=\mathrm{f}^{-1}$ given by (2) Considering (41) and (42), we have

$$
\begin{equation*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\gamma} \prec \tilde{\mathfrak{p}}(u(z)) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{1-\gamma} \prec \tilde{\mathfrak{p}}(v(w)) \tag{44}
\end{equation*}
$$

where $\tau=(1-\sqrt{5}) / 2 \approx-0.618$ where $z, w \in \mathbb{U}$ and g is given by (2). Since,

$$
\begin{align*}
& \left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{1-\gamma}=1+(2-\gamma) a_{2} z \\
& +\left(2(3-2 \gamma) a_{3}+\frac{1}{2}\left[(\gamma-2)^{2}-3(4-3 \gamma)\right] a_{2}^{2}\right) z^{2}+\cdots \prec \tilde{p}(u(z)) \tag{45}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{1-\gamma}=1-(2-\gamma) \mathfrak{a}_{2} w \tag{46}\\
& +\left(\left[8(1-\gamma)+\frac{1}{2} \gamma(\gamma+5)\right] a_{2}^{2}-2(3-2 \gamma) \mathfrak{a}_{3}\right) w^{2}+\cdots \prec \tilde{\mathfrak{p}}(v(w)) .
\end{align*}
$$

Equating the coefficients in(45) and (46), with (9) and (12) respectively we get,

$$
\begin{align*}
(2-\gamma) a_{2} & =\frac{c_{1} \tau}{2} \tag{47}\\
2(3-2 \gamma) a_{3}+\frac{1}{2}\left[(\gamma-2)^{2}-3(4-3 \gamma)\right] a_{2}^{2} & =\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) \tau+\frac{c_{1}^{2}}{4} 3 \tau^{2}, \tag{48}
\end{align*}
$$

and

$$
\begin{align*}
-(2-\gamma) a_{2} & =\frac{d_{1} \tau}{2} \tag{49}\\
-2(3-2 \gamma) a_{3}+\left[8(1-\gamma)+\frac{1}{2} \gamma(\gamma+5)\right] a_{2}^{2} & =\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right) \tau+\frac{d_{1}^{2}}{4} 3 \tau^{2} . \tag{50}
\end{align*}
$$

From (47) and (49), we have

$$
\begin{equation*}
a_{2}=\frac{c_{1} \tau}{2(2-\gamma)}=-\frac{d_{1} \tau}{2(2-\gamma)}, \tag{51}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mathrm{c}_{1}=-\mathrm{d}_{1} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{a}_{2}^{2}=\frac{\left(\mathrm{c}_{1}^{2}+\mathrm{d}_{1}^{2}\right) \tau^{2}}{8(2-\gamma)^{2}} \tag{53}
\end{equation*}
$$

Now, by summing (48) and (50), we obtain

$$
\begin{equation*}
\left(\gamma^{2}-3 \gamma+4\right) a_{2}^{2}=\frac{1}{2}\left(c_{2}+d_{2}\right) \tau-\frac{1}{4}\left(c_{1}^{2}+d_{1}^{2}\right) \tau+\frac{3}{4}\left(c_{1}^{2}+d_{1}^{2}\right) \tau^{2} \tag{54}
\end{equation*}
$$

Proceeding similarly as in the earlier proof of Theorem 2, using Lemma (1) we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\sqrt{2}|\tau|}{\sqrt{2(2-\gamma)^{2}-\left(5 \gamma^{2}-21 \gamma+20\right) \tau}} \tag{55}
\end{equation*}
$$

Now, so as to find the bound on $\left|a_{3}\right|$, let's subtract from (48) and (50). So, we find

$$
\begin{equation*}
4(3-2 \gamma) a_{3}-4(3-2 \gamma) a_{2}^{2}=\frac{1}{2}\left(c_{2}-d_{2}\right) \tau \tag{56}
\end{equation*}
$$

Hence, we get

$$
\begin{equation*}
4(1+2 \gamma)\left|a_{3}\right| \leq 2|\tau|+4(1+2 \gamma)\left|a_{2}\right|^{2} \tag{57}
\end{equation*}
$$

Then, in view of (55), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\tau|\left[2(2-\gamma)^{2}-\left(5 \gamma^{2}-29 \gamma+32\right) \tau\right]}{2(3-2 \gamma)\left[2(2-\gamma)^{2}-\left(5 \gamma^{2}-21 \gamma+20\right) \tau\right]} \tag{58}
\end{equation*}
$$

Remark 3 By taking $\gamma=1$ and $\gamma=0$ in the above theorem, we have the initial Taylor coefficients $\left|\mathrm{a}_{2}\right|$ and $\left|\mathrm{a}_{3}\right|$ for the function classes $\mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathrm{p}}(z))$ and $\mathcal{K} \mathcal{S}_{\Sigma}(\tilde{\mathrm{p}}(z))$, as stated in Corollary 1 and Corollary 2 respectively.

4 Fekete-Szegö inequalities for the function classes $\mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{p}(z))$ and $\mathcal{S} \mathcal{L} \mathcal{G}_{\gamma, \Sigma}(\tilde{p}(z))$

Fekete and Szegö [6] introduced the generalized functional $\left|a_{3}-\mu a_{2}^{2}\right|$, where μ is some real number. Due to Zaprawa [15], in the following theorem we determine the Fekete-Szegö functional for $f \in \mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{p}(z))$.

Theorem 4 Let f given by (1) be in the class $\mathcal{S L M}_{\alpha, \Sigma}(\tilde{\mathfrak{p}}(z))$ and $\mu \in \mathbb{R}$. Then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\tau|}{2(1+2 \alpha)}, & |\mu-1| \leq \frac{(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}{2(1+2 \alpha) \tau \tau} \\
\frac{|1-\mu| \tau^{2}}{(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}, & |\mu-1| \geq \frac{(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}{2(1+2 \alpha) \mid \tau]}
\end{array} .\right.
$$

Proof. From (32) and (34)we obtain

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}= & (1-\mu) \frac{\tau^{2}\left(c_{2}+d_{2}\right)}{4(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}+\frac{\tau\left(c_{2}-d_{2}\right)}{8(1+2 \alpha)} \\
= & \left(\frac{(1-\mu) \tau^{2}}{4(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}+\frac{\tau}{8(1+2 \alpha)}\right) c_{2} \tag{59}\\
& +\left(\frac{(1-\mu) \tau^{2}}{4(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]}-\frac{\tau}{8(1+2 \alpha)}\right) d_{2} .
\end{align*}
$$

So we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\left(h(\mu)+\frac{|\tau|}{8(1+2 \alpha)}\right) c_{2}+\left(h(\mu)-\frac{|\tau|}{8(1+2 \alpha)}\right) d_{2} \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
h(\mu)=\frac{(1-\mu) \tau^{2}}{4(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]} . \tag{61}
\end{equation*}
$$

Then, by taking modulus of (60), we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\tau|}{2 \mid 1+2 \alpha)}, & 0 \leq|h(\mu)| \leq \frac{|\tau|}{8 \mid 1+2 \alpha)} \\
4|h(\mu)|, & |h(\mu)| \geq \frac{|\tau|}{8(1+2 \alpha)}
\end{array} .\right.
$$

Taking $\mu=1$, we have the following corollary.
Corollary 3 If $\mathrm{f} \in \mathcal{S} \mathcal{L} \mathcal{M}_{\alpha, \Sigma}(\tilde{\mathfrak{p}}(z))$, then

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau|}{2(1+2 \alpha)} . \tag{62}
\end{equation*}
$$

If we can take the parameter $\alpha=0$ and $\alpha=1$ in the above theorem, we have the following the Fekete-Szegö inequalities for the function classes $\mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathfrak{p}}(z))$ and $\mathcal{K} \mathcal{S L}_{\Sigma}(\tilde{\mathfrak{p}}(z))$, respectively.

Corollary 4 Let f given by (1) be in the class $\mathcal{S} \mathcal{L}_{\Sigma}(\tilde{p}(z))$ and $\mu \in \mathbb{R}$. Then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\tau|}{2}, & |\mu-1| \leq \frac{1-2 \tau}{2 \mid \tau} \\
\frac{\mid 1-\mu \tau^{2}}{1-2 \tau}, & |\mu-1| \geq \frac{1-2 \tau}{2|\tau|}
\end{array} .\right.
$$

Corollary 5 Let f given by (1) be in the class $\mathcal{K} \mathcal{S} \mathcal{L}_{\Sigma}(\tilde{\mathrm{p}}(z))$ and $\mu \in \mathbb{R}$. Then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{6}, & |\mu-1| \leq \frac{2-5 \tau}{3|\tau|} \\ \frac{|1-\mu| \tau^{2}}{2(2-5 \tau)}, & |\mu-1| \geq \frac{2-5 \tau}{3|\tau|}\end{cases}
$$

In the following theorem, we find the Fekete-Szegö functional for $\mathrm{f} \in \mathcal{S} \mathcal{L} \mathcal{G}_{\gamma, \Sigma}(\tilde{\mathrm{p}}(z))$.
Theorem 5 Let f given by (1) be in the class $\mathcal{S} \mathcal{L} \mathcal{G}_{\gamma, \Sigma}(\tilde{\mathrm{p}}(z))$ and $\mu \in \mathbb{R}$. Then we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2(3-2 \gamma)}, & |\mu-1| \leq \frac{2(2-\gamma)^{2}+\left(-5 \gamma^{2}+21 \gamma-20\right) \tau}{4(3-2 \gamma)|\tau|} \\ \frac{2|1-\mu| \tau^{2}}{2(2-\gamma)^{2}+\left[\left(-5 \gamma^{2}+21 \gamma-20\right) \tau\right]}, & |\mu-1| \geq \frac{2(2-\gamma)^{2}+\left(-5 \gamma^{2}+21 \gamma-20\right) \tau}{4(3-2 \gamma)|\tau|}\end{cases}
$$

Taking $\mu=1$, we have the following corollary.
Corollary 6 If $\mathrm{f} \in \mathcal{S} \mathcal{L G}_{\gamma, \Sigma}(\tilde{\mathrm{p}}(z))$, then

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\tau|}{2(3-2 \gamma)} \tag{63}
\end{equation*}
$$

By taking $\gamma=1$ and $\gamma=0$ in the above theorem, we have the Fekete-Szegö inequality for the function classes $\mathcal{S} \mathcal{L}_{\Sigma}(\tilde{p}(z))$ and $\mathcal{K} \mathcal{S} \mathcal{L}_{\Sigma}(\tilde{p}(z))$, as stated in Corollary 4 and Corollary 5, respectively.

References

[1] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476-485.
[2] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31 (2) (1986), 70-77.
[3] P. L. Duren, Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
[4] J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl., 61 (2011), 2605-2613.
[5] J. Dziok, R. K. Raina, J. Sokól, On α-convex functions related to a shelllike curve connected with Fibonacci numbers, Appl. Math. Comp., 218 (2011), 996-1002.
[6] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc., 8 (1933), 85-89.
[7] S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York (2000).
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68 .
[9] Ch. Pommerenke, Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Göttingen, 1975.
[10] R. K. Raina, J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135-140.
[11] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111-116.
[12] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (10) (2010), 1188-1192.
[13] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994.
[14] X-F. Li and A-P Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum, 7 (30) (2012), 1495-1504.
[15] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (1) (2014), 169-178.

